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Abstract—The reaction of ThCl, and HN; aqueous solution yielded the Th*" (aq) ion which was identified by
its absorption (UV-vis, 200-1300 nm) and ESR spectra. In the high energy region of the electronic spectrum
just below 650 nm, a significant and constant signal occurs until 420 nm (maximum at 460 nm), which sees the
onset of a very intense, broad band with maxima at ce 332 (shoulder), 190 and below 185 nm. The ESR
spectrum of a frozen solution revealed a very broad signal and a main g value of 2.19. Copyright «; 1996

Elsevier Science Ltd
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Recently the electronic structure of /' complexes of
the early actinide elements (An = Pa. U, Np) has been
studied experimentally and theoretically using non-
relativistic and relativistic calculations of the opti-
cal transition energies of AnX{~ complexes [1.2].
Examples of actinide /' complexes include the tetra-
hedral borohydride compounds [Pa(BH,),] and
[Pa(BH:CH:).] [3], [Pa(y’-CiHy)l [4] and [U(r™-
CsH:);NPh] [5], and the isoelectronic octahedral hex-
ahalide complexes [PaX,]> (X = F.CL Br.I),[UX,]
(X = F,Cl,Br) and NpF, [6. 7]. Thorium(IlI) com-
plexes are very rare but intensely coloured organ-
ometallic systems such as blue [{Th(n*-C:H,)
(SiMe,).} 1] [8]. violet [Th(n*-CsH.)] [9]. green [Th
(°-C:H,Me);] [10] or brown [Th(y*-CsH:).Cl} [9]
have been reported. In this communication we report
the first observation and identification of a Th*~ ion
in aqueous solution. As far as we are aware, there are
no previous reports on a Th** ion and it is well-known
textbook knowledge that: (i) “the oxidation state 111
is the only oxidation state which, with the possible
exceptions of Th and Pa, is displayed by all actinides™
[11a] and (ii) “Th** and Pa’* do not exist in aqueous
solution] [L1b]. (N.B. For organometallic examples
compare with refs [§-10].)

* Author to whom correspondence should be addressed.

We have previously studied the chemistry and
bonding of covalent azides and recently extended our
studies to hydrazoic acid, HN; [12a—]. The instability
of Th** in aqueous solution can be attributed to the
fact that it is rapidly oxidized by air and it reduces
water with evolution of H, {11a]. The most recent
value recommended for the system Th*'/Th'* is
E®= —3.0 V [13a] (the earlier recommendation was
—3.7 V) [13b]. On the other hand, the reduction
potential of HN, is more negative than that of any
other reducing agent in acidic aqueous solution [Eq.
()] [11a]. The AE" value for a reaction according to
Eq. (2) can be estimated to AE°(2) = +0.54 V and
the reaction is therefore thermodynamically allowed
[14]:

1.5N,+H*(agq)+¢ — HN;(aq)
E' = =354V (pH 3.5,25°O) [15] (1)
Th*' +HN; » Th** +1.5N, +H~ )

A solution of Th'" was prepared from aqueous
solutions of ThCl, and HN, [16a]. A solution of ThCl,
(2.76 g, 7.38 mmol) in 10 cm® water (¢ = 0.74 mol 17%)
was added to 15 cm® of a fresh stirred, solution of
HN; (¢ = 2.0 mol 1) under nitrogen. An amber solu-
tion of Th*™ was obtained immediately (¢ = 0.3 mol
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17" [16b]): pH ca 3.5 [¢f. pK.(HN;) 4.77] [114] ; charac-
terization see below) with evolution of N,. The aque-
ous Th*" solution in hydrazoic acid is stable for more
than 1 h before Th*~ is slowly oxidized by water to
form an insoluble, white, gel-like precipitate of tho-
rium oxide hydroxide [17,18].
Recently, it has been shown that for /' complexes
most of the /= f transitions are orbitally forbidden
(N.B. the labels “f— /" and “f — d" refer to the pre-
dominant atomic orbital (AO) character of the molec-
ular orbitals (MOs) involved in the transition) and
are therefore observed experimentally as very weak,
or are nonexistent [2]. Other transitions are permitted
in their own right, and consequently f — d and certain
charge-transfer bands will have much greater oscil-
lator strengths and will obscure the weaker /' — fpeaks
should they occur in the same energy range [2]. Figure
1 shows the higher energy transitions (200-1300 nm)
for Th** [19]. As expected, the spectrum is very similar
to the spectrum reported for the f' system
[Et,N],[PaBr,] [1] (cf. also ref. [20a.b] and for NpF,
ref. [20c]). There are no well-defined /' — f transitions
below 1300 nm. At just below 650 nm, a significant
and constant signal occurs until 420 nm (maximum at
460 nm), which sees the onset of a very intense, broad
band with maxima at ca 332 (shoulder), 190 and below
185 nm. Since 5f— 6d and metal — ligand charge
transfers are allowed transitions, which are usually
rather broad and occur in the UV region, the broad
band centred at 460 nm as well as the intense absorp-
tions at 332, 190 and below 185 nm can be assigned
to such transitions. A number of small shoulders on
the main peak occur over the energy range 270-190
nm, but these cannot be justifiably ascribed to well-
defined electronic absorptions. Although it is clearly
possible that f — ftransitions occur in this range, there
is no means by which they can be assigned with con-
fidence to features in the experimental spectrum (Fig.
1). It should be mentioned, however, that it cannot be
completely ruled out that the single electron in Th**
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Fig. 1. Room temperature optical spectrum of Th** in HN,
solution (¢, =0.3 mol 1 ' [l6b]. ¢-=0.01 mol 1 '
e =5x10""mol ™", ¢, =2x10"*mol | ") [21].
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Fig. 2. ESR spectrum of a frozen solution of [Th(H,0),
(N))(CH]E 9 (x+y+z2=9, ¢f. the CN of La** in
aqueous solution is 9) [11a, 23].

(aq) is a 6d rather than a Sf electron. In Th*~ (g), the
6d level lies 9200 cm™ ' above 5f, but in the aqueous
ion the d orbitals will be stabilized by the ligand field
[13b,17]. In this interpretation, the band at 460 nm
could be assigned to a ¢-d transition equal to the
ligand field stabilization energy (cf. ref. [1]).

The ESR spectrum of a frozen solution (Fig. 2)
shows a very broad signal, very similar in shape to
that of the /' system UCls- SOCI, [22]. The observed
main ¢ value of 2.19 compares with those found for
other /" systems [6]. The overall shape of the spectrum
may well correspond to a system with axial symmetry.
However, further experimental and especially theor-
etical studies have to be carried out to assign the
different anisotropic g values with confidence.
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