s

= el

P —-{®
- 52%970

May 25th, 2002
QA: QA
DESIGN DOCUMENT (DD)

for

PEST Version 5.5

SAN:
STN:
SMN:
SDN:

Prepared by: : » , Date
John Doherty
Watermark Numerical Computing
- for
Geoanalysis Group, EES-5
Los Alamos National Laboratory
Los Alamos, New Mexico

Reviewed by: Date
Zora Dash
Technical Reviewer

Approved by: Date
George Zyvoloski
Responsible Manager

Reviewed by: Date
‘ IT Software Management Analyst

Los Alamos National Laboratory

Table of Contents

L PUIPOSE -ttt ettt et et b e s e et s b e s b e b et s as e st e b et b et e s bt e aesbasnaeten 1
2. Implementation Standards and Environment Specifications..........cc.coccevrveevierveneeeninneeneenennenns 2
2.1 Programming Standardsccccceceiieiiiiiiiniinniiniinner e 2
2.2 System Software........... OO PRPRROPN 2
23 HATAWATE ...ttt bbb 3
2.4 Installation and Validation Methodology........ccccocevirininniiiiininininiiiceieceee e 3
3. SOFtWATE SIIUCTUTE.....eeiiiiiiierii e ettt bbb sene s r e snesnesenesaneneas 4
3.1 Functional REQUITEMENLS.c...coeiriiiiiiieiectesteetee ettt s e e ene b s 4
3.2 SOftware MOAUIEScc.eieiiiiiiiece ettt ettt e 4

. 3.2 Optimization AIZOTItRIMcoiiiiiiiniiiiiiiciiccet ettt saesbe e 8
3.2.1 Modes of Operation.........cc.cce...e. heteeretes ettt b s s b e s as s e e e srsesenes 8
3.2.2 Parameter Estimation MOdEccovuereerierieniieeicceneneseeresee e 9
3.2.3 Predictive Analysis MOEcc.eovueriiiriiinieiieeeesicnee e et sieesre b ens 9
3.2.4 Regularization MOGE........cceviiiiiriiiriiiniirienies ittt ssaeseessnessne s s seaesneassesns 9

3.3 Calculation Of DEITVAIVES.coceueueuirieeeeereiiereseseeaesessceesessee e seseesessesesssssssessssesesssssseseseserens 9
3.3.1 Generalcccoeoeeeeienieiiieeeee ettt et at et e et te et e h bt et e e et e st e e e et e s aaeesaaeeaaes 9
3.3.2 Finite-Difference-Calculated Derivativesc.cccovicvininiininiiiiineneceiseneeceene 10
3.3.3 EXternal DEerIVAtIVESivueiiiiiriiiciicietcccciterestte ettt ettt nan 12
3.3.4 PEST-t0-Model MESSAZINGcc.coeemiriiiiientietetereeeet ettt ettt ebe e eans 13

3.4 Upgrading the Parameter SEL...........coviiiiiiiiiiiiiiieceerececete st se s see s e sseesaaeanbaaens 15
3.4.1 Upgrade Formulae.............cccccccoevvinniiininnnnnenne teeeetrere e te st nesaesseseresresnneneens 1D
3.4.2 The Marquardt Lambda..........c.ccecoriiiiiiiiiiniincceercecsetee e 16

3.5 Selection of Regularization Weights..........ccccoceeeeene. e 16
3.6 Termination CIIEITA.......cccucvirireieteereetcter sttt ettt r bbb saeebee st eseren 17
3.7 Structure of an Optimization AlgOorithm ..o 17
3.8 PEST-Model INterface........cc.cceeuieiriioieiineniieieerieereeeeteesreeee e SN 20
3.8.1 Model INPUL FIIEScovviiiiiiiicceee ettt st 20
3.8.2 Model OUPUL FIlES....c..ccviiriiiiiieeeienieeecte ettt ettt s saeae s 23

3.9 Restarting @ PEST RUN.......ooiiiiiiiieeeetete ettt be et s eas 27
3.9.1 DAta STOTAZEc.everuiieiiiriirrieieeiieerieeie et e st e bt e b e sbesabesaesatesbtesbaesbesasesbesbaesbaessasssenssenses 27
3.9.2 Restarting at the Beginning of the Current Optimization Iterationc.cceeveeierenne. 27
3.9.3 Restarting at the Location of Latest Jacobian Calculationccecevveeeeciecienennennn. 27
3.10 Parameter Change LIMILSc...oiieriiriiiriirie ettt re et 28
3.11 User-Intervention FUNCHONALILYccovuiiiiiiiiiiiiiniiiiccne e 28
3.11.1 Design COonSIdErationsS........cc.ceeriertrirereeieteirersesseteteresiesteeesesseseesessessessssessessesasses 28
3.11.2 The Parameter HOIA Filecooiiiniiiniiiicice et 29
3.12 Parameter Transformations and Linkagesccoecviveriecrnneniniecieiieicce e 31
BU12.1 GENETAL ...ttt et ettt e st e e st eseaateesbaesenteese it eeeareaens 31
3.12.2 Log TransfOrMAatioN...........cecvvueriririiniereiniesini ettt ettt ettt es e esens 32
3.12.3 FIXed PAramELETScovimiiiiiciieicteice ettt 32
3.12.4 Tied Parameters........cc.coueeiiuiriiriirieceisieeecee e et ste et ste et st e s teebe b essensesenes 32
3.13 Parameter BOUNASc..ccoiiiiiiiiiiiciecieteee sttt eb b ere e ens 32
3.14 Prior INfOrMatioNcc.coiiiiiiiiicicreetc ettt be b e aaebaeaens 33
3.15 ODBSEIVALIONS.....civiviniiiiiiiietecit ettt ettt ettt s en b s se e bt asasnane 33

PEST v5.5 Software Design Document 777777
3.15.1 General ...t i L 33
3.15.2 ObServation NAIMEScoceviriiieiiiiiireiterereetesitesie st etessee s esaes e e st aesbessessaesnananeans 34
3.15.3 ObSErvation GIOUPS.......ceoeeierreiirrieeieeereerteerreesreesitaeteesbeasiesesesssaesssesssesssesssasssassssases 34
3.15.4 Observation WEIZhtSccooiiiiiiiiiiiiiieiieetcec ettt 34
3.15.5 Observation Covariance Matrixcoceceeeerueuennnee etrtere ettt ettt 34
3.15.6 PrediCtive ANALYSIS.....c.coiiciiiiiiiiiieiienitieienieeieirt sttt ste e s et saessestesse s b esaesnaens 35
3.15.7 REGUIATIZAtION ...ttt ettt ettt 35
3.16 Precision..........ccocevnnens ST bbbt e et neene 36
3.17 Paralle] PrOCESSINGcccciiiuiiiuieiiiiiniieteneesi sttt ettt et e et saesatesaseteenaensensessnensas 36
3.17.1 Design Considerations.........c.coueieirieierientenienieieieseeseestensenseseeseesesssesaesasseesesssesesianes 36
3.17.2 S1aVE PIOZIAMS.....cuciiiiiiiiiiiiciiiicientcce ettt et se et eae et b e eaes 37
3.17.3 Communication between PEST and its S1avesccccooiiniininiiniiniiiniccieee 38
3.17.4 The S1ave Programc.ccccevciieieninieniinineeeeecee sttt et e SRR 39
3.18 Utility and Checking Programscccceeeevieniieiinnnneinieneeneneeeesie e e 39
3.18.1 Design Considerations............c.cceeereeereeceeesereneninnens eeterer ettt b e s bt enarers 39
382 TEMPCHEKocoiiiiiiiiiiiiiitteictete sttt et 40
BB 3 INSCHEK ...ttt sttt e st ettt e n et 40
3UIBAPESTCHEKottt ettt b et bttt esba e sbasaeeneas 40
BI85 PESTGEN ...ttt e40
3186 PARREDP. ...ttt sttt sttt st e 4
BUIB. T JACWRIT ...ttt ettt ettt s et satetesaaesbesaesaeeneas 41
3U18.8 PARZPAR ...ttt ettt SO 41
4. System Inputs and OULPULS.......c.covieuiriiiiiiiniiite et cre e rese e e naeane 44
4.1 PEST INPUL FAIES ..ottt ettt et e e e 44
4.2 PEST OULPUL FAIES......coiioiiiiiiiiiiicteertcterect ettt sttt be s esae e 53
4.2.1 GENETal ..ot ettt ettt e e te et et estesrenteenrneneesieses D
422 Run ReCOrd FII ...oooiiiiiiiiiie et e D3
4.2.3 Parameter Value File ..o 61
4.2.4 Parameter Sensitivity FIle ...t erererenaes 62
4.2.5 Observation Sensitivity File ... 64
4.2.6 ReSiduals FIle ...c..coueiuiiiiiiiiiiiiiiiictc ettt 65
4.2.77T Matrix File....cooiriiiiiiiiieieccceee e eeacenrensastssentssssaestaansatanas 66
4.2.8 Run Management Record File........ccoccceniiiiennnnnen, et 67
5. USET INETTACESeouvetirieicctetecete ettt et e b st sae s bt e 70
5.1 Input Data.......cccooivviiiiiiiniiii e e 70
5.2 CommMEANA LINEoeiuiiiiiiiiiiiiiie ettt et ettt et e et esanaeebaeesanbeesabe s an e e 70
5.3 User Interventionccceeviviiiininiiiiniiiiciicncincsnesiesec e e 70
5.4 Terminal Display ..o 71
5.5 EITOT MESSAZESvveuieniiiieiierte et rteste st st e et ee st e st e st e et e st s e me e ae et esseesaessasesbaesneesbesnee s 71
5.6 Stopping or Pausing PEST EXECULIONcc.ccciviiimiriniiinineeieeineiceicsiseseies e 82
5.7 DHAIOES .evvovvoveeverereerieeeeesesies s ssss s ses st es s et es s b et en b essensen et a bbb e 82
5.80NHNE HEIP .ccuviiiiiiiiiiiiiiici ittt 82
6. SYStEM INEEITACES. ...c.everiiieieieceee et e 83
T SECUIILY ...ttt st e st e st e st a e s e e s e s e e e e e b e b e e e e et b s bbb tb s 84
8. Data and Logical MOGE]cocuiiiiiiiiiiieiiecc ettt sttt ettt senesnr e 85
0. RETEIEINCES ..ottt ettt a s st 86

Appendix: Conversion Plan ... 87

ISP S SN

1. Purpose

The purpose of this Design Document (DD) is to comply with the requirements set out in AP-
SL.1Q Rev. 3, ICN 3 (Software Management) for development and qualification of software. The
design outlined herein is intended to comply with the requirements set out in the PEST v5.5
Software Activity Plan and the PEST v5.5 Requirements Document (RD).

“

2. Implementation Standards and Environment
Specifications

2.1 Programming Standards

PEST and its utilities will be written in FORTRAN. The FORTRAN 77 standard will be
observed as closely as possible, with the following exceptions:-

e some variable names will be greater than 6 characters in length;

¢ some of the code will be written in lower case;

e anon-standard function call will be used to run a model from within PEST;

¢ anon-standard function call will be used to ascertain command-line arguments;

e non-standard function calls will be used to ascertain the date and time as part of the
methodology required to undertake parallel model runs; and

e data arrays will be dynamically allocated.

Where the FORTRAN 77 convention is not observed, the FORTRAN 90 convention will be
adhered to, except for the code required to run the model from inside of PEST and the code -
required to access command line arguments; a FORTRAN 90 standard does not exist for either
of these. Fortunately, as most compilers use an almost identical protocol for these functions, a de
facto standard exists.

It will be ensured that any non-standard code within PEST will conform to the requirements of
the FORTRAN 77 and FORTRAN 90 compilers presently used by the Geoanalysis Group.

2.2 System Software

Because of its adherence to FORTRAN coding conventions, executable versions of PEST and its
utilities will be easily generated for any operating system for which a FORTRAN compiler is
available. This includes the SunOS UNIX operating system employed on machines presently
used by personnel of the Geoanalysis Group. However executable files for the PC version of
PEST and its utilities will be provided for use with the WINDOWS 2000 operating system.
These executable files will be 32 bit WINDOWS executables. They will be capable of being run
either from the command line, or through clicking on pertinent file icons from within
- WINDOWS explorer. If desired, access to these executables can also be made available through
the WINDOWS-2000 “Start” menu by following instructions provided in the WINDOWS 2000
help system.

PEST will not be required to interact with any external software systems such as database
managers. All user interaction will take place through ASCII input and output files, which can be
edited and displayed by the user with standard text editing software.

2

2.3 Hardware

PEST and its utilities will be capable of running on any hardware and operating system for which
there are FORTRAN compilation facilities. In particular, they will run on any of the Sun
workstations presently operated by the Geoanalysis Group. A makefile will be supplied w:th
PEST to expedite the generation of executable files for this environment.

Executable programs supplied with the PC version of PEST will run on any computer on which
the WINDOWS 2000 operating system is installed.

2.4 Installation and Validation Methodology

Installation will consist of reading the main program and all required supporting routines and
auxiliary files into disk storage on the target platform. Validation will be achieved by executing
pre-defined problems for which valid results are available. The installation test consists of
execution of a single test problem to demonstrate that the code is executing correctly on the
target platform. The validation methodology consists of execution and verification of results
from a series of tests that exercise the mathematics of the code and all of its model and user
interface functionality Details of the installation and validation methodologies are given in the

PEST v5.5 Software Design Document 272727

=%,

3. Software Structiire

3.1 Functional Requirements

The functional requirements satisfied by the PEST program are summarized in Table 1. The
section numbers in column 2 of this table refer to the requirements document (?7222-RD-5.5-00).
The components of the program (software modules), which implement these requirements, are
listed in the third column of the table. -

Requiremen't Section Implemented by software modules -

| Iversion Aigorithm - 1.2 | bnderr dercic daxpy daxpy dpofa dposl drvrd dscal gpread

main obgprd objclc obsrd oread pgetcl prmrd prrcle prrrd
ppstop pstop,rotate, trntyp

Communication between PEST and 1.3 cmprss extjac getint getnum getnxt gettot inwrit ioctl linspl
an existing simulation model ‘ lowcas model numrd outrd parnam pestmess remchar shiftl
: Spacesub tabrem tabrep upcas whichl wrtsig zinctest

Screen and file output 1.4 ffopen prmsav prmwrt psiwrt psterr stopress stperr wrtall

wrtfin wrtmat

‘| User interveﬁtion ' 1.5 hldread main ppause pstop pstops? punpause
| Statistical calculations 1.6 main tred?2 tqlé wrtfin
Predictive analysis » 1.7 main
Regularization 1.8 main optwt
Parallelization 19 closefile delfile doruns getsecs pinwrit poutrd pslave

slavdatl slavdat2 slavdat3 sstop wait

Utility Programs 1.10 allsam illins illprr illsgn inschek jacwrit lohi mkrtio par2par
parchk parrep pestchek pestgen prmchk prrchk rderr
tempchek wrterr wrtrl zroneg zroone

Table 1. Functional Requirements of the PEST program. |

3.2 Software Modules

Table 2 lists the modules used by PEST, together with a brief description of the role of each.

P T " Y

Module name Role

allsam Checks whether two prior information equations contain the same information.
bnderr Checks that array dimensions do not exceed maximum dimensional bounds.
closefile Closes a file and checks that it is properly closed. »

cmpress Compresses instruction set to minimum memory for efficient internal storage.
daxpy Calculates constant times a vector plus a vector.

delfile Deletes a file ar;d checks that ii is properly deleted.

derclc Carries out finite-difference derivatives calculation.

domnsl Organizes carrying out of parallel runs.

dpodi Calculates determinant and inverse of positive definite matrjx.

dpofa Factors a f)ositive deﬁ;lite matrix. |

dposf ' Solves Ax:b where A is positive definite.

drvrd Reads information from PEST control file pertaining to derivatives calculation.
dscal Computes determinant of é positivé definite matrix.

extjac »Reé'ds the “derivatives file” supplied by a model if this is available.

[fopen Opens a file.

getint Retrieves next instruction line from internal storage.

getmmi Retrieves the numerical .par-t of an instruction.

getnxt Retrievés the next instruction on a specific instruction line.

getsecs Obtains elapsed seconds for run.

gettot Determines exact position occupied by a number in an instruction.

gpread Reads a line of derivative data from PEST control file.

hidread Reads and processes data in parameter hold file.

illins Reports an error in an instruction.

illprr Report an error in prior information.

illsgn ‘Checks for errors in the sign of prior information coefficients.

e -
iy g, et

G

inschek Checks a pés‘t in§truction file for errofs or inconsistencies. -
AL T T 2l t et ¥

inwrit Writes model input files.

ioctl Prepares for reading an instruction set.

Jjacwrit Reads a binary Jacobian matrix file written by PEST and re-writés the same information
in ASCII format. :

:linspl Splits a line into space-delimited fragments.

lohi Reports whether a value is too low or too h.igh.

lowcas Convgrts a character strjng to lower case.

main The PEST main prograin; carries out much of the numerical work involved in parameter
estimation and predictive analysis.

mkrtio Assists in checking the integrity of prior information.

model Runs the model.

numrd Reads a number from part of a character string.

obgprd Read; inf(;rmation pertaining to observation groups from PEST control file.

objclc Calculates current value of objective function. '.

| obsrd Reads information pertaining to observations from PEST control file.

optwt Solves for optimum regularization weight factor.

oread Reads a line of observation data from PEST control file.

outrd Reads model output files after a model ruh:

par2par Computes a “secondary” set of parameters from a “primary” parameter set based on
arbitrary mathematical relationships between the two parameter sets.

parchk Checks parameter spaces on template files.

parnam Extracts a parameter name from a string.

parrep Writes a new PEST control file using an old one, togethef with a parameter value file.

pestchek | Checks the integrity of an entire PEST input data set.

pestmess Writes é PEST-to-model message file.

pestgen Builds a PEST control file based on a parameter v.a]ue file and ah observation value file.

pgetcl Reads PEST command line.

pinwrit Writes model input files to slave working directories.

6

poutrd Reads model output files from slave working directories.
ppause Allows the user to pauses PEST execution.
pread Reads a line of parameter data from PEST control file.
prmchk Checks the parameter data section of the PEST control file.
-prmrd Reads information pertaining to parameters from PEST control file.
prmsav Saves optimized parameter values.
prmwrt Writes current parameter value to a space.
‘prrchk Checks all prior information in a PEST control file.
prrele Calculates current value of prior information equations.
prrid Reads information pertaining to prior information from PEST; control file.
-p;viwrt Records current value of objective function.
pslave PEST slave program.
psterr Writes a PEST eﬁor message.
ppstop | Handles premature cessation of execution on encountering an error condition.
pstopst Allows the user to terminate PEST execution with a statistical printout.
punpause Allows the user tc; re-commence PEST é*écution after a pause.
| rderr Writes an error message pertaining to an inability to read a nl;mber from a model output
' file. .
remchar Removes a specified character froﬁl a string.
rotate .Rotates a covariance matrix to align it with the directions of its principal components.
shiftl Left-justifies a string.
| slavdatl Reads initial part of run management file.
slavdat2 Reads second part of run management file; looks for slaves.
slavdat3 " Reads optional third part of run management file.
spacesub Substitutes a specific character for spaces i_n a string.
sstop Prints message to screen when PSLAVE stops running.
stopress Detects message from user to pause or resume execution.
stperr Prepares formatting of a PEST error message.
7

10

-

IO B < 5 T 3-,4,“{.1&‘

Table 2. Subroutines used by PEST and its utilities.

3.2 Optimization Algorithm

3.2.1 Modes of Operation

PEST will operate with existing models, communicating with these models through their own
input and output files, and running them through system calls whenever it needs to know the
values of certain model outcomes based on a current set of parameter values.

PEST will operate in three different modes, these being:-

e parameter estimation mode,
e predictive analysis mode, and

tabrem Removes tabs fzom a string. .

tabrep Replaces tabs in a string by spaces while mainiaining formatting.

tempchek Checks the integrity of a template file.

tred2 Reduces real symmetric matrix to tridiagonal form.

tql2 , Computes eigenvalues and eigenvectors of matrix.

trntyp Ascertains transformation type of each parameter.

upcas Converts a string to upper case.

wait Waits a user-specified time before further processing.

whichl Determines the index of a parameter or observation from its name.

wrtall Records all input information on run record file.

wrterr Formats and writes a PESTCHEK error message.

wrifin | Calculates statistics and completes writing of run record file at end of PEST run.

wrtmat . Writes the matrix file comprised of the covariance matrix, correlation coefﬁcnent -
matrix, and eigenvalues/eigenvectors of the covariance matrix. ‘

wrtrl Writes a real number to a character string.

wrisig Writes a number into a restricted space with maximum precision. ‘

zinctest Ensures that an incremented parameter has a different value to unincremented parameter
when written to model input file.

zroneg Writes an error message pertaining to a number which should not be zero or negative.

zroone Writes an error message pertaining to a number which should be between zero and one.

/-

e regularization mode.

The operation of these modes is now described.

3.2.2 Parameter Estimation Mode

Used in this mode, PEST will minimize the sum of weighted squared differences between model
outputs and corresponding field or laboratory measurements using the Gauss-Marquardt-
Levenberg (GML) method, ‘as documented in texts such as Bard (1974), Mikhail (1976), Nash
and Walker-Smith (1987) and Koch (1988). The sum of weighted squared residuals is referred to
as the “objective function”.

3.2.3 Predictive Analysis Mode

When operated in this mode, PEST will maximize or minimize a key model prediction while
simultaneously ensuring that the discrepancy between model outputs and corresponding field
measurements (i.e. the objective function) when the model is run under historical conditions
remains below a user-specified threshold. The methodology will be based on that presented in
Cooley and Vecchia (1987) and Vecchia and Cooley (1987).

3.24 Regularization Mode

When operated in this mode, PEST w1ll minimize a “regularization objective function” (normally
calculated as the sum of weighted squared - differences between certain simple functions of
spatially-dependent parameter values and corresponding idealized values for these functions
based on geostatistical, smoothness or other presumptions), at the same time as it ensures that a
“measurement objective function” (the sum of weighted squared differences between model
outputs and corresponding field measurements) remains below a user-specified threshold. The
theory underlying the algorithm implemented in PEST will be similar to that outlined in de
Groot-Hedlin and Constable (1990).

3.3 Calculation of Derivatives

3.3.1 General

Though achieving different aims, the algorithmic bases of all of PEST’s modes of operation will
share certain mathematical similarities. Implementation of all of these modes will require that
parameter values be iteratively improved on the basis of a set of successive linearity assumptions
from initial parameter values supplied by the user. Linearization of the parameter estimation,
predictive analysis and regularization problems will be achieved through representing the action
of the model by a “Jacobian Matrix”, i.e. a matrix whose elements are' comprised of the
derivatives of every model output for which there is a complementary observation with respect to
every parameter whose value can be adjusted through the optimization process.

PEST will obtain parameter derivatives in either of two ways; both of these ways of obtaining
derivatives will be possible within the one parameter estimation process undertaken by PEST.

The first method of obtaining parameter derivatives will require that PEST calculate derivatives
of model outputs with respect to adjustable parameters by Varying each such parameter in turn
and undertaking a model run on the basis of the incrementally-varied parameter. Derivatives of
model outputs with respect to each varied parameter will then be calculated by finite differences
in one of four possible ways. Selection of the appropriate methodology for a particular case will
be at the discretion of the user; however, as is discussed below, PEST will have provision to
switch from a less accurate to a more accurate methodology when it detects the need for greater
precision in derivatives calculation during the course of the optimization process.

The second method of obtaining parameter derivatives available to PEST will be for these
derivatives to be calculated internally by the model and provided to PEST in an appropriately
formatted ASCII file. Where this is possible it will have the following advantages:-

1. Model-calculated derivatives are often more accurate than those calculated by the method
of finite differences; in some parameter estimation contexts, this will increase the
efficiency of the inversion process undertaken by PEST.

2. A model can often calculate derivatives internally faster than PEST can calculate them
externally through finite differences. In these circumstances, use of PEST’s “external
derivatives functionality”, will result in greater overall PEST execution speed..

The use of both of these methods of derivatives calculation will now be discussed in greater
detail. In the following paragraphs the term “current parameter values” will refer to the parameter
values being used by PEST at the current stage of the iterative process by which optimized
parameter values are calculated from initial parameter values supplied by the user.

3.3.2 Finite-Difference-Calculated Derivatives

3.3.2.1 Forward Differences

Using this method of derivatives calculation, each parameter will be varied upwards from its
current value by an increment calculated by PEST on the basis of a user-supplied set of variables
which govern derivatives calculation. For a particular model outcome for which there is a
corresponding field measurement, the derivative of that output with respect to the incrementally-
varied parameter will be calculated as the difference in model outputs calculated on the basis of
the incremented and current parameter value, divided by the difference in parameter values (i.e.
by the parameter increment).

3.3.2.2 Parabolic Method

Where necessary, derivatives with respect to a certain parameter will be calculated on the basis of
three model runs instead of two in order to achieve greater precision. Two of these runs will be
undertaken on the basis of parameter values which are slightly different from the current
parameter value; normally, one of these runs will be undertaken with the parameter incremented,
while the other will be undertaken with the parameter decremented from its current value. The
third model run (common to all parameters) will be that undertaken on the basis of current
parameter values. Parabolic interpolation will then be undertaken between the three sets of model

10

/3

outputs generated on the basis of the three parameter values. The derivative at the current
parameter value is then calculated on the basis of a parabolic interpolation between these model
outputs.

3.3.2.3 “Outside Points” Method

This method, too, will rely on the existence of model outputs calculated for a parameter which is
incremented, and then decremented, from its current value. However in this case only two points
will be used in calculating the derivative of each model output with respect to that parameter, viz.
the model outputs corresponding to the incremented and decremented parameter values. (It can
be shown that, even though only two points are used rather than three in calculating the
derivative, the fact that the parameter values used in this calculation subtend the current value
causes a more accurate approximation to the derivate to be obtained than that calculated on the
basis of the forward difference where the current parameter value is only incremented but not
decremented.)

3.3.2.4 “Best Fit Method”

This method will use three parameter values - the current parameter value together with an
incremented and then a decremented parameter value. Implementation of the “best fit” method of
derivatives calculation will require that PEST calculate a line of best fit between the
corresponding model outputs. The slope of this line will approximate the derivative.

3.3.2.5 Selection of Parameter Increments .

If the parameter increment used to calculate derivatives for any of the above four methods is too
large, the outcome of that calculation will be a poor mathematical -approximation to the
derivative. If the increment is too-small, numerical precision will be lost through the differencing
of quantities of similar magnitude. Hence selection of the size of the derivative increment will be
a matter of some importance when using PEST.

PEST will allow the user to supply values for a number of input variables (viz. DERINC,
DERINCLB, DERINCMUL and INCTYP) which will govern the way in which parameter
increments are calculated at any stage of the parameter estimation process. Options will include
the following:-

® calculation of the increment as a proportion of the current parameter value (i.e. a “relative
increment’),

e use of an increment that is independent of the current parameter value (i.e. an “absolute
increment”), , .

e use of a relative increment with an absolute lower bound, and

e calculation of the increment relative to the parameter of highest magnitude within the
user-defined group to which the parameter belongs.

11

94

R

3.3.2.6 Switching from Two-Point to Three-Point Derivatives Calculation

PEST will allow the user to determine, on a parameter-by-‘parameter basis, whether derivatives
are to be computed using two-point or three-point derivatives calculation, or whether the
optimization process should begin with two-point derivatives calculation and then switch to
three-point derivatives calculation for a particular parameter when progress of the optimization
process begins to falter. Assessment of the latter condition will depend on PEST’s mode of
operation. When operating in parameter estimation and regularization modes, PEST will switch
to the use of three-point derivatives calculation for those parameters that the user has designated
as “switchable” if the objective function has fallen by less than a user supplied relative amount

(PEST input variable PHIREDSWH) between successive optimization iterations. When:

operating in predictive analysis mode, the switch to three-point derivatives calculation will be
made if the maximum or minimum prediction being sought by PEST is raised or lowered on
successive optimization iterations by less than a user-designated relative or absolute amount
(PEST input variables RELPREDSWH and ABSPREDSWH respectively).

3.3.2.7 Multiple Model Command Lines

In some instances (especially where the model run by PEST is actually comprised of a batch or
script file), it may be efficient for the execution path taken by the model to differ slightly
depending on whether the model is being currently run for the purpose of calculating outputs on

the basis of an upgraded parameter set, or to calculate incrementally-varied outputs on the basis;

- of the incrementally varied value of one parameter. In the latter case, gains in efficiency may be
possible if those parts of the model that do not depend on the incrementally varied parameter are

not executed, thereby saving the CPU time required to undertake these wasted calculations. This”
may be achievable through running the model using different commands for different purposes;- .

the command used for a particular model run depending on the parameter whose derivative is
currently being calculated. :

If the PEST variable NUMCOM is set to a value greater than 1, then NUMCOM model
commands will need to be listed in the “model command line” section of the PEST control file.
A value for the DERCOM variable will then need to be supplied for each parameter in the
“parameter data” section of the PEST control file. This is the command number (with commands
counted in order of appearance in the “model command line” section of the PEST control file),
which PEST will use to run the model with the pertinent parameter incrementally varied in order
to calculate derivatives with respect to that parameter. Where three-point derivatives calculation
is being undertaken, the model will be run twice in succession using this same command.

3.3.3' External Derivatives

Where a model can calculate some or all of the derivatives of its key outputs with respect to its
parameters, it will often be better for PEST to use these model-calculated derivatives in
implementation of the GML method, than derivatives which it calculates itself using finite
parameter differences. If a model can be programmed to calculate these derivatives, and then to
write them to an “external derivatives file”, PEST will read the latter file to obtain these
derivatives. An example of an external derivatives file is shown in Figure 1.

12

1S

4 9

5.00000 1707.60 34.4932 42.1234
5.25066 8.79458 93.2321 23.5921
1.04819 1.16448 5.34642 19.3235
1.52323 0.11418 .59235 75.2354
3.21342 0.48392 .49293 95.3459
2.49321 5

19.4492 9.93024 .49304 5.39234
36.3444 10.4933 .59439 6.49345
95.4592 86.4234 7.4232 324.434

0
9
.39230 0.49332 9.22934
0
0
4

Figure 1. An external derivatives file.

The first line of an external derivatives file will contain two integers listing the number of
parameters and number of observations represented in the file. These must correspond to the
“number of columns and the number of rows respectively in the derivatives matrix. They must
also agree exactly with the values of the PEST variables NPAR and NOBS cited in the PEST
control file, i.e. the number of parameters and number of observations respectively involved in
the parameter estimation process. The derivative matrix will be listed next in the file.

External derivatives calculation fun.ctionality will be activated through the provision of a non-
zero value for the variable JACFILE which will reside in the “control data” section of the PEST
control file. In this case the PEST control file must contain a “derivatives command line” section

comprised of two data lines. The first of these two lines will be the command which PEST will °

use to run the model for the purpose of derivatives calculation. The second line will contain the
name of the file to which the model w__ill record the derivatives which it calculates, that is, the
external derivatives file. (This will be the PEST variable EXTDERFLE.)

- 3.3.4 PEST-to-Model Messaging

As is described elsewhere in this document, PEST’s principal means of communication with a
model will be through the model’s own input and output files. However sometimes it will be
possible to achieve gains in efficiency through more sophisticated communication between PEST
and the model. Such gains will be principally achieved through the optimization of derivatives
calculation either through having these directly calculated by the model itself, or through
allowing the model to adjust its behavior in accordance with the parameter whose derivative is
being currently calculated by PEST using finite differences.

As has already been discussed, PEST will have the capacity to run the model using different
commands in order that the model can vary its behavior in accordance with the purpose of its
current run. However PEST will provide an alternative means of communication with a model,
this being through a “message file” which will provide the model with enough information for it
to adjust its behavior, if necessary, in accordance with PEST’s current processing requirements.

Figure 2 shows an example of a PEST-to-model message file.

13

b

derivative_increment .
-2 <. Lokt
4 20)
hcondl 5.005787 1
hcond2 9.850230 0
" storl -5.660591 -2
stor2 8.257257 ~10000

Figure 2. A PEST-to-model message file, pest.mmf.

The first line of a message file will contain a character string which provides information on the
purpose of the current model run. The various strings wh1ch will be used by PEST are as
follows:-

forward_model_run

This string will inform the model that it is being run either to test a parameter upgrade, or as the
first model run of the optimization process.

derivative_increment

This will inform the model that it is being run as part of the finite-difference derivatives
calculation process undertaken by PEST.

-
E]

external_derivatives ‘ s

The model is being run in order to write an external derivatives file.

If the character string on the first line of the PEST-to-model message file is
“derivative_increment”, then the integer on the second line of this file will be significant. A value
of n for this integer will indicate that the model run is being undertaken with the value of the n"
parameter incremented for the purpose of calculating derivatives with respect to that parameter
by forward differences, or as the first of two runs by Wthh derivatives will be calculated using
central differences. A value of -n will indicate that the n™ parameter is currently decremented in

the second of two runs undertaken for the purpose of derivatives calculation by central .

differences.

The third line of the message file will list the number of parameters (PEST variable NPAR) and
number of observations (PEST variable NOBS) involved in the parameter estimation process.
Following this will be NPAR lines of data with three entries on each line. The first entry on each
line will be a parameter name (up to 12 characters in length). Then will follow the value of that
parameter used for the current model run. Following that will be an integer code that informs the
model of the parameter’s status in the inversion process. A value of 0 will denote that the
parameter is adjustable and is not logarithmically transformed (see Section 3.12). A value of 1
will indicate that the parameter is adjustable and is logarithmically transformed. A value of -n
will indicate that the parameter is tied to parameter number n, while a value of -10000 will
indicate that the parameter is fixed.

14

/7

The PEST~to—model message file will always be named pest.mmf and will be written to the
current working directory; it is written just before each model run is undertaken. However in the
case of Parallel PEST (see Section 3.17), the message file will be written to each slave working
directory just before the pertinent model run is initiated by the slave.

3.4 Upgrading the Parameter Set

3.4.1 Upgrade Formulae

When working in parameter estimation mode, PEST will calculate a “parameter upgrade vector”
using the formula:-

u=J'QJ + Ay JQr | (1)
where:-

u is a vector whose components are the numbers to be added to current parameter
values in order to calculate updated parameter va]ues (which, hopefully, will result
in a lower objective function),

J - is the Jacobian matrix,

Q is the “cofactor” matrix, a diagonal matrix whose elements are the inverse of
' weights applied to measurements comprising the calibration data set, -

T is a vector containing the current values of residuals (i.e. the differences between
model outputs and corresponding field measurements),

I is the identity matrix, and
A is the “Marquardt lambda”; see the next section for a further discussion.

_ Note that in this and all other equations presented in this document, the “t” superscript indicates
the transpose of a matrix.

When working in regularization mode, PEST will use the same formula for updating parameter
values. However, during each optimization iteration it will adjust the elements of the cofactor
matrix Q in order that the weights applied to the “regularization observations” are such as to
guarantee that the “measurement objective function” rises no higher than either the user-specified
upper limit for this quantity (PEST input variable PHIMLIM), or a factor (given by the PEST
variable FRACPHIM) of the current value of the objective function, whichever is higher.

~ When working in predictive analysis mode, PEST will update parameter values using the
‘formula:-

u=(J'QJ +AD" [J'Qr - Z/2a] |)
where a is calculated using the equation:-

15

- 3
z'(1'Q1)'z ®

2a

(1)2 @, -r'Qr+r'QJ(JI'QJ)' 1'Qr

Variables used in equations (2) and (3), additional to those used in equation (1), are as follows:-
Z represents the linearized action of the model acting under predictive conditions,

a s a variable calculated as part of the prediction maximization/minimization process,
and

@, is the user-supplied upper objective function limit (PEST input variable PDO).

To achieve maximum accuracy, PEST will optionally perform a line search along the direction of
the vector defined by u in equation (2), to maximize or minimize the key model prediction while
respecting the @ constraint. The PEST input variables INITSCHFAC, MULSCHFAC and
NSEARCH wi