Dear Mr. Shean:

The purpose of this letter is to provide you with the updated redline strike out (RLSO) of the Permittees’ March 30, 2020, submittal of the Ten-Year Permit Renewal Application. The RLSO is based on the current Permit, issued by the New Mexico Environment Department (NMED) on February 11, 2022 and became effective on March 13, 2022. The current Permit includes modifications submitted to and approved by NMED from March 30, 2020 to February 11, 2022. The Permittees have added the modifications requested in the July 30, 2021, Class 3 permit modification request (PMR) for the Construction and Use of Hazardous Waste Disposal Panels 11 and 12. This updated RLSO is provided to you pursuant to the referenced letter.

The following updated Ten-Year Permit Renewal Application attachments are provided:

- Attachments A, A2, A3, D, E, F, G, G1, G2, H1, L, M, and N

Also enclosed is a matrix explaining where March 30, 2020, Ten-Year Permit Renewal Application changes are no longer required due to Permit modifications incorporated into the current Permit subsequent to submittal of the March 30, 2020, Ten-Year Permit Renewal Application or due to the Class 3 PMR for Panels 11 and 12. This matrix also shows how the Class 3 PMR for Panels 11 and 12 was consolidated into the March 30, 2020, Ten-Year Permit Renewal Application and onto the current Permit.

There are several Ten-Year Permit Renewal Application Attachments to which no changes have been made since their submittal in March 2020 and for which no updates are required. The following attachments are not included because they are based on the current Permit or were marked “Reserved” in the application:
Mr. Rick Shean
-2-
March 17, 2022

We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on our inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of our knowledge and belief, true, accurate and complete. We are aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

If you have any questions, please contact Mr. Ed Garza at (575) 234-8368.

Sincerely,

Reinhard Knerr
Manager
Carlsbad Field Office

Sean Dunagan
President and Project Manager
Nuclear Waste Partnership LLC

Enclosures (2)

cc: w/enclosures
R. Maestas, NMED *ED
D. Biswell, NMED ED
M. McLean, NMED ED
CBFO M&RC

*ED denotes electronic distribution

CBFO:ERCD:EG:MC:22-0212:UFC 5487:00
Enclosure 1

Updated Renewal Application

March 2022

520 pages
ATTACHMENT A

GENERAL FACILITY DESCRIPTION AND PROCESS INFORMATION
ATTACHMENT A

GENERAL FACILITY DESCRIPTION AND PROCESS INFORMATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Facility Description</td>
<td>3</td>
</tr>
<tr>
<td>A-2</td>
<td>Description of Activities</td>
<td>4</td>
</tr>
<tr>
<td>A-3</td>
<td>Property Description</td>
<td>4</td>
</tr>
<tr>
<td>A-4</td>
<td>Facility Type</td>
<td>4</td>
</tr>
<tr>
<td>A-5</td>
<td>Waste Description</td>
<td>5</td>
</tr>
<tr>
<td>A-6</td>
<td>Chronology of Events Relevant to Changes in Ownership or Operational Control</td>
<td>7</td>
</tr>
</tbody>
</table>
ATTACHMENT A

GENERAL FACILITY DESCRIPTION AND PROCESS INFORMATION

A-1 Facility Description

Abstract

NAME OF FACILITY: Waste Isolation Pilot Plant

OWNER and CO-OPERATOR: U.S. Department of Energy (DOE)
P.O. Box 3090
Carlsbad, NM 88221

CO-OPERATOR: Nuclear Waste Partnership LLC (NWP)
P.O. Box 2078
Carlsbad, NM 88221

RESPONSIBLE OFFICIALS: Reinhard Knerr
Manager, DOE/Carlsbad Field Office
Sean Dunagan
Project Manager, Nuclear Waste Partnership LLC

FACILITY MAILING ADDRESS: U.S. Department of Energy
P.O. Box 3090
Carlsbad, NM 88221

FACILITY LOCATION: 34 Louis Whitlock Road, Carlsbad, NM 88220

TELEPHONE NUMBER: 575/234-7300

U.S. EPA I.D. NUMBER: NM4890139088

GEOGRAPHIC LOCATION: 32.3697706
-103.7913501 (WGS84)

DATE OPERATIONS BEGAN: November 26, 1999
A-2 Description of Activities

The Waste Isolation Pilot Plant (WIPP) is a facility for the management, storage, and disposal of transuranic (TRU) mixed waste subject to regulation under 20.4.1.500 New Mexico Administrative Code (NMAC), incorporating Title 40 of the Code of Federal Regulations (CFR) Part 264. Both contact-handled (CH) and remote-handled (RH) TRU mixed wastes are permitted for storage and disposal at the WIPP facility.

A-3 Property Description

The WIPP property has been divided into functional areas. The Property Protection Area (PPA) is surrounded by a security barrier, which encompasses approximately 34 acres without the New Filter Building (NFB) and approximately 44 acres with the NFB and provides security and protection for all the major surface structures. A second PPA consisting of a nominal 22 acres surrounds Shaft #5. The DOE Off Limits Area encloses the PPA, and is approximately 1,454 acres. These areas define the DOE exclusion zone within which certain items and material are prohibited. The final zone is marked by the WIPP Site Boundary (WIPP Land Withdrawal Area), a 16-section Federal land area (Land Withdrawal Area) under the jurisdiction of the DOE.

A-4 Facility Type

There are three basic groups of structures associated with the WIPP facility: surface structures, shafts and underground structures. The surface structures accommodate the personnel, equipment, and support services required for the receipt, preparation, and transfer of TRU mixed waste from the surface to the underground. There are two surface locations where TRU mixed waste is managed and stored. The first area is the Waste Handling Building (WHB) Container Storage Unit (WHB Unit) for TRU mixed waste management and storage. The WHB Unit consists of the WHB contact-handled (CH) Bay, Room 108, and the remote-handled (RH) RH Complex. The second area designated for managing and storing TRU mixed waste is the Parking Area Container Storage Unit (Parking Area UnitPAU), an outside container storage area which extends south from the WHB to the rail siding chain-link security fence. The Parking Area UnitPAU provides storage space for up to 50 loaded Contact-Handled PackagesCH shipping containers referred to as CH packages and 14 loaded Remote-Handled PackagesRH shipping containers referred to as RH packages on an asphalt and concrete surface. Permit Part 3 of the permit authorizes the storage and management of CH and RH TRU mixed waste containers in these two surface locations. The technical requirements of 20.4.1.500 NMAC (incorporating 40 CFR §§264.170 to 264.178) are applied to the operation of the WHB Unit and the Parking Area UnitPAU. Permit Attachment A1 describes the container storage units, the TRU mixed waste management facilities and operations, and compliance with the technical requirements of 20.4.1.500 NMAC (incorporating 40 CFR §§264.170 to 264.178.

Four vertical shafts connect the surface facility to the underground. These are the Waste Shaft, the Salt Handling Shaft, the Exhaust Shaft, and the Air Intake Shaft. A fifth shaft, Shaft #5, located nominally 1,200 feet west of the Air Intake Shaft also connects the underground facility to the surface. The Waste Shaft is the only shaft used to transport TRU mixed waste to the underground. The WIPP facility underground structures are located in a mined salt bed approximately 2,150 feet below the surface. The underground facility is defined in 20.4.1.100 NMAC (incorporating 40 CFR §260.10) as a “miscellaneous unit.” As a miscellaneous unit, hazardous waste management units within the repository are subject to permitting according to
20.4.1.900 and 20.4.1.901 NMAC (incorporating 40 CFR Part 270) and are regulated under 20.4.1.500 NMAC (incorporating 40 CFR 264, Subpart X, Miscellaneous Units).

The WIPP is a geologic repository mined within a bedded salt formation, which is defined in 20.4.1.100 NMAC (incorporating 40 CFR §260.10) as a miscellaneous unit. As such, hazardous waste management units within the repository are subject to permitting according to 20.4.1.900 and .901 NMAC (incorporating 40 CFR §270), and are regulated under 20.4.1.500 NMAC, Miscellaneous Units.

The underground structures include the underground Hazardous Waste Disposal Units (HWDUs), an area for future underground HWDUs, the shaft pillar area, interconnecting drifts and other areas unrelated to the Hazardous Waste Facility Permit. The underground HWDUs are defined as waste panels, each consisting of seven rooms and two access drifts. The WIPP facility underground area is designated as Panels 1 through 4012, although only Panels 47 through 812, will be used under the terms of this Permit, because Panels 1-6 are filled and closed. Each of the seven rooms is approximately 300 feet long, 33 feet wide and 13 feet high in Panels 1-7, and approximately 300 feet long, 33 feet wide, and 16 feet high in Panel 8. Permit Part 4 of the permit authorizes the management and disposal of CH and RH TRU mixed waste containers in underground HWDUs.

The Disposal Phase of the WIPP Project consists of receiving loaded CH and RH TRU mixed waste shipping containers, unloading and transporting the waste containers to the underground HWDUs, emplacing the waste in the underground HWDUs, and subsequently achieving closure of the underground HWDUs in compliance with applicable State and Federal regulations. As required by 20.4.1.500 NMAC (incorporating 40 CFR §264.601), the Permittees shall ensure that the environmental performance standards for a miscellaneous unit, which are applied to the underground HWDUs in the geologic repository, will be met. Permit Attachment A2 describes the underground HWDUs, the TRU mixed waste management facilities and operations, and compliance with the technical requirements of 20.4.1.500 NMAC (incorporating 40 CFR Part 264). Permit Attachments G, G1, and G2 describe the closure activities.

A-5 Waste Description

Wastes destined for disposal at the WIPP facility are byproducts of nuclear weapons production and have been identified in terms of waste streams based on the processes that produced them. Each waste stream identified by generators is assigned to a Waste Summary Category to facilitate RCRA waste characterization, and reflect the final waste forms acceptable for transportation and disposal. Details regarding the Summary Category Groups and waste characterization can be found in Permit Attachment C.

These Waste Summary Categories are:

S3000—Homogeneous Solids
Solid process residues defined as solid materials, excluding soil, that do not meet the applicable regulatory criteria for classification as debris [20.4.1.800 NMAC, (incorporating 40 CFR §268.2(g) and (h))]. Solid process residues include inorganic process residues, inorganic sludges, salt waste, and pyrochemical salt waste. Other waste streams are included in this Waste Summary Category based on the specific waste stream types and
final waste form. This category includes wastes that are at least 50 percent by volume
solid process residues.

S4000—Soils/Gravel
This waste summary category includes waste streams that are at least 50 percent by
volume soil. Soils are further categorized by the amount of debris included in the matrix.

S5000—Debris Wastes
This waste summary category includes waste that is at least 50 percent by volume
materials that meet the NMAC criteria for classification as debris (20.4.1.800 NMAC
(incorporating 40 CFR §268.2)). Debris means solid material exceeding a 2.36 inch (60
millimeter) particle size that is intended for disposal and that is: 1) a manufactured object,
2) plant or animal matter, or 3) natural geologic material.

The S5000 Waste Summary Category includes metal debris, metal debris containing lead,
inorganic nonmetal debris, asbestos debris, combustible debris, graphite debris,
heterogeneous debris, and composite filters, as well as other minor waste streams.
Particles smaller than 2.36 inches in size may be considered debris if the debris is a
manufactured object and if it is not a particle of S3000 or S4000 material.

If a waste does not include at least 50 percent of any given category by volume,
characterization shall be performed using the waste characterization process required for the
category constituting the greatest volume of waste for that waste stream.

Wastes may be generated at the WIPP facility as a direct result of managing the TRU and TRU
mixed wastes received from the off-site generators. Such waste may be generated in either the
WHB or the underground. This waste is referred to as “derived waste,” which means its
hazardous waste characteristics are derived from the off-site waste that produced it. All such
derived waste will be placed in the rooms in HWDUs along with the TRU mixed waste for
disposal.

Non-mixed hazardous wastes generated at the WIPP facility, through activities where contact
with TRU mixed waste does not occur, are characterized, placed in containers, and stored (for
periods not exceeding the limits specified in 20.4.1.300 NMAC (incorporating 40 CFR §262.17))
until they are transported off site for treatment and/or disposal at a permitted designated facility.
This waste generation and accumulation activity, when performed in compliance with 20.4.1.300
NMAC (incorporating 40 CFR Part 262, Subpart M), is not subject to RCRA permitting requirements and,
as such, is not addressed in the permit, with the exception of the requirements of 20.4.1.300
NMAC (incorporating 40 CFR Part 262, Subpart M), which are addressed in Permit Attachment
D.
A-6 Chronology of Events Relevant to Changes in Ownership or Operational Control

December 19, 1997 The New Mexico Environment Departments (NMED) received notification of a change of name/ownership from Westinghouse Electric Corporation to CBS Corporation. The WIPP facility Management and Operating Contractor (MOC), Westinghouse Waste Isolation Division (WID), became a division of Westinghouse Electric Company, which in turn was a division of CBS Corporation. Notification to NMED was made by the permit applicant in a letter dated December 18, 1997. The permit Permit application was under review, but a draft permit Permit was not yet issued.

September 22, 1998 The NMED received notification of a pending transfer of ownership for the MOC, Westinghouse WID, from CBS Corporation to an as-yet-to-be-named limited liability company owned jointly by British Nuclear Fuels, plc and Morrison-Knudsen Corporation. The transfer of ownership was scheduled to occur on or about December 15, 1998. Notification to NMED was made by the permit applicant in a letter dated September 17, 1998. The draft permit Permit had been issued for public comment, but the final permit Permit was not yet issued.

March 9, 1999 The NMED again received notification of the pending divestiture of the MOC, Westinghouse WID, by CBS Corporation to the limited liability company owned jointly by British Nuclear Fuels, plc and Morrison-Knudsen Corporation known as MK/BNFL GESCO LLC. The new MOC would be renamed to Westinghouse Government Environmental Services Company LLC (WGES). Notification to NMED was made by the permit applicant in a letter dated March 2, 1999. The public hearing on the permit Permit was underway, but the final permit Permit was not yet issued.

March 26, 1999 The NMED received official notification of the divestiture of Westinghouse Electric Company by CBS Corporation to MK/BNFL GESCO LLC effective March 22, 1999. The MOC was renamed Westinghouse Government Environmental Services Company LLC (WGES), of which Westinghouse Waste Isolation Division (WID) was a division. This transaction constituted a change of operational control under 20.4.1.900 NMAC (incorporating 40 CFR §270.40). Notification to NMED was made by the permit applicant in a letter dated March 24, 1999. The public hearing on the permit Permit was nearly concluded, but the final permit Permit was not yet issued.

April 28, 1999 The NMED received a revised Part A Permit Application in a letter dated April 21, 1999, reflecting that the Westinghouse Waste Isolation Division (WID), co-operator of the WIPP hazardous waste facility, was now a part of WGES. However, the final permit Permit issued October 27, 1999, did not reflect the change in ownership.

July 25, 2000 The NMED received a Class 1 permit modification in a letter dated July 21, 2000, changing the name in the Permit from Westinghouse Electric
Corporation to Westinghouse Government Environmental Services Company LLC (WGES). However, this notification did not constitute the required permit modification under 20.4.1.900 NMAC (incorporating 40 CFR §270.40) necessary to reflect the transfer of the permit to a new operator.

December 15, 2000 The DOE announced that it had awarded a five-year contract for management and operation of the WIPP facility to Westinghouse TRU Solutions LLC, a limited liability company owned jointly by WGES LLC and Roy F. Weston, Inc. The announcement further stated that, following a brief transition period, the new contractor would assume MOC responsibilities on February 1, 2001. This transaction constituted a change of operational control under 20.4.1.900 NMAC (incorporating 40 CFR §270.40) requiring a Class 1 permit modification with prior written approval of NMED.

February 5, 2001 The NMED received a Class 1 permit modification in a letter dated February 2, 2001, which notified NMED of an organizational name change of the MOC from Westinghouse Government Environmental Services Company LLC Waste Isolation Division (WGES WID) to Westinghouse TRU Solutions LLC. However, this notification did not constitute the required permit modification under 20.4.1.900 NMAC (incorporating 40 CFR §270.40) necessary to reflect the transfer of the permit to a new operator.

December 31, 2002 The NMED received a Class 1 permit modification in a letter dated December 27, 2002, which changed the name of the MOC from Westinghouse TRU Solutions LLC to Washington TRU Solutions LLC (WTS). Again, this notification did not constitute the required permit modification under 20.4.1.900 NMAC (incorporating 40 CFR §270.40) necessary to reflect the transfer of the permit to a new operator.

February 28, 2003 The NMED received a Class 1 permit modification requiring prior agency approval in a letter dated February 28, 2003, to satisfy the requirements specified in 20.4.1.900 NMAC (incorporating 40 CFR §270.40) to reflect the transfer of the permit to a new operator.

September 16, 2004 The NMED received a Class 1 permit modification requiring prior agency approval in a letter dated September 16, 2004, describing a change of ownership of Washington TRU Solutions LLC (WTS). WTS is owned jointly by WGES, managing member, and Weston Solutions, Inc. WGES had been owned jointly by Washington Group International, Inc. (WGI), and BNFL Nuclear Services, Inc. However, WGI has acquired BNFL’s prior interest in the former Westinghouse government services businesses, which includes BNFL’s prior interest in WGES.

August 6, 2007 The NMED received notification in a letter dated August 2, 2007 of the pending acquisition of WGI by URS Corporation at an unknown future date. This acquisition would be related to operational control, because WGI is the sole owner of WGES, managing member of the joint venture.
along with Weston Solutions, Inc., that owns WTS, the WIPP facility MOC. This notification was submitted to assure compliance with 20.4.1.900 NMAC (incorporating 40 CFR §270.40(b)).

November 26, 2007 The NMED received a Class 1 permit modification requiring prior agency approval in a letter dated November 19, 2007, describing a change of ownership of WTS. On November 15, 2007, WGI was acquired by URS Corporation. WTS is owned jointly by WGES, managing member, and Weston Solutions, Inc. WGES, formerly owned by WGI, is now owned by URS Corporation.

October 1, 2012 The NMED received a Class 1 permit modification requiring prior agency approval in a letter dated June 25, 2012 describing a change in the MOC for the WIPP facility. The new MOC for the WIPP facility will be Nuclear Waste Partnership LLC. The new MOC is comprised of URS Energy & Construction, Inc. and Babcock and Wilcox Technical Services Group, Inc.

April 1, 2014 URS announced an organizational realignment to move Global Management and Operational Services Group (GMOS) from URS Energy & Construction to URS Federal Services Division. Nuclear Waste Partnership LLC is part of GMOS and remains in this group. The MOC is comprised of URS Federal Services, Inc. and Babcock and Wilcox Technical Services Group, Inc.

January 5, 2015 On January 5, 2015 URS merged with AECOM. The WIPP Management and Operating Contractor (MOC), Nuclear Waste Partnership LLC, is comprised of URS Energy & Construction, Inc. (an organization within AECOM) and Babcock and Wilcox Technical Services Group, Inc. This merger is therefore not related to a change in operational control because URS Energy & Construction, Inc. continues to be 70% owner of Nuclear Waste Partnership LLC.

July 1, 2015 On June 8, 2015 the Babcock & Wilcox Company announced its intent to change the name to BWXT Technical Services Group, Inc. (BWXT TSG). This change was effective July 1, 2015. No changes are being made to the Management and Operating Contractor (MOC). The MOC is comprised of URS Energy & Construction, Inc. and BWXT Technical Services Group, Inc.

September 19, 2016 URS Energy & Construction, Inc. changed its name to AECOM Energy & Construction, Inc. This name change was effective September 19, 2016. No changes are being made to the Management and Operating Contractor (MOC). This is a name change only; there was no change in operational control. The MOC, Nuclear Waste partnership LLC, is comprised of AECOM Energy & Construction, Inc. and BWXT Technical Services Group, Inc. This change does not constitute the required permit modification under 20.4.1.900 NMAC (incorporating 40 CFR §270.40) necessary to reflect the transfer of the permit Permit to a new operator.
January 31, 2020 Lindsay Goldberg/American Securities purchased AECOM's
Management Services group, forming a new company named Amentum.
Included in that transaction was AECOM Energy & Construction, Inc.,
which continues to be the legal guarantor and majority owner of the MOC,
Nuclear Waste Partnership LLC. No changes are being made to the
MOC. Nuclear Waste Partnership LLC is still comprised of AECOM
Energy & Construction, Inc. and BWXT Technical Services Group, Inc.
This is a change in ultimate parent company only; there was no change in
operational control. Therefore, this change does not constitute the
required permit modification under 20.4.1.900 NMAC (incorporating 40
CFR §270.40) necessary to reflect the transfer of the permit to a new
operator.
ATTACHMENT A2
GEOLOGIC REPOSITORY
ATTACHMENT A2

GEOLOGIC REPOSITORY

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-1</td>
<td>Description of the Geologic Repository</td>
</tr>
<tr>
<td>A2-2</td>
<td>Geologic Repository Design and Process Description</td>
</tr>
<tr>
<td>A2-2a</td>
<td>Geologic Repository Design and Construction</td>
</tr>
<tr>
<td>A2-2a(1)</td>
<td>CH TRU Mixed Waste Handling Equipment</td>
</tr>
<tr>
<td>A2-2a(2)</td>
<td>Shafts</td>
</tr>
<tr>
<td>A2-2a(3)</td>
<td>Subsurface Structures</td>
</tr>
<tr>
<td>A2-2a(4)</td>
<td>RH TRU Mixed Waste Handling Equipment</td>
</tr>
<tr>
<td>A2-2b</td>
<td>Geologic Repository Process Description</td>
</tr>
<tr>
<td>A2-3</td>
<td>Waste Characterization</td>
</tr>
<tr>
<td>A2-4</td>
<td>Treatment Effectiveness</td>
</tr>
<tr>
<td>A2-5</td>
<td>Maintenance, Monitoring, and Inspection</td>
</tr>
<tr>
<td>A2-5a</td>
<td>Maintenance</td>
</tr>
<tr>
<td>A2-5a(1)</td>
<td>Ground-Control Program</td>
</tr>
<tr>
<td>A2-5b</td>
<td>Monitoring</td>
</tr>
<tr>
<td>A2-5b(1)</td>
<td>Groundwater Monitoring</td>
</tr>
<tr>
<td>A2-5b(2)</td>
<td>Geomechanical Monitoring</td>
</tr>
<tr>
<td>A2-5b(2)(a)</td>
<td>Description of the Geomechanical Monitoring System</td>
</tr>
<tr>
<td>A2-5b(2)(b)</td>
<td>System Experience</td>
</tr>
<tr>
<td>A2-5b(3)</td>
<td>Volatile Organic Compound Monitoring</td>
</tr>
<tr>
<td>A2-5c</td>
<td>Inspection</td>
</tr>
</tbody>
</table>

References | 22 |
LIST OF TABLES

Table	Title
Table A2-1 | CH TRU Mixed Waste Handling Equipment Capacities
Table A2-2 | Instrumentation Used in Support of the Geomechanical Monitoring System
Table A2-3 | RH TRU Mixed Waste Handling Equipment Capacities

LIST OF FIGURES

Figure	Title
Figure A2-1 | Repository Horizon
Figure A2-2 | Spatial View of the Miscellaneous Unit and Waste Handling Facility
Figure A2-2-S#5 | Spatial View of the Miscellaneous Unit and Waste Handling Facility (with S#5)
Figure A2-3 | Facility Pallet for Seven-Pack of Drums
Figure A2-5 | Typical Backfill Sacks Emplaced on Drum Stacks
Figure A2-5a | Potential MgO Emplacement Configurations
Figure A2-6 | Waste Transfer Cage to Transporter
Figure A2-7 | Push-Pull Attachment to Forklift to Allow Handling of Waste Containers
Figure A2-8 | Typical RH and CH Transuranic Mixed Waste Container Disposal Configuration
Figure A2-9a | Underground Ventilation System Airflow
Figure A2-9a-NFB | Underground Ventilation System Airflow (with Building 416)
Figure A2-9b | Underground Ventilation System Airflow (with SVS)
Figure A2-9c | Underground Ventilation System Airflow (with S#5)
Figure A2-11 | Typical Room Barricade
Figure A2-11a | Typical Bulkhead
Figure A2-12 | WIPP Facility Surface and Underground CH Transuranic Mixed Waste Process Flow Diagram
Figure A2-12 WIPP Facility Surface and Underground CH Transuranic Mixed Waste Process Flow Diagram (Continued)
Figure A2-13 | Layout and Instrumentation - As of 1/96
Figure A2-14 | Facility Cask Transfer Car (Side View)
Figure A2-15 | Typical Horizontal Emplacement Equipment
Figure A2-15a | Typical Horizontal Emplacement Equipment
Figure A2-16 | RH TRU Waste Facility Cask Unloading from Waste Shaft Conveyance
Figure A2-17 | Facility Cask Installed on the Typical Emplacement Equipment
Figure A2-18 | Installing Shield Plug
Figure A2-19 | Shield Plug Supplemental Shielding Plate(s)
Figure A2-20 | Shielding Layers to Supplement RH Borehole Shield Plugs
Figure A2-21 | Shield Plug Configuration
ATTACHMENT A2

GEOLOGIC REPOSITORY

A2-1 Description of the Geologic Repository

Management, storage, and disposal of transuranic (TRU) mixed waste in the Waste Isolation Pilot Plant (WIPP) geologic repository is subject to regulation under 20.4.1.500 New Mexico Administrative Code (NMAC). The WIPP is a geologic repository mined within a bedded salt formation, which is defined in 20.4.1.401-100 NMAC (incorporating Title 40 of the Code of Federal Regulations (CFR) §260.10) as a miscellaneous unit. As such, hazardous waste management units within the repository are eligible for permitting according to 20.4.1.101 NMAC (incorporating 40 CFR §260.10), and are regulated under 20.4.1.500 NMAC (incorporating 40 CFR Part 264, Miscellaneous Units). The underground Hazardous Waste Disposal Units (HWDUs) consist of eight excavated panels, known as Panels 1 through 8. Each panel contains seven rooms and two access drifts. A typical disposal panel is depicted in Figure M-42.

As required by 20.4.1.500 NMAC (incorporating 40 CFR §264.601), the Permittees shall ensure that the environmental performance standards for a miscellaneous unit, which are applied to the underground Hazardous Waste Disposal Units (HWDUs) in the geologic repository, will be met.

The Disposal Phase will consist of receiving contact-handled (CH) and remote-handled (RH) TRU mixed waste shipping containers, unloading and transporting the waste containers to the underground HWDUs, emplacing the waste in the underground HWDUs, and subsequently achieving closure of the underground HWDUs in compliance with applicable State and Federal regulations.

The WIPP geologic repository is mined within a 2,000-foot (610 meters) thick bedded-salt formation called the Salado Formation, which is 2,000 feet (610 meters) thick. The underground HWDUs (miscellaneous units) are located approximately 2,150 feet (655 m) beneath the ground surface. TRU Transuranic mixed waste management activities underground will be confined to the southern portion of the 120-acre (48.6 hectares) mined area and the western portion of the 29.2-acre (11.8 hectares) mined area during the Disposal Phase. During the ten-year term of this Permit, disposal of TRU mixed waste will occur only in the HWDUs designated as Panels 5 through 8, 11, and 12 and in any currently active panel (See Figure A2-1M-43). RH TRU mixed waste disposal began in Panel 4. The Permittees may also request in the future a Permit to allow disposal of containers of TRU mixed waste in the areas designated as Panels 9 and 10 in Figure A2-1. This Permit, during its 10-year term, authorizes the excavation of Panels 6 through 10 and the disposal of waste in Panels 1 through 8. In the future, the Permittees may request Permit modifications to allow disposal of TRU mixed waste in other areas of the underground, one of which may be Panel 10.

Panels 1 through 8, 11, and 12 will consist of seven rooms and two access drifts each. Panels 9 and 10 have yet to be designed. Access drifts connect the rooms and have the same cross section (see Section A2-2a(3)). The closure system installed in for each HWDU, after it is filled, will prevent anyone from entering the HWDU and will restrict ventilation airflow. The point of compliance for air emissions from the underground is defined in Permit
Attachment N (Volatile Organic Compound Monitoring Plan). The point of compliance is the location where the concentration of volatile organic compounds (VOCs) in the air emissions from the underground HWDUs will be measured and then compared to the VOC action levels (10^{-5} for carcinogens and Hazard Index >1 for non-carcinogens) as required by Permit Part 4, Section 4.6.2.3.

Description of Four-Shaft Configuration

Four shafts connect the underground area with the surface. The Waste Shaft Conveyance headframe and hoist are located within the Waste Handling Building (WHB) and will be used to transport containers of TRU mixed waste, equipment, and materials to the repository horizon. The waste hoist can also be used to transport personnel. The Air Intake Shaft and the Salt Handling Shaft provide ventilation to all areas of the mine except for the Waste Shaft Station. This area is ventilated by the Waste Shaft itself. The Salt Handling Shaft is also used to hoist mined salt to the surface and serves as the principal personnel transport shaft. The Exhaust Shaft serves as a common exhaust air duct (air pathway) for all areas of the mine. In some cases (such as during mining activities), the Salt Handling Shaft will be used as an unfiltered exhaust shaft. The Salt Handling Shaft exhaust air will come from the North or Construction Circuits (i.e., areas of the underground that are not contaminated and do not need High-Efficiency Particulate Air (HEPA) filtration). The relationship between the WIPP surface facility, the four shafts, and the geologic repository horizon is shown on Figure A2-2M-44.

Description of Five-Shaft Configuration (with Shaft #5)

A fifth shaft, Shaft #5 (S#5), also connects the underground facility with the surface. The relationship between the WIPP surface facility, the five shafts, and the underground facility horizon is shown in Figure A2-2-S#5. With S#5 in use, the configuration of the shafts is as follows:

- Shaft #5 provides the majority of the intake air for the underground facility.
- The Air Intake Shaft provides the exhaust air pathway for the construction area of the underground facility.
- The Waste Shaft Conveyance headframe and hoist are located within the WHB and are used to transport containers of TRU mixed waste, equipment, and materials to the repository horizon. The waste hoist can also be used to transport personnel.
- The Waste Shaft provides intake air for the Waste Shaft Station.
- The Salt Handling Shaft provides a portion of the ventilation for the north area of the underground facility and is also used to hoist mined salt to the surface and serve as the principle personnel transport shaft.
- The Exhaust Shaft serves as a common exhaust air pathway for the north, disposal, and Waste Shaft Station areas of the underground facility.

The HWDUs identified as Panels 1 through 8, 11, and 12 (Figure A2-1M-43) provide room for up to 5,244,900 cubic feet (ft³) (148,500 cubic meters (m³)) of CH TRU mixed
waste. The CH TRU mixed waste containers may be stacked up to three high across the width of the room.

Panels 4 through 8, 11, and 12 provide room for up to 93,050 - 138,950 ft³ (2,635 - 3,935 m³) of RH TRU mixed waste. RH Remote-handled TRU mixed waste may be disposed of in up to 730 boreholes per panel, subject to the limitations in Permit Part 4, Section 4.1.1.2.i. These boreholes shall be drilled on nominal eight-foot centers, horizontally, about mid-height in the ribs of a disposal room. The thermal loading from RH TRU mixed waste shall not exceed 10 kilowatts per acre when averaged over the area of a panel, as shown in Permit Attachment A3, plus 100 feet of each of a Panel’s adjoining barrier pillars for Panels 4 through 8, and 150 feet of each of a Panel’s adjoining barrier pillars for Panels 11 and 12.

The WIPP facility is located in a sparsely populated area with site conditions favorable to isolation of TRU mixed waste from the biosphere. Geologic and hydrologic characteristics of the site related to its TRU mixed waste isolation capabilities are discussed in Addendum L1 of the WIPP Hazardous Waste Facility Permit Amended Renewal Applications (DOE, 2009, 2020). Hazard prevention programs are described in this Permit Attachment. Contingency and emergency response actions to minimize impacts of unanticipated events, such as spills/releases of TRU mixed waste, are described in Permit Attachment D. The closure plan for the WIPP facility is described in Permit Attachment G.

A2-2 Geologic Repository Design and Process Description

A2-2a Geologic Repository Design and Construction

Compliance with the Permit ensures operations at the WIPP facility are, when operated in compliance with the Permit, will ensure safe operations and be protective of human health and the environment.

As a part of the design validation process, geomechanical tests were conducted in SPDV Site and Preliminary Design Validation test rooms. During the tests, salt creep rates were measured. Separation of bedding planes and fracturing were also observed. Consequently, a ground-control strategy was implemented. The ground-control program at the WIPP facility mitigates the potential for roof or rib falls and maintains normal excavation dimensions, as long as access to the excavation is possible.

A2-2a(1) CH TRU Mixed Waste Handling Equipment

The following are the major pieces of equipment used to manage CH TRU waste in the geologic repository. A summary of equipment capacities, as required by 20.4.1.500 NMAC is included in Table A2-1.

Facility Pallets

The facility pallet is a fabricated steel unit designed to support 7-seven-packs, 3-three-packs, or 4-four-packs of drums, standard waste boxes (SWBs), ten-drum overpacks (TDOPs), or a standard large box 2 (SLB2), and has a rated load of 25,000 pounds (lbs.) (11,430 kilograms (kg)). The facility pallet will accommodate up to four 7-seven-packs, four 3-three-packs, or four 4-four-packs of drums, two 3-three-packs of shielded containers, four 4-packs of drums, four SWBs (in two stacks of two units), two TDOPs, or one SLB2. Loads are secured to the facility
pallet during transport to the emplacement area. Facility pallets are shown in Figure A2-3M-21. Fork pockets in the side of the pallet allow the facility pallet to be lifted and transferred by forklift to prevent direct contact between TRU mixed waste containers and forklift tines. This arrangement reduces the potential for puncture accidents. WIPP facility operational documents define the operational load of the facility pallet to ensure that the rated load of a facility pallet is not exceeded.

Backfill

Magnesium oxide (MgO) will be used as a backfill in order to provide chemical control over the solubility of radionuclides in order to comply with the requirements of 40 CFR §191.13. The MgO backfill will be purchased prepackaged in the proper containers for emplacement in the underground. Purchasing prepackaged backfill eliminates handling and placement problems associated with bulk materials, such as dust creation. In addition, prepackaged materials will be easier to emplace, thus reducing potential worker exposure to radiation. Magnesium oxide is benign; therefore, should a backfill container package be breached, MgO is benign and cleanup is simple. No hazardous waste would result from a spill of backfill.

The MgO backfill will be managed in accordance with Specification D-0101 (MgO Backfill Specification) and WP05-WH1025 (CH Waste Downloading and Emplacement). These documents are kept on file at the WIPP facility by the Permittees.

Backfill will be handled in accordance with standard operating procedures. Typical backfill emplacement configurations are shown in Figures A2-5 and A2-5aM-45. Some emplacement configurations may include the use of MgO emplacement racks, as shown in Figure A2-5aM-45. The backfill emplacement process does not require additional operational considerations (e.g., ventilation flow and control) beyond those required for TRU mixed waste emplacement.

Quality control will be provided within standard operating procedures to record that the correct number of sacks are placed and that the condition of the sacks is acceptable.

Backfill placed in this manner is protected until exposed when sacks are broken during creep closure of the room and compaction of the backfill and waste. Backfill in sacks utilizes existing techniques and equipment and eliminates operational problems such as dust creation and introducing additional equipment and operations into waste handling areas. There are no mine operational considerations (e.g., ventilation flow and control) when backfill is placed in this manner.

The Waste Shaft Conveyance

The hoist systems in the shafts and all related shaft furnishings are designed to resist the dynamic forces of the hoisting system and to withstand a design-basis earthquake (DBE) of 0.1 g. Appendix D2 of the WIPP RCRA Part B Permit Application (DOE, 1997) provided an engineering design-basis earthquake report, which provides the basis for seismic design of WIPP facility structures. The waste waste Hoist is equipped with a control system that will detect malfunctions or abnormal operations of the hoist system (such as overtravel, overspeed, power loss, circuitry failure, or starting in a wrong direction) and will trigger an alarm that automatically shuts down the hoist.
The waste **Waste hoist** Hoist moves the Waste Shaft Conveyance and is a multirope, friction-type hoist. A counterweight is used to balance the waste **Waste shaft** Shaft conveyance Conveyance. The waste **Waste shaft** Shaft conveyance Conveyance (outside dimensions) is 30 ft (9 m) high by 10 ft (3 m) wide by 15 ft (4.5 m) deep and can carry a payload of 45 tons (40,824 kilograms (kg)). During loading and unloading operations, it is steadied by fixed guides. The hoist’s maximum rope speed is 500 ft (152.4 m) per minute.

The Waste Shaft hoist system has two sets of brakes, with two units per set, plus a motor that is normally used to stop the hoist. The brakes are designed so that either set, acting alone, can stop a fully loaded conveyance under all-emergency conditions.

The Underground Waste Transporter

The underground waste transporter is a commercially available diesel-powered tractor. The trailer was designed specifically for the WIPP facility for transporting facility pallets from the waste **Waste shaft** Shaft conveyance Conveyance to the Underground underground HWDU in use. This transporter is shown in Figure A2-6M-46.

Underground Forklifts

CH Contact-handled TRU mixed waste containers loaded on slipsheets will be removed from the facility pallets using forklifts with a push-pull attachment (Figure A2-7M-47) attached to the forklift-truck front carriage. The push-pull attachment grips the edge of the slipsheet (on which the waste containers sit) to pull the containers onto the platen. After the forklift moves the waste containers to the emplacement location, the push-pull attachment pushes the containers into position. The use of the push-pull attachment prevents direct contact between waste containers and forklift tines. SWBs Standard waste boxes and TDOPs may also be removed from the facility pallet by using forklifts equipped with special adapters for these containers. These special adapters will prevent direct contact between SWBs or TDOPs and forklift tines. In addition, the low clearance forklift that is used to emplace MgO may be used to emplace waste if necessary.

A forklift will be used to offload the SLB2 from the underground transporter and emplace the waste container in the waste stack.

A2-2a(2) Shafts

Four-Shaft Configuration

The WIPP facility uses four shafts: the Waste Shaft, the Salt Handling Shaft, the Air Intake Shaft, and the Exhaust Shaft. These shafts are vertical openings that extend from the surface to the repository level.

The Waste Shaft is located beneath the WHB and is varies from 19 to 20 ft (5.8 to 6.1 m) in diameter. The Salt Handling Shaft, located north of the Waste Shaft beneath the salt handling headframe, is varies from 10 to 12 ft (3 to 3.6 m) in diameter. Salt mined from the repository horizon is removed through the Salt Handling Shaft. The Salt Handling Shaft is the main personnel and materials hoist and also serves as a secondary supply air pathway for the underground areas. The Air Intake Shaft, northwest of the WHB, varies in diameter from 16 ft 7 in. inches (4.51 m) to 20 ft 3 in. (6.19 m) and is the primary source of fresh air underground.
The Exhaust Shaft, east of the WHB, is varies from 14 to 15 ft (4.3 to 4.6 m) in diameter and serves as the exhaust air pathway for the underground air. In some cases, the Salt Handling Shaft may be used as an unfiltered exhaust shaft to ventilate areas of the underground that do not need filtration.

Five-Shaft Configuration (with S#5)

A fifth shaft, S#5, also extends from the surface to the repository level. The inside diameter of S#5 is approximately 26 ft (8 m). With S#5 in use, it is the primary source of fresh air to the underground facility. With S#5 in use, the ventilation functions of the existing shafts are as follows:

- Salt Handling Shaft serves as a secondary supply-air (intake air) pathway for the underground facility.
- The Waste Shaft serves as the supply-air (intake air) pathway for the Waste Shaft Station.
- The Air Intake Shaft serves as the exhaust air pathway for the construction area of the underground facility.
- The Exhaust Shaft serves as the exhaust air pathway for the north, disposal and Waste Shaft Station areas of the underground facility.

General Shaft Description

Openings excavated in salt experience closure because of salt creep, (or time-dependent deformation at constant load). The closure affects the design of all of the openings discussed in this section. Underground excavation dimensions, therefore, are nominal, because they change with time. The unlined portions of the shafts have larger diameters than the lined portions, which allows for closure caused by salt creep. Each shaft includes a shaft collar, a shaft lining, and a shaft key section. Permit Attachment G2 describes each shaft in detail including shaft construction, location of the shaft liners, shaft keys, water collection rings, and tubes. The Final Design Validation Report in Appendix D1 of the WIPP RCRA Part B Permit Application (DOE, 1997) discusses the original four shafts and shaft components in greater detail.

The reinforced-concrete shaft collars extend from the surface to the top of the underlying consolidated sediments. Each collar serves to retain adjacent unconsolidated sands and soils and to prevent surface runoff from entering the shafts. The shaft linings extend from the base of the collar to the top of the salt beds approximately 850 ft (259 m) below the surface. Grout injected behind the shaft lining or a polymeric spray coating retards water seeping into the shafts from water-bearing formations, and the liner is designed to withstand the natural water pressure associated with these formations. The shaft liners are concrete, except in the Salt Handling Shaft, where a steel shaft liner has been grouted in place.

The shaft key is a circular reinforced-concrete section emplaced in each shaft below the liner in the base of the Rustler and extending about 50 ft (15 m) into the Salado. The key functions to resist lateral pressures and assures that the liner will not separate from the host rocks or fail.
under tension. This design feature also aids in preventing the shaft from becoming a route for groundwater flow into the underground facility.

On the inside surface of each shaft, excluding the Salt Handling Shaft and S#5, there are three water collection rings: one just below the Magenta, one just below the Culebra, and one at the lowermost part of the key section. These collection rings will collect water that may seep into the shaft through the liner. The Salt Handling Shaft has a single water collection ring in the lower part of the key section. Water collection rings are drained by tubes to the base of the shafts where the water is accumulated. Shaft #5 is outfitted with water stops at each shaft liner cold joint throughout the lined portion of the shaft.

WIPP's shafts and other underground facilities are, for all practical purposes, dry. Minor quantities of water (which accumulate in some shaft sumps) are insufficient to affect the waste disposal area. This water is collected, brought to the surface, and disposed of in accordance with current standards and regulations.

The Waste Shaft is protected from precipitation by the roof of the waste shaft conveyance headframe tower. The Exhaust Shaft is configured at the top with a 14 ft- (4.3 m-) diameter duct that diverts air into the exhaust filtration system or to the atmosphere, as appropriate. The Salt Handling and Air Intake Shaft collars are open except for the headframes. Rainfall into the shafts is evaporated by ventilation air. Shaft #5 is covered to direct intake air into the underground facility using fans located on the surface. The fans are connected to the shaft via ducting and a plenum.

With S#5 in use, the Air Intake Shaft is converted to an exhaust shaft for Construction Circuit air by routing the air through a plenum and ducting to an unfiltered exhaust stack.

The waste hoist system in the Waste Shaft and all Waste Shaft furnishings are designed to resist the dynamic forces of the hoisting system, which are greater than the seismic forces on the underground facilities. In addition, the Waste Shaft conveyance headframe is designed to withstand the design-basis earthquake (DBE). Maximum operating speed of the hoist is 500 ft (152.4 m) per minute. During loading and unloading operations, the waste hoist is steadied by fixed guides. The waste hoist is equipped with a control system that will detect malfunctions or abnormal operations of the hoist system, such as overtravel, overspeed, power loss, or circuitry failure. The control response is to annunciate the condition and shut the hoist down. Operator response is required to recover from the automatic shutdown. Waste hoist operation is continuously monitored by the Central Monitoring System (CMS). A battery-powered FM-transmitter/receiver allows communication between the hoist conveyance and the hoist house.

The waste hoist has two pairs of brake calipers acting on independent brake paths. The hoist motor is normally used for braking action of the hoist. The brakes are used to hold the hoist in position during normal operations and to stop the hoist under emergency conditions. Each pair of brake calipers is capable of holding the hoist in position during normal operating conditions and stopping the hoist under emergency conditions. In the event of power failure, the brakes will set automatically.

The waste hoist is protected by a fixed automatic fire suppression system. Portable fire extinguishers are also provided on the hoist floor and in equipment areas.
A2-2a(3) Subsurface Structures

The subsurface structures in the repository, located at 2,150 ft (655 m) below the surface, include the HWDUs, the northern experimental areas, and the support areas. Appendix D3 of the WIPP RCRA Part B Permit Application (DOE, 1997) provided details of the underground layout. Figure A2-8M-48 shows the proposed waste emplacement configuration for the HWDUs.

The status of important designated underground equipment, including fixed fire-protection systems, the ventilation system, and contamination-detection systems, will be monitored by a central monitoring system CMS, located in the Support Building adjacent to the WHB. Backup power will be provided as discussed below. The subsurface support areas are constructed and maintained to conform to Federal mine safety codes.

Underground Hazardous Waste Disposal Units (HWDUs)

During the terms of this and the preceding Permit, the final TRU mixed waste volumes emplaced in the repository will not exceed the maximum capacities listed in Permit Part 4, Table 4.1.1 for each HWDU. CH Contact-handled TRU mixed waste will be disposed of in underground HWDUs identified as Panels 1 through 8, 11, and 12. RH Remote-handled TRU mixed waste may be disposed of in Panels 4 through 8, 11, and 12.

Main entries and cross cuts in the repository provide access and ventilation to the HWDUs. The main entries link the shaft pillar/service area with the TRU mixed waste management area and are separated by pillars. Each of the Underground HWDUs labeled Panels 1 through 8, 11, and 12 will have seven rooms. The locations of these HWDUs are shown in Figure A2-1M-43. The rooms in Panels 1-7 will have nominal dimensions of 13 ft (4.0 m) high by 33 ft (10 m) wide by 300 ft (91 m) long and will be supported by 100 ft (30 m) wide pillars. The rooms in Panel 8 will have nominal dimensions of 16 ft (5.0 m) high by 33 ft (10 m) wide by 300 ft (91 m) long and will be supported by 100 ft (30 m) wide pillars.

As currently planned, future Permits may allow disposal of TRU mixed waste containers in two additional panels, identified as Panels 9 and one of which may be Panel 10. Disposal of TRU mixed waste in Panels 9 and 10 is prohibited under this Permit. If TRU mixed waste volumes disposed of in the eight panels Panels 1 through 8 fail to reach the stated design capacity, the Permittees may request a Permit modification to allow disposal of TRU mixed waste in the four main entries and crosscuts adjacent to the waste panels (referred to as the disposal area access drifts). These areas access drifts are labeled Panels 9 and 10 in Figure M-43 A2-1. A permit modification or future permit modification request would be submitted describing the condition of those drifts and the controls exercised for personnel safety and environmental protection while disposing of waste in these areas access drifts. These areas access drifts have the following nominal dimensions:

- The E-140 waste transport route south of the Waste Shaft Station is mined to be 25 ft wide nominally and its height ranges from about 14 ft to 20 ft.
- The W-30 waste transport route south of S-700 is mined to be 20 ft wide nominally and its height will be at least 14 ft.
- Other drifts that are part of the waste transport route will be at least 20 ft wide and 14 ft high to accommodate waste transport equipment.
• Other drifts (i.e. mains and cross-cuts) vary in width and height according to their function typically ranging from 14 ft to 20 ft wide and 12 ft to 20 ft high.

The layout of these excavations is shown on Figure A2-4M-43.

Underground Facilities Ventilation System

The underground facilities ventilation system will provide a safe and suitable environment for underground operations during normal WIPP facility operations. The underground system is designed to provide control of potential airborne contaminants in the event of an accidental release or an underground fire.

The underground is divided into specific areas that are supported by different ventilation flows referred to as ventilation circuits. Consequently, the underground ventilation system is comprised of four separate circuits, as designated on Figure A2-9aM-49: one serving the northern experimental areas (North Circuit), one serving the construction areas (Construction Circuit), one serving the waste disposal areas (Disposal Circuit), and one serving the waste Shaft station Station area (Waste Shaft Station Circuit). The air from the four circuits are recombined near the bottom of the Exhaust Shaft, which serves as a common exhaust route from the underground level to the surface. In some cases, the Salt Handling Shaft may be used as an unfiltered exhaust shaft (Figure A2-9bM-50) to ventilate areas of the underground that do not need filtration.

With S#5 in use (Figure A2-9cM-51), the Salt Handling Shaft serves as the secondary supply-air pathway for the underground facility while S#5 serves as the primary supply-air pathway for the underground facility. The Waste Shaft supplies the intake air for the Waste Shaft Station. The Air Intake Shaft provides the exhaust route for the Construction Circuit while the Exhaust Shaft provides the exhaust route for the North, Disposal, and Waste Shaft Station Circuits.

Underground Ventilation System Description

The underground ventilation system consists of centrifugal exhaust fans, two identical HEPA-filter assemblies arranged in parallel, isolation dampers, a filter bypass arrangement, two skid-mounted HEPA-filter assemblies arranged in parallel, and associated ductwork. The fans, connected by the ductwork to the underground exhaust shaft so that they can independently draw air through the Exhaust Shaft, are divided into three groups. One group consists of three main exhaust fans, two of which are utilized to provide the nominal airflow of 425,000 standard ft³ per minute (scfm) throughout the WIPP facility underground during normal (unfiltered) operation. One main fan may be operated in the alternate mode to provide 260,000 scfm underground ventilation flow. These fans are located near the Exhaust Shaft. The second group consists of three filtration fans, and each can provide 60,000 scfm of airflow. One main fan can be operated in the filtration mode, where exhaust is diverted through HEPA filters, or in the reduced or minimum ventilation mode, where air is not drawn through the HEPA filters. The third group consists of two skid-mounted filtration fans and HEPA-filter assemblies, each of which can provide approximately 23,000 scfm of airflow. The skid-mounted filtration fan and HEPA-filter assemblies, referred to as the Interim Ventilation System (IVS) located south of the Exhaust Filter Building, are only operated in filtration mode, where exhaust is diverted through HEPA filters. In addition to the surface fans, an underground fan has been installed to ventilate uncontaminated areas in the North and Construction Circuits. This system is referred to as the Supplemental Ventilation System (SVS).
and will be used in conjunction with IVS (as shown in Figure A2-9b-M-50). When this fan is operating, the Salt Shaft will serve as an unfiltered exhaust shaft for the North and Construction Circuits. A portion of the airflow provided by the SVS to the Construction Circuit can also be used to provide fresh air to the Disposal Circuit, if needed. In this case, the air from the Disposal Circuit will continue to be exhausted through the HEPA filtration system.

When the repository is configured to use five shafts, two fans located on the surface and connected via ducting and a plenum to S#5, supply the majority of the intake air to the underground facility. One fan operates at a time, while the idle fan is available as a back-up fan. The Salt Handling Shaft serves as a secondary air intake shaft for the north area and the Waste Shaft serves as the air intake shaft for the Waste Shaft Station area of the underground facility. The Air Intake Shaft serves as an unfiltered exhaust shaft for the construction area of the underground facility. The north, disposal, and Waste Shaft Station areas of the underground facility are exhausted through the Exhaust Shaft and the associated filtration system.

The underground mine ventilation is designed to supply sufficient quantities of air to all areas of the repository. During normal operating mode (simultaneous mining and waste emplacement operations), approximately 140,000 actual ft³ (3,962 m³) per min can be supplied to the panel area. This quantity is necessary in order to support the level of activity and the pieces of diesel equipment that are expected to be in operation.

At any given time during waste emplacement activities, there may be significant activities in multiple rooms in a panel. For example, one room may be receiving CH TRU mixed waste containers, another room may be receiving RH TRU mixed waste canisters, and the drilling of RH TRU mixed waste emplacement boreholes may be occurring in another room. The remaining rooms in a panel will either be completely filled with waste; be idle, awaiting waste handling operations; or being prepared for waste receipt. A minimum ventilation rate of 35,000 standard ft³ (990 standard m³) per minute will be maintained in each active room when waste disposal is taking place and workers are present in the room. This quantity of air is required to support the numbers and types of diesel equipment that are expected to be in operation in the area, and to support waste handling personnel working in that area. The remainder of the air is needed in order to account for air leakage through inactive rooms. If an active room ventilation rate of 35,000 scfm cannot be met, actions as described in Permit Attachment O shall be taken during waste disposal operations when workers are present.

Air will be routed into a panel from the intake side. Air is routed through the individual rooms within a panel using any of the following flow control devices: underground bulkheads, brattice-cloth barricades, bulkheads with doors or air regulators. Bulkheads are constructed by erecting framing of rectangular steel tubing and screwing galvanized sheet metal to the framing. Bulkhead members use telescoping extensions that are attached to framing and the salt which adjust to creep. Flexible flashing attached to the bulkhead on one side and the salt on the other completes the seal of the ventilation bulkhead installation. Where controlled airflow is required, a louver-style damper or a slide-gate (sliding panel) regulator is installed on the bulkhead. Personnel access is available through most bulkheads, and vehicular access is possible through selected bulkheads. Vehicle roll-up doors in the panel areas are not equipped with warning bells or strobe lights since these doors are to be used for limited periodic maintenance activities in the return air path. Flow is also controlled using brattice-cloth barricades. These consist of chain link fence that is bolted to the salt or attached to a structural member and
covered with brattice cloth; and are used in instances where the only flow control requirement is to block the air. A brattice-cloth air barricade is shown in Figure A2-11M-52. Ventilation will be maintained only in all active rooms within a panel until waste emplacement activities are completed and the panel-closure system is installed. The air will be routed simultaneously through all the active rooms within the panel. The filled rooms will be isolated from the ventilation system, while the active rooms that are actively being filled will receive a minimum of 35,000 scfm of air when workers are present to assure worker safety. If an active room ventilation rate of 35,000 scfm cannot be met, actions as described in Permit Attachment O shall be taken during waste disposal operations when workers are present. After all the rooms within a panel are filled, the panel will be closed using a closure system described Permit Attachment G and Permit Attachment G1.

Once a disposal room is filled and is no longer needed for emplacement activities, it will be barricaded against entry and isolated from the mine ventilation system. This may be accomplished by any of the following: by removing the air regulator bulkhead, closing bulkhead doors, constructing chain link/brattice-cloth barricades and, if necessary, constructing bulkheads at each end. A typical bulkhead is shown in Figure A2-11a, Appendix G1-B. There is no requirement for air for these rooms since personnel and/or equipment will not be in these areas.

The ventilation path for the waste disposal side is separated from the construction (e.g., mining) side by means of air locks, bulkheads, and salt pillars. A pressure differential is maintained between the construction side and the waste disposal side to ensure that any leakage is towards the disposal side. The pressure differential is produced by the surface fans in conjunction with the underground air regulators.

Underground Ventilation Filtration System Description with Buildings 416 and 417

The Underground Ventilation Filtration System (UVFS) fans, which are part of the New Filter Building (NFB) (Building 416), provide enhanced ventilation in the underground, sufficient to allow concurrent mining and waste emplacement. The UVFS will provide filtered airflow through a surface mounted ventilation and filtration system. The intake duct to the surface ventilation and filtration facility is connected to the Exhaust Shaft. The exhaust from the underground will be directed to the salt-reduction system located in the Salt-Reduction Building (SRB) (Building 417).

Prior to passing through the NFB, air from the Exhaust Shaft may be directed through the SRB, which contains de-dusters, commonly used in the mining industry, and de-misters for salt dust and brine/water mist removal. The salt-reduction system consists of multiple parallel de-dusting units. The exhaust from the de-dusting units is directed to the filter supply manifold and then to the filtration units. The combination of the de-duster and de-mister combination has a water wash-down system that is connected to a water collection, treatment and sludge tank. The outlet of the water collection, treatment, and sludge tank is piped out of the SRB to an evaporative pond. Accumulated water and salt will be characterized and disposed of in accordance with WIPP facility standard operating procedures.

Differential-pressure instrumentation, located at each filter bank, will be provided with a high differential pressure alarm, which is monitored in the CMR. The exhaust from each of the filter banks is directed to a plenum which has a single duct that discharges to the environment through a stack.
Underground Ventilation Modes of Operation

When the repository is configured to use four shafts, the underground ventilation system is designed to perform under three types of operation: normal (the HEPA exhaust filtration system is bypassed), filtered (the exhaust is filtered through the HEPA filtration system), if radioactive contaminants are detected or suspected, or a combined mode in which the air in the Disposal Circuit is filtered and the air in the North and Construction Circuits is unfiltered.

The possible modes of exhaust fan operation are as follows:

- **Two** main fans in operation
- **One** main fan in operation
- **One** filtration fan in filtered operation
- **Two** fans in filtered operation (one filtration fan and one IVS fan or two IVS fans)
- **Three** fans in filtered operation (one filtration fan and two IVS fans)
- **One** filtration fan in unfiltered operation
- **Two** filtration fans in unfiltered operation
- **One** main and **One** filtration fan in unfiltered operation
- **Three** fans in filtered operation (one filtration fan and two IVS fans exhausting through the Exhaust Shaft) and an underground SVS fan in operation (boosting fresh air into the mine causing the Salt Handling Shaft to serve as an unfiltered exhaust shaft for the North and Construction Circuits)

Underground Ventilation Filtration System Modes of Operation with Building 416

The UVFS, which includes the NFB, is designed to perform under two types of operation: filtered (the exhaust is filtered through the HEPA filtration system), and bypassed (the HEPA exhaust filtration system is bypassed).

For UVFS Filtration Mode

- **One** exhaust fan
- **Two** exhaust fans
- **Three** exhaust fans
- **Four** exhaust fans

For UVFS Bypass Mode
1. **One** to **four** exhaust fans

2. Under some circumstances (e.g. power outages and maintenance activities), exhaust fan operation may be discontinued for short periods of time.

3. In the normal mode, two main surface exhaust fans, located near the Exhaust Shaft, will provide continuous ventilation of the underground areas. In this mode, underground airflow flows join at the bottom of the Exhaust Shaft before discharge to the atmosphere. However, in some cases, the Salt Handling Shaft may be used as an unfiltered exhaust shaft to ventilate areas of the underground that do not need filtration.

4. Typically, outside air will be supplied to the construction areas and the waste disposal areas through the Air Intake Shaft, the Salt Handling Shaft, and access entries. A small quantity of outside air will flow down the Waste Shaft to ventilate the Waste Shaft and through the filtration system.

5. When the repository is configured to use five shafts, two intake fans located on the surface and connected to S#5 via ducting and a plenum, supply the majority of the intake air to the underground facility. The fans are designed to operate one fan at a time with the second fan available as a back-up fan. The fans have variable frequency drives that can adjust the intake flow at S#5 to meet the requirements of the underground ventilation filtration system and the Construction Circuit.

6. If the nominal flow of 425,000 scfm (12,028 m³/min) is not available (e.g., only one of the main ventilation fans is available), underground operations may proceed, however, the number of activities that can be performed in parallel may be limited, depending on the quantity of air available. Ventilation may be supplied by operating one or more of the filtration exhaust fans. To accomplish this, the isolation dampers will be opened, which will permit air to flow from the main exhaust duct to the filter outlet plenum or to the IVS. The filtration fans may also be operated to bypass the HEPA plenum. The isolation dampers of the filtration exhaust fan(s) to be employed will be opened, and the selected fan(s) will be switched on. In this mode, underground operations will be limited, because filtration exhaust fans cannot provide sufficient airflow to support the use of numerous pieces of diesel equipment.
removing the airborne particulates that may contain radioactive and hazardous waste particulates before they are discharged through the exhaust stack to the atmosphere. The filtration mode is activated manually or automatically if the radiation monitoring system detects abnormally high concentrations of airborne radioactive particulates (an alarm is received from the continuous air monitor in the exhaust drift of the active waste panel) or a waste handling incident with the potential for a waste container breach is observed. The filtration mode is not initiated by the release of gases such as VOCs.

If utility electrical power fails, the exhaust filter system is powered by backup diesel generators. Normal TRU mixed waste handling and related operations cease upon loss of utility electric power and are not resumed until normal utility electric power is returned. As specified in Permit Part 2, all waste handling equipment will "fail safe," meaning that it will retain its load during in the event of a power outage.

Underground Ventilation Normal Mode Redundancy

The underground ventilation system has been provided redundancy in normal ventilation mode by the addition of a third main fan. Ductwork leading to that new fan ties into the existing main exhaust duct.

Electrical System

The WIPP facility uses electrical power (utility power) supplied by the regional electric utility company. If there is a loss of utility power, TRU mixed waste handling and related operations will cease.

Backup, alternating current power will be provided on site by diesel generators. These units provide a high degree of reliability. Each of the diesel generators can carry predetermined equipment loads while maintaining additional power reserves. Predetermined loads include lighting and ventilation for underground facilities, lighting and ventilation for the TRU mixed waste handling areas, and the Air Intake Shaft hoist. The diesel generators can be brought on line within 30 minutes either manually or from the control panel in the Central Monitoring Room (CMR).

Uninterruptible power supply (UPS) units are also on line providing power to predetermined monitoring systems. These systems ensure that the power to the radiation detection system for airborne contamination, the local processing units, the computer room, and the CMR will always be available, even during the interval between the loss of off-site power and initiation of backup diesel generator power.

A2-2a(4) RH TRU Mixed Waste Handling Equipment

The following are the major pieces of equipment used to manage RH TRU mixed waste in the geologic repository. A summary of equipment capacities is included in Table A2-3.

The Facility Cask Transfer Car

The Facility Cask Transfer Car is a self-propelled rail car (Figure A2-14M-34) that operates between the Facility Cask Loading Room and the geologic repository. After the Facility Cask is loaded, the Facility Cask Transfer Car moves onto the Waste Shaft conveyance.
Conveyance and is then transported underground. At the underground waste shaft station, the Facility Cask Transfer Car proceeds away from the waste shaft conveyance to provide forklift access to the Facility Cask.

Horizontal Emplacement Machine and Retrieval Equipment or Functionally Equivalent Equipment

The Horizontal Emplacement machine (HEM) and Retrieval Equipment (HERE) or functionally equivalent equipment (Figure A2-15M-54), or functionally equivalent equipment, emplaces canisters into a borehole in a room wall of an underground HWDU. Once the canisters have been emplaced, the HERE HEM then fills the borehole opening with a shield plug.

A2-2b Geologic Repository Process Description

Prior to receipt of TRU mixed waste at the WIPP facility, waste operators will be thoroughly trained in the safe use of TRU mixed waste handling and transport equipment. The training will include both classroom training and on-the-job training.

RH TRU Mixed Waste Emplacement

The Facility Cask Transfer Car is loaded with a Facility Cask and is moved onto the waste shaft conveyance and is lowered to the waste shaft station underground. At the waste shaft station underground, the Facility Cask is moved from the waste shaft conveyance by the Facility Cask Transfer Car (Figure A2-16M-55). A forklift is used to remove the Facility Cask from the Facility Cask Transfer Car and to transport the Facility Cask to the Underground HWDU. There, the Facility Cask is placed on the HERE (Figure A2-17)HEM. The HERE HEM is used to emplace the RH TRU mixed waste canister into the borehole. The borehole will be visually inspected for obstructions prior to aligning the HERE HEM and emplacement of the RH TRU mixed waste canister. The Facility Cask is moved forward to mate with the shield collar, and the transfer carriage is advanced to mate with the rear Facility Cask shield valve. The shield valves on the Facility Cask are opened, and the transfer mechanism advances to push the canister into the borehole. After retracting the transfer mechanism into the Facility Cask housing, the forward shield valve(s) is closed, and the transfer mechanism is further retracted into its housing. The transfer mechanism is moved to the rear, and the shield plug carriage containing a shield plug is placed on the emplacement machine cask carriage. The transfer mechanism is used to push the shield plug into the Facility Cask. The front shield valve is opened, and the shield plug is pushed into the borehole (Figure A2-18), thereby completing the emplacement. The transfer mechanism is retracted, the shield valves close on the Facility Cask, and the Facility Cask is removed from the HERE.

A shield plug is a concrete filled cylindrical steel shell (Figure A2-21M-56) approximately 61 in. (155 cm) long and 29 in. (74 cm) in diameter, made of concrete shielding material inside a 0.24 in.-thick steel shell with a removable pintle at one end. Each shield plug has integral forklift pockets and weighs approximately 3,750 pounds (1,700 kg). The shield plug is inserted with the pintle end closest to the HERE HEM to provide the necessary shielding, limiting the borehole radiation dose rate at 11.8 in (30 cm) to less than 10 millirem per hour for a canister surface dose rate of 100 rem per hour. Additional shielding is provided at the direction of the Radiological Control Technician based on
dose rate surveys following shield plug emplacement. This additional shielding is provided by
the manual emplacement of one or more shield plug supplemental shielding plates and a
retainer (Figures A2-19 and A2-20M-56).

The amount of RH TRU mixed waste disposal disposed in each panel is limited based on
thermal and geomechanical considerations and shall not exceed 10 kilowatts per acre as
described in Permit Attachment Section A2-1. RH Remote-handled TRU mixed waste
emplacement boreholes shall be drilled in the ribs of the panels at a nominal spacing of 8 ft
(2.4 m) center-to-center, horizontally.

Figures A1-26M-40 and A1-27M-41 are flow diagrams of the RH TRU mixed waste handling
process for the RH-TRU 72-B and CNS 10-160B casks, respectively.

CH TRU Mixed Waste Emplacement

CH TRU mixed waste containers and shielded containers will arrive by tractor-trailer at the
WIPP facility in sealed shipping containers. Prior to unloading the packages from the trailer,
they will undergo security and radiological checks and shipping documentation reviews. The
trailers carrying the shipping containers will be stored temporarily at the Parking Area Container
Storage Unit (Parking Area Unit). A forklift will remove the Contact Handled Packages from the
transport trailers and a forklift or Yard Transfer Vehicle will transport them into the Waste
Handling Building Container Storage Unit for unloading of the waste containers. Each
TRUPACT-II may hold up to two 7-packs, two 4-packs, two 3-packs, two SWBs, or one TDOP.
Each HalfPACT may hold up to seven 55-gal (208 L) drums, one SWB, one three-pack of
shielded containers or four 85-gal (322 L) drums. Each TRUPACT-III will hold one SLB2. An
overhead bridge crane or Facility Transfer Vehicle with transfer table will be used to remove the
waste containers from the Contact Handled Packaging and place them on a facility or
containment pallet. Each facility pallet has two recessed pockets to accommodate two sets of 7-
packs, two sets of 3-packs, two sets of 4-packs, two SWBs stacked two-high, two TDOPs, or
one SLB2. Each stack of waste containers will be secured prior to transport underground (see
Figure A2-3). A forklift or the facility transfer vehicle will transport the loaded facility pallet to the
conveyance loading room adjacent to the Waste Shaft. The facility transfer vehicle will be driven
onto the waste Waste shaft Shaft conveyance-Conveyance deck, where the loaded
facility pallet will be transferred to the waste Waste shaft Shaft conveyance-Conveyance, and
the facility transfer vehicle will be backed off. Containers of CH TRU mixed waste (55-gal
(208-L) drums, SWBs, 85-gal (322-L) drums, 100-gal (379-L) drums, and TDOPs) or shielded
containers can be handled individually, if needed, using the forklift and appropriate lifting
attachments (i.e., drum handlers, parrot beaks).

The waste Waste shaft Shaft conveyance-Conveyance will lower the loaded facility pallet to the
underground. At the waste Waste shaft Shaft station Station, the CH TRU underground
transporter will be backed up to the waste Waste shaft Shaft conveyance-Conveyance, and the
facility pallet will be transferred from the waste Waste shaft Shaft conveyance-Conveyance
onto the transporter (see Figure A2-6M-46). The transporter will then used to move the facility
pallet to the appropriate Underground underground HWDU for emplacement. The underground
waste transporter is equipped with a fire suppression system, rupture-resistant diesel fuel tanks,
and reinforced fuel lines to minimize the potential for a fire involving the fuel system.

A forklift in the HWDU near the waste stack will be used to remove the waste containers from
the facility pallets and to place them in the waste stack using a push-pull attachment or, in the
case of an SLB2, the SLB2 will be lifted from the facility pallet and placed directly on the floor of the emplacement room. The waste will be emplaced room by room in Panels 1 through 8. Each panel will be closed off from active ventilation when filled. If a waste container is damaged during the Disposal Phase, it will be immediately overpacked or repaired. CH Contact-handled TRU mixed waste containers will be continuously vented. The filter vents will allow aspiration, preventing internal pressurization of the container and minimizing the buildup of flammable gas concentrations.

Once a waste panel is mined and any initial ground control established, flow control devices will be constructed to assure adequate control over ventilation during waste emplacement activities. The first room to be filled with waste will be the one that is farthest from the main access drifts. A ventilation control point will be established for Room 7 either just outside the exhaust side of Room 6 or at the inlet side of Room 7. This ventilation control point will consist of a flow control device (e.g., bulkhead with a ventilation regulator, or brattice cloth barricade). When RH TRU mixed waste canister emplacement is completed in a room, CH TRU mixed waste emplacement can begin in that room. Stacking of CH TRU mixed waste will begin at the exhaust side of the room and proceed down the access drift, through the room and up the intake access drift until the entrance of Room 6 is reached. At that point, a brattice-cloth and chain-link barricade and, if necessary, bulkheads will be installed. This process will be typically repeated for Room 6, and so on until Room 1 is filled. At that point, the panel closure system will be constructed.

The emplacement of CH TRU mixed waste into the HWDUs will be in the order received and unloaded from the Contact Handled Packaging. There is no specification for the amount of space to be maintained between the waste containers themselves, or between the waste containers and the walls. Containers will be stacked in the best manner to provide stability for the stack (which is up to three containers high) and to make best use of available space. It is anticipated that The space between the wall and the container could range from 8 to 18 in. (20 to 46 cm). This space is a function of disposal room wall irregularities, container type, and sequence of emplacement. Bags of backfill will occupy some of this space. Space is required over the stacks of containers to assure adequate ventilation for waste handling operations. A minimum of 16 in. (41 cm) was specified in the Final Design Validation Report (Appendix D1, Chapter 12 of the WIPP RCRA Part B Permit Application (DOE, 1997)) to maintain airflow. Typically, the space above a stack of containers will be 36 to 48 in. (90 to 122 cm). However, 48 in. (0.45 m) will contain backfill material consisting of bags of Magnesium Oxide (MgO). Figure A2-8M-48 shows a typical container configuration, although this figure does not mix containers on any row. Such mixing, while inefficient, will be allowed to assure timely movement of waste into the underground. No aisle space will be maintained for personnel access to emplaced waste containers. No roof maintenance behind stacks of waste is planned.

The anticipated schedule for the filling of each of the Underground HWDUs known as Panels 1 through 8, 11, and 12, is shown in Permit Attachment G, Table G-1. Panel closure in accordance with the Closure Plan in Permit Attachment G and Permit Attachment G1 is estimated to require an additional 180 days following placement of the final waste in the panel.

Figures A2-12M-38 and M-39 are flow diagrams of the CH TRU mixed waste handling process.
A2-3 Waste Characterization

TRU Transuranic mixed waste characterization is described in Permit Attachment C.

A2-4 Treatment Effectiveness

TRU Transuranic mixed waste treatment, as defined in 20.4.1.401-100 NMAC (incorporating 40 CFR §260.10), for which a permit is required, will not be performed at the WIPP facility.

A2-5 Maintenance, Monitoring, and Inspection

A2-5a Maintenance

A2-5a(1) Ground-Control Program

The ground-control program at the WIPP facility will ensure that any room in an HWDU in which waste will be placed is sufficiently supported to assure waste disposal activities can be carried out safely. In addition, compliance with the applicable portions of the Land Withdrawal Act (LWA), which requires a regular review of roof-support plans and practices by the Mine Safety and Health Administration (MSHA). Support is installed in accordance with standard operating procedures that incorporate the requirements of 30 CFR §Part 57, Subpart B.

A2-5b Monitoring

A2-5b(1) Groundwater Monitoring

Groundwater monitoring for the WIPP underground HWDUs will be conducted in accordance with Permit Part 5 and Permit Attachment L of this permit.

A2-5b(2) Geomechanical Monitoring

The geomechanical monitoring program at the WIPP facility is an integral part of the ground-control program. Hazardous waste disposal units, and drifts, and geomechanical test rooms will be monitored to provide confirmation of structural integrity. Geomechanical data on the performance of the repository shafts and excavated areas will be collected as part of the geotechnical field-monitoring program. The results of the geotechnical investigations will be reported annually in the Geotechnical Analysis Report (GAR). The report will describe monitoring programs and geomechanical data collected during the previous year.

A2-5b(2)(a) Description of the Geomechanical Monitoring System

The Geomechanical Monitoring System (GMS) provides in situ data to support the continuous assessment of the design for underground facilities. Specifically, the GMS provides for:

- Early detection of conditions that could affect operational safety,
- Evaluation of disposal room closure that ensures adequate access,
• Guidance for design modifications and remedial actions,
• Data for interpreting the behavior of underground openings, in comparison with established design criteria.

The instrumentation in Table A2-2 is available for use in support of the geomechanical program.

The minimum instrumentation for each of the eight-ten panels will be one borehole extensometer installed in the roof at the center of each disposal room. The roof extensometers will monitor the dilation of the immediate salt roof beam and possible bed separations along clay seams. Additional instrumentation will be installed as conditions warrant.

Remote polling of the geomechanical instrumentation will be performed at least once every month. This frequency may be increased to accommodate any changes that may develop.

The results from the remotely read instrumentation will be evaluated after each scheduled polling. Documentation of the results will be provided annually in the Geotechnical Analysis Report GAR.

Data from remotely read instrumentation will be maintained as part of a geotechnical instrumentation system. The instrumentation system provides for data maintenance, retrieval, and presentation. The Permittees will retrieve the data from the instrumentation system and verify data accuracy by confirming the measurements were taken in accordance with applicable instructions and equipment calibration is known. Next, the Permittees will review the data after each polling to assess the performance of the instrument and of the excavation. Anomalous data will be investigated to determine the cause (instrumentation problem, error in recording, changing ground conditions). The Permittees will calculate various parameters such as the change between successive readings and deformation rates. This assessment will be reported to the Permittees’ cognizant ground control engineer and operations personnel. The Permittees will investigate unexpected deformation to determine if remediation is needed.

The stability of an open panel excavation is generally determined by the rock deformation rate. The excavation may be unstable when there is a continuous increase in the deformation rate that cannot be controlled by the installed support system. The Permittees will evaluate the performance of the excavation. These evaluations assess the effectiveness of the roof support system and estimate the stand-up time of the excavation. If an open panel shows the trend is toward adverse (unstable) conditions, the results will be reported to determine if it is necessary to terminate waste disposal activities in the open panel. This report of the trend toward adverse conditions in an open HWDU will also be provided to the Secretary of the NMED within seven (7) calendar days of issuance of the report.

A2-5b(2)(b) System Experience

Much experience in the use of geomechanical instrumentation was gained as the result of performance monitoring of Panel 1, which began at the time of completion of the panel excavation in 1988. The monitoring system installed at that time involved simple measurements and observations (e.g., vertical and horizontal convergence rates, and visual inspections). Minimal maintenance of instrumentation is required, and the instrumentation is easily replaced if it malfunctions. Conditions throughout Panel 1 are well known. The monitoring program
continues to provide data to compare the performance of Panel 1 with that established elsewhere in the underground. Panel 1 performance is characterized by the following:

- The development of bed separations and lateral shifts at the interfaces of the salt and the clays underlying the anhydrites “a” and “b.”
- Room closures. A closure due only to the roof movement will be separated from the total closure.
- The behavior of the pillars.
- Fracture development in the roof and floor.
- Distribution of load on the support system.

Roof conditions are assessed from observation boreholes and extensometer measurements. Measurements of room closure, rock displacements, and observations of fracture development in the immediate roof beam are made and used to evaluate the performance of a panel. A description of the Panel 1 monitoring program was presented to the members of the Geotechnical Experts Panel (in 1991) who concurred that it was adequate to determine deterioration within the rooms and that it will provide early warning of deteriorating conditions.

The assessment and evaluation of the condition of WIPP repository excavations is an interactive, continuous process using the data from the monitoring programs. Criteria for corrective action are continually reevaluated and reassessed based on total performance to date. Actions taken are based on these analyses and planned utilization of the excavation. Because WIPP excavations are in a natural geologic medium, there is inherent variability from point to point. The principle adopted is to anticipate potential ground control requirements and implement them in a timely manner rather than to wait until a need arises.

A2-5b(3) Volatile Organic Compound Monitoring

The volatile organic compound monitoring for the WIPP Underground HWDUs will be conducted in accordance with Permit Part 4 and Permit Attachment N of this permit.

A2-5c Inspection

The inspections of the WIPP Underground HWDUs will be conducted in accordance with Permit Part 2 and Permit Attachment E of this permit.

References

Table A2-1

CH TRU Mixed Waste Handling Equipment Capacities

<table>
<thead>
<tr>
<th>Capacities for Equipment (lb)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Pallet</td>
<td>25,000 lbs.</td>
</tr>
<tr>
<td>Facility Transfer Vehicle</td>
<td>26,000 lbs.</td>
</tr>
<tr>
<td>Underground transporter</td>
<td>28,000 lbs.</td>
</tr>
<tr>
<td>Underground forklift</td>
<td>12,000 lbs.</td>
</tr>
<tr>
<td>SLB2 forklift</td>
<td>36,000</td>
</tr>
</tbody>
</table>

Maximum Gross Weights of Containers (lb)

<table>
<thead>
<tr>
<th>Maximum Gross Weights of Containers (lb)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven-pack of 55-gallon gal (208-L) drums</td>
<td>7,000 lbs.</td>
</tr>
<tr>
<td>Four-pack of 85-gallon gal (322-L) drums</td>
<td>4,500 lbs.</td>
</tr>
<tr>
<td>Three-pack of 100-gallon gal (379-L) drums</td>
<td>3,000 lbs.</td>
</tr>
<tr>
<td>Ten-drum overpack</td>
<td>6,700 lbs.</td>
</tr>
<tr>
<td>Standard waste box</td>
<td>4,000 lbs.</td>
</tr>
<tr>
<td>Standard large box 2</td>
<td>10,500 lbs.</td>
</tr>
<tr>
<td>Shielded container</td>
<td>2,260 lbs.</td>
</tr>
<tr>
<td>Three-pack of shielded containers</td>
<td>7,000 lbs.</td>
</tr>
</tbody>
</table>

Maximum Net Empty Weights of Equipment (lb)

<table>
<thead>
<tr>
<th>Maximum Net Empty Weights of Equipment (lb)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUPACT-II</td>
<td>13,140 lbs.</td>
</tr>
<tr>
<td>HalfPACT</td>
<td>10,500 lbs.</td>
</tr>
<tr>
<td>TRUPACT-III</td>
<td>43,600 lbs.</td>
</tr>
<tr>
<td>Facility pallet</td>
<td>4,120 lbs.</td>
</tr>
</tbody>
</table>
Table A2-2
Instrumentation Used in Support of the Geomechanical Monitoring System

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Features</th>
<th>ParameterMeasured</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borehole Extensometer</td>
<td>The extensometer provides for monitoring the deformation parallel to the borehole axis. Units suitable for up to 5 measurements anchors in addition to the reference head. Maximum borehole depths shall be are 50 feet.</td>
<td>Cumulative Deformation</td>
<td>0-2 inches(\text{in})</td>
</tr>
<tr>
<td>Borehole Television Camera</td>
<td>Closed circuit television may be used for monitoring areas otherwise inaccessible, such as boreholes or shafts.</td>
<td>Video Image</td>
<td>N/A</td>
</tr>
<tr>
<td>Convergence Points and Tape Extensometers</td>
<td>Mechanically anchored eyebolts to which a portable tape extensometer is attached.</td>
<td>Cumulative Deformation</td>
<td>2-50 feet(\text{ft})</td>
</tr>
<tr>
<td>Convergence Meters</td>
<td>Includes wire and sonic meters. Mounted on rigid plates anchored to the rock surface.</td>
<td>Cumulative Deformation</td>
<td>2-50 feet(\text{ft})</td>
</tr>
<tr>
<td>Inclinometers</td>
<td>Both vertical and horizontal inclinometers are used. Traversing type of system in which a probe is moved periodically through casing located in the borehole whose inclination is being measured.</td>
<td>Cumulative Deformation</td>
<td>0-30 degrees</td>
</tr>
<tr>
<td>Rock Bolt Load Cells</td>
<td>Spool type units suitable for use with rock bolts. Tensile stress is inferred from strain gauges mounted on the surface of the spool.</td>
<td>Load</td>
<td>0-300 kips</td>
</tr>
<tr>
<td>Earth Pressure Cells</td>
<td>Installed between concrete keys and rock. Preferred type is a hydraulic pressure plate connected to a vibrating wire transmitter.</td>
<td>Lithostatic Pressure</td>
<td>0-1,000 pounds per square inch (\text{psi})</td>
</tr>
<tr>
<td>Piezometer Pressure Transducers</td>
<td>Located in shafts and of robust design and construction. Periodic checks on operability required.</td>
<td>Fluid Pressure</td>
<td>0-500 psi</td>
</tr>
<tr>
<td>Strain Gauges</td>
<td>Installed within the concrete shaft key. Suitably sealed for the environment. Two types used: - surface mounted and embedded.</td>
<td>Cumulative Deformation</td>
<td>0-3,000 microinches per inch (\mu\text{in/}\text{in}) (embedded) 0-2,500 (\mu\text{in/}\text{in}) (surface)</td>
</tr>
</tbody>
</table>
Table A2-3
RH TRU Mixed Waste Handling Equipment Capacities

<table>
<thead>
<tr>
<th>Capacities for Equipment (lb)</th>
<th>82,000 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>41-Ton Forklift</td>
<td></td>
</tr>
</tbody>
</table>

| Maximum Gross Weights of RH TRU Containers (lb) |
|---|------------|
| RH TRU Facility Canister | 10,000 lbs |
| 55-Gallon gal (208-L) Drum | 1,000 lbs |
| RH TRU Canister | 8,000 lbs |

| Maximum Net Empty Weights of Equipment (lb) |
|---|------------|
| Facility Cask | 67,700 lbs |
| **Light Weight Facility Cask** | 48,450 |
Figure A2-1
Repository Horizon
Figure A2-2
Spatial View of the Miscellaneous Unit and Waste Handling Facility
Figure A2-2-S#5
Spatial View of the Miscellaneous Unit and Waste Handling Facility (with S#5)
Figure A2-3
Facility Pallet for Seven-Pack of Drums
Figure A2-5
Typical Backfill Sacks Emplaced on Drum Stacks
Figure A2-5a
Potential MgO Emplacement Configurations
Figure A2-6
Waste Transfer Cage to Transporter
Figure A2-7
Push-Pull Attachment to Forklift to Allow Handling of Waste Containers
Figure A2-8
Typical RH and CH Transuranic Mixed Waste Container Disposal Configuration

NOTE: MgO will be emplaced as necessary
Figure A2-9a
Underground Ventilation System Airflow
Figure A2-9b
Underground Ventilation System Airflow (with SVS)
Figure A2-9c
Underground Ventilation System Airflow (with S#5)
Figure A2-11
Typical Room Barricade
Figure A2-11a
Typical Bulkhead

Not to Scale. All dimensions are nominal.
Figure A2-12
WIPP Facility Surface and Underground CH Transuranic Mixed Waste Process Flow Diagram
Figure A2-12
WIPP Facility Surface and Underground CH Transuranic Mixed Waste Process Flow Diagram (Continued)
Figure A2-13
Layout and Instrumentation – As of 1/96
Figure A2-14
Facility Cask Transfer Car (Side View)
Figure A2-15
Typical Emplacement Equipment
Figure A2-15a
Typical Emplacement Equipment
Figure A2-16
RH TRU Waste Facility Cask Unloading from Waste Shaft Conveyance
Figure A2-17
Facility Cask Installed on the Typical Emplacement Equipment
Figure A2-18
Installing Shield Plug

FACILITY CASK AGAINST SHIELD COLLAR, TRANSFER CARRIAGE RETRACTED, SHIELD PLUG CARRIAGE ON STAGING PLATFORM, SHIELD PLUG BEING INSTALLED
Figure A2-19
Shield Plug-Supplemental-Shielding Plate(s)

Section of Bore Hole Showing The Shield and Supplemental Shielding Plate(s)
Figure A2-20
Shielding Layers to Supplement RH Borehole Shield Plugs
Figure A2-21
Shield Plug Configuration

TYPICAL DIMENSION: APPROXIMATELY 20 INCHES DIAMETER X 61 INCHES SHIELDING LENGTH

Composition: Cylindrical steel shell filled with concrete
Weight: Approximately 3750 pounds
ATTACHMENT A4A3

TRAFFIC PATTERNS

TABLE OF CONTENTS

4 A3-1 Traffic Information and Traffic Patterns ... 3
5 A3-2 Facility Access and Traffic ... 3
6 A3-3 Waste Handling Building Traffic ... 5
7 A3-4 Underground Traffic ... 6
8 References .. 7
LIST OF TABLES

Table Table A4-1 Waste Isolation Pilot Plant Site Designation Traffic Parameters.

LIST OF FIGURES

Figure Figure A4-1 General Location of the WIPP Facility
Figure A4-2 WIPP Traffic Flow Diagram
Figure A4-2-NFB WIPP Traffic Flow Diagram with Building 416
Figure A4-3 Waste Transport Routes in Waste Handling Building - Container Storage Unit
Figure A4-3-a Typical Transport Route for TRUPACT-II and Standard Large Box 2
Figure A4-3-b Typical Transport Route for TRUPACT-II and Standard Large Box 2 in Room 108
Figure A4-4 Typical Underground Transport Route Using E-140
Figure A4-4-a Typical Underground Transport Route Using W-30
Figure A4-5 RH Bay Waste Transport Routes
Figure A4-6 RH Bay Cask Loading Room Waste Transport Route
Figure A4-7 RH Bay Canister Transfer Cell Waste Transport Route
ATTACHMENT A4A3

TRAFFIC PATTERNS

A4A3-1 Traffic Information and Traffic Patterns

Access to the Waste Isolation Pilot Plant (WIPP) facility is provided by two access roads via Louis Whitlock Road that connects with U.S. Highway 62/180, 13 miles (21 kilometers) to the north, and NM State Highway 128 (Jal Highway), 4 mi (6.4 km) to the south (Figure M-57A4-1). These access roads were built for the Permittees to transport transuranic (TRU) mixed waste to the site WIPP facility. Both access roads are owned and maintained by the Department of Energy (DOE). Signs and pavement markings are located in accordance with the Uniform Traffic Control Devices Manual. Access-road design designation parameters, such as traffic volume, were presented in Table A4-1 of the 2009 Amended Renewal Application, Chapter G, Table G-1 (DOE, 2009).

A4A3-2 Facility Access and Traffic

Access to the WIPP facility for personnel, visitors, and trucks carrying supplies and TRU mixed waste is provided through a security checkpoint (vehicle trap). After passing through the security checkpoint, TRU mixed waste transport trucks will normally turn right (south) before reaching the Support Building and then left (east) to park in the parking area HWMU Parking Area Container Storage Unit (PAU) just east of the air locks (Figure M-58A4-2). Outgoing trucks depart the same way they arrived, normally out of the west end of the parking area PAU, north through the fence gate and out through the vehicle trap. An alternate inbound route is to continue straight ahead (east) from the security checkpoint to the second road and to turn south to enter the truck parking area PAU. The alternate outbound route is also the reverse of this route. Salt transport trucks, which remove mined salt from the Salt Handling Shaft area, will not cross paths with TRU mixed waste transporters; instead, they will proceed from the Salt Handling Shaft northward to the salt pile. After passing through security, access for large equipment may be provided through the east gate. Figures M-58 and M-59A4-2 shows surface traffic flow at the WIPP facility.

The site WIPP facility speed limit for motor vehicles is 10 miles per hour (mph) (16 kilometers per hour (kph)) and 5 mph (8 kph) for rail movements. Speed limits are clearly posted at the entrance to the site facility and enforced by security officers. There are no traffic signals. Stop signs are located at the major intersections of roadways with the main east-west road. Safety requirements are communicated to all site personnel via General Employee Training which must be completed by site personnel within 30 days of their employment. Employee access to on-site facilities requires an annual refresher course to reinforce the safety requirements. Security officers monitor vehicular traffic for compliance with site restrictions, and provide instructions to off-site delivery shipments. Vehicular traffic other than the waste transporters use the same roads, but there will be no interference because there are two lanes available on the primary and alternate routes for waste shipments. Pedestrian traffic is limited to the sidewalks and prominently marked crosswalks. Site traffic within the security fence is composed mostly of pickup trucks and electric carts with an approximate frequency of perhaps 10 per hour at peak periods. Emergency vehicles are exercised periodically for maintenance and personnel training, with an average frequency of one each per day. They are used for their intended purpose on an as-required basis.
The traffic circulation system is designed in accordance with American Association of State Highway and Transportation Officials (AASHTO) Site Planning Guides for lane widths, lateral clearance to fixed objects, minimum pavement edge radii, and other geometric features. Objects in or near the roadway are prominently marked.

On-site roads, sidewalks, and paved areas are used for the distribution and storage of vehicles and personnel and are designed to handle all traffic generated by employees, visitors, TRU mixed waste shipments, and movements of operational and maintenance vehicles. The facility entrance and TRU mixed waste haul roads are designed for AASHTO H20-S16 wheel loading. Service roads are designed for AASHTO H10 wheel loading. Access and on-site paved roads are designed to bear the anticipated maximum load of 115,000 lbs. (52,163.1 kg), the maximum allowable weight of a truck/trailer carrying loaded Contact (CH) or Remote-Handled (RH) Packages. The facility is designed to handle approximately eight truck trailers per day, each carrying one or more Contact-CH or Remote-Handled RH Packages. This is equivalent to 3,640 TRU mixed waste-carrying vehicles per year.

The calculations to support the anticipated maximum load of 115,000 lbs. are shown below: were provided in the 2009 Amended Renewal Application, Chapter G (DOE, 2009).

Soil Resistance R (psi) - is taken directly from the WIPP Soil Report and Bechtel calculation because there is no change.

A. Pavement Thickness

The traffic frequency increase from 10 shipments per day to 10.15 shipments per day has only minimal impact on the Total Expanded Average Load (EAL) and the traffic index (TI) as shown below, both important parameters in pavement design.

Total EAL (TEAL):

13,780 ~ constant for 5 or more axles over 20 years, taken from Table 7-651.2A - Highway Design Manual (HDM).

TEAL = 13,780 × 25yr./20yr. = 17,225

Using 10.15 shipments per day = 17,225 × 10.15 = 174,834

Conversion of EAL to Traffic Index (TI).

For TEAL of 174,834 ~ TI = 7.5 - (from HDM, Table 7-651.2B)

Asphalt-Concrete Thickness TAC:

GE = 0.0032 × TI × (100 - R)... R = 80

GE - Gravel Equivalent (Ft).

GE = 0.0032 × 7.5 × 20 = 0.48′... GfAC = 2.01 ⇒ TAC = 0.48/2.01 = 0.24′ ⇒ use 2½” AC Surface Course.
Gf - Gravel Equivalent Factor (constant from Table 7-651.2C from HDM).

B. Bituminous Treated Base

\[GE = 0.0032 \times TI \times (100 - R) \]
\[\text{for} \ R = 55 \text{ - caliche subbase} \rightarrow GE = 1.08 \times GEBTB = 1.08 \times 2.01 \times 0.21 = 0.66' \]

\[TBTB = \frac{GEBTB}{GfBTB} = 0.66/1.2 = 0.55' \rightarrow \text{Use 4" BTB} \]

C. Caliche Subbase - TCSB

\[GE = 0.0032 \times TI \times (100 - R) \]
\[\text{for} \ R = 50 \text{ - prepared subgrade} \rightarrow GE = 1.2 \]

\[GECSB = 1.2 - (0.21 \times 2.07) - (0.33 \times 1.2) = 0.37' \]

\[TCBS = 0.37/1.0 = 0.37' = 4\frac{1}{4}" \]

Based on the results of the above calculation, the site paved roads designated for waste transportation are safe to be used by the heavier truckloads carrying shipping casks used in RH TRU mixed waste transportation to the WIPP.

A4A3-3 Waste Handling Building Traffic

CH - Contact-handled TRU mixed waste will arrives by tractor-trailer at the WIPP facility in sealed Contact Handled CH Packages. Prior to unloading the packages from the trailer, security checks, radiological surveys, and shipping documentation reviews will be performed. A forklift or Yard Transfer Vehicle will remove the Contact Handled CH Packages and transport them a short distance through an air lock that is designed to maintain differential pressure in the Waste Handling Building (WHB). The forklift or Yard Transfer Vehicle will place the shipping containers at one of the two TRUPACT-II unloading docks (TRUDOCKs) inside the WHB or, in the case of the TRUPACT-III, at the payload transfer bolting station in Room 108 in the WHB.

The TRUPACT-II may hold up to two 55-gallon (gal) drum seven-packs, two 85-gallon gal drum four-packs, two 100-gallon gal drum three-packs, two standard waste boxes (SWBs), or one ten-drum overpack (TDOP). A HalfPACT may hold seven 55-gallon gal drums, one SWB, or four 85-gallon gal drums, or three shielded containers. The TRUPACT-III holds a single standard large box 2 (SLB2). A six-ton overhead bridge crane or Facility Transfer Vehicle with a transfer table will be used to remove the contents of the Contact Handled CH Package. Waste containers will be surveyed for radioactive contamination and decontaminated or returned to the Contact Handled CH Package, as necessary.

Each facility pallet will accommodate four 55-gallon gal drum seven-packs, four SWBs, four 85-gallon gal drum four-packs, four 100-gallon gal drum three-packs, two TDOPs, or an SLB2, or
two three-packs of shielded container assemblies. Waste containers will be secured to the facility pallet prior to transfer. A forklift or facility transfer vehicle will transport the loaded facility pallet into the air lock at the Waste Shaft (Figures M-60A4-3, A4-3a, and A4-3b). The facility transfer vehicle will be driven onto the waste shaft conveyance deck, where the loaded facility pallet will be transferred to the waste shaft conveyance and downloaded for emplacement.

Remote-handled RH TRU mixed waste will arrive at the WIPP facility in a payload container contained in a shielded cask loaded on a tractor-trailer. Prior to unloading the cask from the trailer, radiological surveys, security checks, and shipping documentation reviews will be performed, and the trailer carrying the cask will be moved into the Parking Area PAU or directly into the RH Bay of the Waste Handling Building Container Storage Unit.

The cask is unloaded from the trailer in the RH Bay and is placed on the Cask Transfer Car. The Cask Transfer Car is used to move the cask to the Cask Unloading Room. At this point, a crane moves the waste to the Hot Cell or the Transfer Cell. Some RH TRU mixed waste may be moved to the Hot Cell for overpacking before being moved to the Transfer Cell. Once in the Transfer Cell, the Transfer Cell Shuttle Car moves the waste to a location beneath the facility cask. A crane is used to move the waste from the Transfer Cell Shuttle Car into the facility cask. The Facility Cask Transfer Car then moves the facility cask to the underground. A more detailed description of waste handling in the WHB is included in Attachment A1. Figures A4-5, A4-6 and A4-7, M-13, M-15, and M-16 show RH TRU mixed waste transport routes.

A4A3-4 Underground Traffic

The Permittees shall designate the traffic routes of TRU mixed waste handling equipment and construction equipment and record this designation on a map that is posted in a location where it can be examined by personnel entering the underground. The map will be updated whenever the routes are changed. Maps will be available in facility files until facility closure. The ventilation and traffic flow path in the TRU mixed waste handling areas underground are restricted and separate from those used for mining and haulage (construction) equipment, except that during waste transport in W-30, ventilation need not be separated north of S-1600 (Figures A4-4 and A4-4a Figure M-43). In general, the Permittees restrict waste traffic to the intake ventilation drift to maximize isolation of this activity from personnel. The exhaust drift in the waste disposal area will normally not be used for personnel access. Non-waste and non-construction traffic is generally comprised of escorted visitors only and is minimized during each of the respective operations.

Adequate clearances that exceed the mining regulations of Title 30 of the Code of Federal Regulations (CFR) §Part 57 exist underground for safe passage of vehicles and pedestrians. Pedestrians/personnel are required to yield to vehicles in the WIPP underground facility. This condition is reinforced through the WIPP facility equipment operating procedures, the WIPP Safety Manual, the WIPP facility safety briefing required for all underground visitors, the General Employee Training annual refresher course, and the Underground annual refresher course that are mandated by 30 CFR §Part 57, the New Mexico Mine Code, and DOE Order 5480.20A.

In addition, other physical means are utilized to safeguard pedestrians/personnel when underground such as:
All equipment operators are required to sound the vehicle horn when approaching intersections.

Airlock and bulkhead vehicle doors are equipped with warning bells or strobe lights to alert personnel when door movement (opening or closing) is imminent.

Hemispherical mirrors are used at blind intersections so that persons can see around corners.

Heavy equipment is required to have operational back-up alarms.

Heavily used intersections are well lighted.

Typically, the traffic routes during waste disposal in all Panels will use the same main access drifts, while traffic routes during waste disposal in Panels 11 and 12 will use the designated access drifts in the West Mains.

Traffic safety is regulated and enforced by the Federal and State mine codes of regulations (30 CFR §Part 57 and New Mexico State Mine Code). The agencies that administer these codes make regular inspection tours of the WIPP underground facilities for the purpose of enforcement.

Underground equipment is designed for off-road use since all driving surfaces are excavated in salt. No loads on the underground roadways will exceed the bearing strength of in situ halite.

References

TABLES
<table>
<thead>
<tr>
<th>Traffic Parameter</th>
<th>North Access Road (No. of Vehicles, unless otherwise stated)</th>
<th>South Access Road (No. of Vehicles, unless otherwise stated)</th>
<th>On-Site Waste Haul Roads Contact-Handled and Remote-Handled Package Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Traffic (ADT)b</td>
<td>800</td>
<td>800</td>
<td>8</td>
</tr>
<tr>
<td>Design Hourly Volume (DHV)c</td>
<td>144</td>
<td>144</td>
<td>NA</td>
</tr>
<tr>
<td>Hourly Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Max. at Shift Change)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution (D)d</td>
<td>67%</td>
<td>67%</td>
<td>NA</td>
</tr>
<tr>
<td>Trucks (T)e</td>
<td>2%</td>
<td>2%</td>
<td>100%</td>
</tr>
<tr>
<td>Design Speed h,i</td>
<td>70 mph (113 kph)</td>
<td>60 mph (97 kph)</td>
<td>25 mph (40 kph)</td>
</tr>
<tr>
<td>Control of Access f</td>
<td>None</td>
<td>None</td>
<td>Full</td>
</tr>
</tbody>
</table>

a For WIPP personnel and TRU mixed waste shipments only.

b ADT—Estimated number of vehicles traveling in both directions per day.

c DHV—A two-way traffic count with directional distribution.

d D—The percentage of DHV in the predominant direction of travel.

e T—The percentage of ADT comprised of trucks (excluding light delivery trucks).

f Control of Access—The extent of roadside interference or restriction of movement.

g NA—Not applicable.

h mph—miles per hour.

i kph—kilometers per hour.
FIGURES
Figure A4-1
General Location of the WIPP Facility
Figure A4-2
WIPP Traffic Flow Diagram
Figure A4-2-NFB
WIPP Traffic Flow Diagram with Building 416
Figure A4-3
Waste Transport Routes in Waste Handling Building – Container Storage Unit
Figure A4-3a
Typical Transport Route for TRUPACT-III and Standard Large Box 2
Figure A4-3b
Typical Transport Route for TRUPACT-III and Standard Large Box 2 in Room 108
Figure A4-4
Typical Underground Transport Route Using E-140
LEGEND:

- EXISTING
- PLANNED

NOTES

1. VENTILATION CONTROL BULKHEADS
 NOT SHOWN FOR CLARITY
2. CONSTRUCTION EQUIPMENT TRAFFIC
 IS RESTRICTED AND SEPARATED FROM
 WASTE HANDLING EQUIPMENT WHILE

3. W-30 WASTE TRANSPORTATION ROUTE

Figure A4-4a
Typical Underground Transport Route Using W-30
Figure A4-6
RH Bay Cask Loading Room Waste Transport Route
Figure A4-7
RH Bay Canister Transfer Cell Waste Transport Route
ATTACHMENT D

RCRA CONTINGENCY PLAN
ATTACHMENT D

RCRA CONTINGENCY PLAN

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>Scope and Applicability</td>
<td>3</td>
</tr>
<tr>
<td>D-2</td>
<td>Emergency Response Personnel and Training</td>
<td>5</td>
</tr>
<tr>
<td>D-2a</td>
<td>Emergency Response Personnel</td>
<td>5</td>
</tr>
<tr>
<td>D-2b</td>
<td>Emergency Response Training</td>
<td>6</td>
</tr>
<tr>
<td>D-3</td>
<td>Criteria for Implementation of the RCRA Contingency Plan</td>
<td>7</td>
</tr>
<tr>
<td>D-4</td>
<td>Emergency Response Method</td>
<td>9</td>
</tr>
<tr>
<td>D-4a</td>
<td>Immediate Notifications</td>
<td>9</td>
</tr>
<tr>
<td>D-4a(1)</td>
<td>Initial Emergency Response and Alerting the RCRA Emergency Coordinator</td>
<td>10</td>
</tr>
<tr>
<td>D-4a(2)</td>
<td>Communication of Emergency Conditions to Facility Employees</td>
<td>11</td>
</tr>
<tr>
<td>D-4b</td>
<td>Identification of Released Materials and Assessment of the Extent of the Emergency</td>
<td>11</td>
</tr>
<tr>
<td>D-4c</td>
<td>Assessment of the Potential Hazards</td>
<td>12</td>
</tr>
<tr>
<td>D-4d</td>
<td>Post-Assessment Notifications</td>
<td>13</td>
</tr>
<tr>
<td>D-4e</td>
<td>Control and Containment of the Emergency</td>
<td>14</td>
</tr>
<tr>
<td>D-4e(1)</td>
<td>Fires</td>
<td>16</td>
</tr>
<tr>
<td>D-4e(2)</td>
<td>Explosions</td>
<td>17</td>
</tr>
<tr>
<td>D-4e(3)</td>
<td>Unplanned Sudden/Non-Sudden Releases</td>
<td>17</td>
</tr>
<tr>
<td>D-4e(4)</td>
<td>Other Occurrences</td>
<td>18</td>
</tr>
<tr>
<td>D-4f</td>
<td>Post-Emergency Activities</td>
<td>20</td>
</tr>
<tr>
<td>D-4f(1)</td>
<td>Management and Disposition of Released Material</td>
<td>20</td>
</tr>
<tr>
<td>D-4f(2)</td>
<td>Incompatible Waste</td>
<td>21</td>
</tr>
<tr>
<td>D-4f(3)</td>
<td>Cleaning and Restoration of Equipment</td>
<td>21</td>
</tr>
<tr>
<td>D-5</td>
<td>Required Reporting</td>
<td>21</td>
</tr>
<tr>
<td>D-6</td>
<td>Emergency Equipment</td>
<td>22</td>
</tr>
<tr>
<td>D-7</td>
<td>Emergency Response Agreements</td>
<td>22</td>
</tr>
<tr>
<td>D-8</td>
<td>Evacuation Plan</td>
<td>23</td>
</tr>
<tr>
<td>D-8a</td>
<td>Surface Evacuation On-site Assembly and Off-site Staging Areas</td>
<td>23</td>
</tr>
<tr>
<td>D-8b</td>
<td>Underground Assembly Areas and Egress Hoist Stations</td>
<td>24</td>
</tr>
<tr>
<td>D-8c</td>
<td>Plan for Surface Evacuation</td>
<td>24</td>
</tr>
<tr>
<td>D-8d</td>
<td>Plan for Underground Evacuation</td>
<td>24</td>
</tr>
<tr>
<td>D-8e</td>
<td>Further Site Evacuation</td>
<td>25</td>
</tr>
<tr>
<td>D-9</td>
<td>Location of the RCRA Contingency Plan and Plan Revision</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table D-1</td>
<td>Resource Conservation and Recovery Act Emergency Coordinators</td>
</tr>
<tr>
<td>Table D-2</td>
<td>Emergency Equipment Maintained at the Waste Isolation Pilot Plant</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure D-1</td>
<td>WIPP Surface Structures</td>
</tr>
<tr>
<td>Figure D-1-NFB</td>
<td>WIPP Surface Structures with Building 416</td>
</tr>
<tr>
<td>Figure D-1a</td>
<td>Legend to Figure D-1</td>
</tr>
<tr>
<td>Figure D-1a-NFB</td>
<td>Legend to Figure D-1-NFB (Building 416)</td>
</tr>
<tr>
<td>Figure D-2</td>
<td>Spatial View of the WIPP Facility</td>
</tr>
<tr>
<td>Figure D-2-S#5</td>
<td>Spatial View of the WIPP Facility (with S#5)</td>
</tr>
<tr>
<td>Figure D-3</td>
<td>WIPP Underground Facilities</td>
</tr>
<tr>
<td>Figure D-3D-4</td>
<td>Underground Escape and Evacuation Map</td>
</tr>
<tr>
<td>Figure D-4D-5</td>
<td>Fire-Water Distribution System</td>
</tr>
<tr>
<td>Figure D-4D-5-NFB</td>
<td>Fire-Water Distribution System with Building 416</td>
</tr>
<tr>
<td>Figure D-4D-5-S#5</td>
<td>Fire-Water Distribution System (with S#5)</td>
</tr>
<tr>
<td>Figure D-6</td>
<td>WIPP On-Site Assembly Areas and Off-Site Staging Areas</td>
</tr>
<tr>
<td>Figure D-6-NFB</td>
<td>WIPP On-Site Assembly Areas and Off-Site Staging Areas with Building 416</td>
</tr>
<tr>
<td>Figure D-5D-6a</td>
<td>RH Bay Evacuation Routes</td>
</tr>
<tr>
<td>Figure D-6D-6b</td>
<td>RH Bay Hot Cell Evacuation Route</td>
</tr>
<tr>
<td>Figure D-7D-6c</td>
<td>Evacuation Routes in the Waste Handling Building</td>
</tr>
<tr>
<td>Figure D-7</td>
<td>Designated Underground Assembly Areas</td>
</tr>
<tr>
<td>Figure D-8</td>
<td>WIPP Site Evacuation Routes</td>
</tr>
</tbody>
</table>
ATTACHMENT D

RCRA CONTINGENCY PLAN

Introduction

This attachment contains the RCRA Contingency Plan prepared in accordance with the Resource Conservation and Recovery Act (RCRA) requirements codified in 20.4.1.300 New Mexico Administrative Code (NMAC) (incorporating Title 40 of the Code of Federal Regulations (CFR) Part 262, Subpart M) and 20.4.1.500 NMAC (incorporating 40 CFR Part 264, Subpart D), “Contingency Plan and Emergency Procedures.” The purpose of this document is to define responsibilities and to describe the coordination of activities necessary to minimize hazards to human health and the environment from fires, explosions, or any sudden or non-sudden release of hazardous waste, or hazardous waste constituents to air, soil, or surface water in accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.260(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.51-(a)). This plan consists of descriptions of emergency responses specific to contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste and site-generated hazardous waste handled at the WIPP facility.

Pursuant to 20.4.1.300 NMAC (incorporating 40 CFR §262.262(b)), the Permittees ensure that a copy of the Quick Reference Guide to the WIPP Facility RCRA Contingency Plan is maintained on file at the facility and is available to the emergency response organizations listed in Section D-2a, Emergency Response Personnel, and Section D-9, Location of the RCRA Contingency Plan and Plan Revision. Whenever the RCRA Contingency Plan is revised, the Permittees will update, if necessary, the quick reference guide and redistribute it in accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.262(c)).

D-1 Scope and Applicability

The regulated units at the WIPP facility subject to this permit include the hazardous waste management units (HWMUs) including the Waste Handling Building (WHB) Container Storage Unit (i.e., WHB Unit) and the Parking Area Container Storage Unit (i.e., Parking Area Unit), and the hazardous waste disposal units (HWDUs) in the underground disposal panels.

Pursuant to 20.4.1.500 NMAC (incorporating 40 CFR §264.51(a)), owners/operators of treatment, storage, and disposal facilities are required to have formal contingency plans in place that describe actions that facility personnel will take in response to any fire, explosion, or release of hazardous waste or hazardous waste constituents which could threaten human health or the environment. The contingency plan must meet the requirements of NMAC 20.4.1.500 NMAC (incorporating 40 CFR Part 264, Subpart D). The provisions of the RCRA Contingency Plan apply to HWDUs in the underground waste disposal panels, HWMUs in the WHB Unit and the Parking Area Unit, the Waste Shaft, and supporting TRU mixed waste handling areas. These areas are shown in Figures D-1 through D-3.

The WIPP facility is a large quantity generator of hazardous waste pursuant to 20.4.1.300 NMAC (incorporating 40 CFR Part 262, “Standards Applicable to Generators of Hazardous Waste”). 20.4.1.300 NMAC (incorporating 40 CFR §262.261(a)) requires that a contingency plan be in place that describes actions that facility personnel will take in response to any fire, explosion, or release of hazardous waste or hazardous waste constituents which could threaten
human health or the environment. The provisions of the this RCRA Contingency Plan also apply
to the site-generated hazardous waste accumulation areas (both the central accumulation areas
(CAAs), also referred to as the less-than-90-day areas, and satellite accumulation areas
(SAAs)), the locations of which are specified in the Quick Reference Guide to the WIPP Facility
RCRA Contingency Plan. For the remainder of this document, the term “site-generated
hazardous waste” will mean waste accumulated in both the CAAs and SAAs.

Wastes may also be generated at the WIPP facility as a direct result of managing the TRU and
TRU mixed wastes received from the off-site generators. Throughout the remainder of this plan,
this waste is referred to as “derived waste.” Derived waste will be managed as TRU mixed
waste and emplaced in the rooms in HWDUs along with the TRU mixed waste for disposal.
Every reasonable effort to minimize the amount of derived waste, while providing for the health
and safety of personnel, will be made.

Wastes generated as a result of emergency response actions will be categorized into one of
three groups and disposed of accordingly. These are: 1) nonhazardous wastes to be disposed
of at an appropriate disposal facility (e.g., low-level waste facility or approved landfill), 2)
hazardous nonradioactive wastes (site-generated hazardous waste) to be disposed of at an off-
site RCRA permitted facility, and 3) derived waste to be disposed of in the underground HWDUs
as TRU mixed waste. Hazardous liquid wastes that may be generated as a result of emergency
response actions will be managed as follows:

- Non-Mixed - Accumulated liquids contaminated only with hazardous constituents
 will be placed into containers and managed in accordance with 20.4.1.300 NMAC
 (incorporating 40 CFR §262.17) requirements. The waste will be shipped to an
 approved off-site treatment, storage, or disposal facility.

- Mixed – Accumulated liquids contaminated with TRU mixed waste will be solidified
 and the solidified materials will be disposed of in the underground WIPP repository
 as TRU mixed waste.

Waste containing liquid in excess of treatment, storage, or disposal facility Waste Acceptance
Criteria (TSDF-WAC) limits shall not be emplaced in the underground HWDUs (See Permit
Attachment C, Section C-1c).

Off-site waste managed and disposed of at the WIPP facility is radioactive mixed waste, and as
a result, response to emergencies must consider the dual hazard associated with this waste. In
responding to emergencies involving TRU mixed waste, the actions necessary to protect human
health and the environment from the effects of radioactivity may be similar to those actions
necessary to provide protection from hazardous waste and hazardous waste constituents. Such
responses may require the use of equipment and processes specific to events resulting in
radiological contamination (e.g., continuous air monitors, decontamination shower equipment,
HEPA vacuums, paint/fixatives) and are not included in the RCRA Contingency Plan.
Furthermore, the RCRA Contingency Plan may require additional actions to be taken to mitigate
the hazards associated with the hazardous component of the waste. These measures are not
intended to replace actions required to protect human health and the environment in response
to radiological emergencies. In this manner, the RCRA Contingency Plan complements the
radiological response activities.
D-2 Emergency Response Personnel and Training

D-2a Emergency Response Personnel

A RCRA Emergency Coordinator will be on-site at the WIPP facility 24 hours a day, seven days a week, with the responsibility for coordinating emergency response measures. In accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.261(d)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.52(d)), qualified RCRA Emergency Coordinators are listed in Table D-1 and are trained to the requirements found in Permit Attachment F, Table F-2, under “Emergency Coordinator.”

In addition, persons qualified to act as the RCRA Emergency Coordinator have the authority to commit the necessary resources to implement this RCRA Contingency Plan.

During emergencies, the RCRA Emergency Coordinator has three primary responsibilities:

- Assess the Situation—The RCRA Emergency Coordinator shall gather information relevant to the incident, such as the type of event, quantity and type of released waste, and existing or potential hazards to human health and the environment.

- Protect Personnel—The RCRA Emergency Coordinator shall take reasonable measures to ensure the safety of personnel, such as ensuring that alarms have been activated, personnel have been accounted for, any injuries have been attended to, and evacuation of personnel has occurred, if necessary.

- Contain the Release—The RCRA Emergency Coordinator shall take reasonable measures to ensure that fires, explosions, or releases of hazardous waste or hazardous waste constituents do not occur, recur, or spread.

In addition to the RCRA Emergency Coordinator, the following individuals, groups, and organizations have specified responsibilities during a WIPP facility emergency, which may include the following:

- **WIPP Fire Department**—The primary providers of fire suppression, technical rescue, Emergency Medical Services (EMS), and hazardous materials response for the protection of personnel in both surface and underground facilities. The WIPP Fire Department personnel serve as an Industrial Fire Brigade and are trained to respond to surface and underground emergencies on site, including fires, medical emergencies, and releases of hazardous materials.

- **Facility Shift Manager (FSM)**—A member of the Facility Operations organization who is in charge of plant operations and is the senior shift representative responsible for maintaining the facility in a safe configuration during normal and abnormal conditions. The FSM can concurrently serve as the RCRA Emergency Coordinator, if trained to the requirements of Permit Attachment F (Facility Personnel Permit Training Program), or provide support to the qualified RCRA Emergency Coordinator on shift.

- **Central Monitoring Room Operator (CMRO)**—An on-shift operator responsible for Central Monitoring Room (CMR) operations, including coordination of facility
communications. The CMRO documents these activities (e.g., communications, notifications) in a facility log. The CMRO is a member of Facility Operations, and during emergencies, the CMRO supports the RCRA Emergency Coordinator.

- **Firefighter**—A WIPP Fire Department member who serves as a primary responder to surface and underground emergencies, including fires, medical emergencies, and releases of hazardous materials. Firefighters assigned to the underground will not perform any coordinated firefighting underground and will only respond to incipient-stage fires that threaten TRU mixed waste, if it is safe to do so.

- **Fire Department Incident Commander**—Upon delegation by the RCRA Emergency Coordinator, and once incident command has been established, the Incident Commander is responsible for direction and supervision of emergency responders during an incident resulting in implementation of the *RCRA Contingency Plan.* The Incident Commander will be a member of the WIPP Fire Department. For security-related incidents that invoke implementation of the *RCRA Contingency Plan,* the Fire Department Incident Commander will establish a unified command with the WIPP Protective Force.

- **Mine Rescue Team (MRT)**—The MRT emergency response capabilities include search, rescue, reentry, and recovery operations. The MRT responds in accordance with the requirements of 30 CFR Part 49. The MRT emergency response actions include extinguishing incipient stage fires, if encountered, and immediately reporting uncontrolled fires.

- **Emergency Operations Center (EOC) Staff**—Upon activation, the EOC supports the RCRA Emergency Coordinator and Incident Commander with emergency management decision-making and associated notifications. Since EOC staff performs duties similar to their normal job functions during an emergency response and provides support related to their area(s) of expertise, no specific RCRA training is required.

D-2b Emergency Response Training

The WIPP Fire Department personnel are trained in accordance with the *WIPP Fire Department Training Plan,* which is kept on file at the WIPP facility. The training plan incorporates current National Fire Protection Association (NFPA) standards for training Firefighters.

Fire Department Incident Commanders are also trained in accordance with the *WIPP Fire Department Training Plan,* which incorporates the Federal Emergency Management Agency (FEMA), Incident Command System (ICS), and the National Incident Management System (NIMS) standards.

WIPP personnel who perform EMS duties are licensed through the State of New Mexico Emergency Medical Systems Bureau. Licensure requirements for training, continuing education, and skills maintenance are set forth through state requirements. Licenses are maintained by attending training seminars or conferences.

As described above, emergency response training is conducted in accordance with the *WIPP Fire Department Training Plan,* which is updated whenever the applicable standards are
revised. In addition to the emergency response training, WIPP Fire Department personnel are required to complete applicable site-specific training, which is described in Permit Attachment F, Facility Personnel Permit Training Program.

D-3 Criteria for Implementation of the RCRA Contingency Plan

The provisions of the RCRA Contingency Plan shall be implemented immediately whenever there is a fire, an explosion, or a release of hazardous wastes or hazardous waste constituents that could threaten human health or the environment, or whenever the potential for such an event exists as determined by the RCRA Emergency Coordinator, as required under 20.4.1.300 NMAC (incorporating 40 CFR §262.260(b)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.51(b)).

There may be situations which do not readily lend themselves to an immediate assessment of the possible hazards to human health and the environment. In these cases, the RCRA Emergency Coordinator will implement the RCRA Contingency Plan as a precautionary measure, regardless of the emergency situation or occurrence, if the RCRA Emergency Coordinator has reason to believe that a fire, explosion, or release of hazardous waste or hazardous waste constituents has occurred that could threaten human health or the environment.

In accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.265(i)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(i)), the RCRA Emergency Coordinator, on behalf of the Permittees, will record the time, date, and details of the incident that required implementation of the RCRA Contingency Plan. The Secretary of the NMED will be immediately notified by the Permittees. Additionally, the Permittees shall submit a written report to the NMED within 15 days of the incident, as specified in Section D-5. The following emergency situations, as they pertain to TRU mixed waste and generated hazardous wastes, warrant immediate implementation of the RCRA Contingency Plan by the RCRA Emergency Coordinator in accordance with standard operating procedures on file at the WIPP facility:

- Fires
 - If a fire involving TRU mixed waste or site-generated hazardous waste occurs
 - If a fire (e.g., building, grass, nonhazardous waste fire) occurs within or near a CAA or SAA that threatens to involve site-generated hazardous waste
 - If a fire (e.g., building, grass, nonhazardous waste fire) occurs within or near the permitted HWMUs that threatens to involve TRU mixed waste
 - If a fire occurs in the underground that results in immediate personnel evacuation or prevents normal personnel access to the underground

For any fire which does not meet the above criteria, the RCRA Emergency Coordinator shall document the rationale for not implementing the RCRA Contingency Plan (e.g., there is no threat to human health or the environment).

- Explosions
- If an explosion involving TRU mixed waste or site-generated hazardous waste occurs

- If an explosion occurs within or near a CAA or SAA which threatens to involve site-generated hazardous waste

- If an explosion occurs within or near the permitted HWMUs which threatens to involve TRU mixed waste

- If an explosion occurs in the underground that results in immediate personnel evacuation or prevents normal personnel access to the underground

- If there is an imminent danger of an explosion occurring (e.g., gas leak with an ignition source nearby) which could involve TRU mixed or site-generated hazardous waste

For any explosion which does not meet the above criteria, the RCRA Emergency Coordinator shall document the rationale for not implementing the RCRA Contingency Plan (e.g., there is no threat to human health or the environment).

- Unplanned Sudden/Non-Sudden Releases

 - If, prior to waste emplacement, one or more containers of TRU mixed waste has spilled or been breached due to dropping, puncturing, container failure or degradation, or any other physical or chemical means, resulting in a release

 - If, after waste emplacement, one or more containers of TRU mixed waste in an active room has been breached

 - If a continuous air monitor confirms a release of radioactive particulates to the ambient atmosphere, indicating a possible release of TRU mixed waste constituents from the permitted facility

 - If a spill of site-generated hazardous waste occurs in a CAA or SAA and cannot be contained with secondary containment methods or absorbents, thereby threatening a release to air, soil, or surface water

 - If a site-generated hazardous waste spill occurs in a CAA or SAA and results in the release of potentially flammable material, thereby threatening to create a fire or explosion hazard

 - If a site-generated hazardous waste spill occurs in a CAA or SAA and results in the release of potentially toxic fumes that would threaten human health

For any release of hazardous waste or hazardous waste constituents that does not meet the above criteria, the RCRA Emergency Coordinator shall document the rationale for not implementing the RCRA Contingency Plan (e.g., there is no threat to human health or the environment).

- Other Occurrences
- If a natural phenomenon (e.g., earthquake, flood, lightning strike, tornado) occurs that involves TRU mixed waste or site-generated hazardous waste or threatens to involve TRU mixed waste or site-generated hazardous waste

- If an underground structural integrity emergency (e.g., roof fall in an active room) occurs that involves TRU mixed waste or site-generated hazardous waste, threatens to involve TRU mixed waste or site-generated hazardous waste, results in immediate personnel evacuation, or prevents normal personnel access to the underground

For any natural phenomenon or underground structural emergency that does not meet the above criteria, the RCRA Emergency Coordinator shall document the rationale for not implementing the RCRA Contingency Plan (e.g., there is no threat to human health or the environment).

D-4 Emergency Response Method

Methods that describe implementation of the RCRA Contingency Plan cover the following six areas:

1. Immediate Notifications (Section D-4a)

2. Identification of Released Materials and Assessment of Extent of the Emergency (Section D-4b)

3. Assessment of the Potential Hazards (Section D-4c)

4. Post-Assessment Notifications (Section D-4d)

5. Control and Containment of the Emergency (Section D-4e)

6. Post-Emergency Activities (Section D-4f)

D-4a Immediate Notifications

Notification requirements in the event of implementation of the RCRA Contingency Plan are defined by 20.4.1.300 NMAC (incorporating 40 CFR §262.265(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §§264.56(a)). Personnel at the WIPP facility are trained to respond to emergency notifications.

Whenever an emergency situation occurs that warrants implementation of this RCRA Contingency Plan, as described in Section D-3, the Permittees will immediately notify the Secretary of the NMED.
D-4a(1) Initial Emergency Response and Alerting the RCRA Emergency Coordinator

The first person to become aware of an incident shall immediately report the situation to the CMRO and, as requested by the CMRO, provide the relevant information. Facility personnel are trained in the process for notifying the CMRO as part of General Employee Training (GET).

In addition to receiving incident reports from facility personnel, the CMRO continuously monitors (24 hours a day) the status of alarms, takes telephone calls and radio messages, initiates calls to emergency staff, and initiates emergency response procedures regarding evacuation, if needed.

Once the CMRO is notified of a fire, explosion, or a release anywhere in the facility (either by eyewitness notification or an alarm), the RCRA Emergency Coordinator is immediately notified. The RCRA Emergency Coordinator ensures that the emergency responders, including the WIPP Fire Department and the MRT, have been notified, as needed. Once incident command has been established, the RCRA Emergency Coordinator has the authority to delegate the responsibilities for mitigation of the incident to the Incident Commander.

The response to an unplanned event will be performed in accordance with standard operating procedures and guides based on the applicable federal, state, or local regulations and/or guidelines for that response. These include DOE Order 151.1D, Comprehensive Emergency Management System; the U.S. Mine Safety and Health Administration (MSHA); the NMAC; the Comprehensive Environmental Response, Compensation, and Liability Act; Chapter 74, Article 4B, New Mexico Statutes Annotated 1978; and the New Mexico Emergency Management Act.

If needed, the RCRA Emergency Coordinator will immediately notify the appropriate federal, state, and local agencies and mining companies in the vicinity of the WIPP facility, listed in Section D-7, with designated response roles.

Depending on the emergency, the EOC may be activated for additional support. In the event that the EOC is activated, decision-making responsibilities related to emergency management and associated notifications may be delegated to the EOC by the RCRA Emergency Coordinator. The EOC will assist in the mitigation of the incident with the use of appropriate communications equipment and technical expertise from available resources. During the emergency, the RCRA Emergency Coordinator will remain in contact with and advise the EOC of the known hazards.

The EOC staff assesses opportunities for coordination and the use of mutual-aid agreements with local agencies making additional emergency personnel and equipment available (Section D-7), as well as the use of specialized response teams available through various state and federal agencies. Because the WIPP facility is a DOE-owned facility, the Permittees may also use the resources available from the National Response Framework.
D-4a(2) Communication of Emergency Conditions to Facility Employees

Procedures for immediately notifying facility personnel of emergencies are as follows:

- Local Fire Alarms

 The local fire alarms sound an audible tone and may be activated automatically or manually in the event of a fire.

- Surface Evacuation Signal

 The evacuation signal is a yelp tone and is manually activated by the CMRO when needed. The CMRO follows the evacuation signal with verbal instructions and ensures the Site Notification System has been activated.

- Underground Evacuation Warning System

 The underground evacuation signal is a yelp tone and flashing strobe light. In the event of an evacuation signal, underground personnel will follow escape routes to egress hoist stations. Underground personnel are trained to report to the underground assembly areas and await further instruction if all power fails or if ventilation stops. If evacuation of underground personnel is required due to a power failure, this will be done using the backup generators available to power the hoisting equipment. Evacuation will be in accordance with the applicable requirements of MSHA.

D-4b Identification of Released Materials and Assessment of the Extent of the Emergency

The identification of hazardous wastes or hazardous waste constituents involved in a fire, an explosion, or a release to the environment is a necessary part of the RCRA Emergency Coordinator’s assessment of an incident, as described in 20.4.1.300 NMAC (incorporating 40 CFR §262.265(b)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(b)). Immediately after alarms have been activated and required notifications have been made, the RCRA Emergency Coordinator shall direct an investigation to determine pertinent information relevant to the actual or potential threat posed to human health or the environment. The information will include the character, exact source, amount, and areal extent of any released material. This may be done by observation or review of facility records or manifests and, if necessary, by chemical analysis.

The identification of the character and source of released materials at any location is enhanced because hazardous wastes are stored, managed, or disposed at specified locations throughout the WIPP facility.

Sources of information available to identify the hazardous wastes involved in a fire, an explosion, or a release at the WIPP facility include operator/Supervisor knowledge of their work areas, materials used, and work activities underway; the WIPP Waste Information System.
(WWIS), which identifies the location within the facility of emplaced TRU mixed waste, including emplaced derived waste; and waste manifests and other waste characterization information in the operating record, Operating Record. The WWIS also includes information on wastes that are in the waste handling process. Also available are Safety Data Sheets (SDSs) for hazardous materials in the various user areas throughout the facility, waste acceptance records, and materials inventories for buildings and operating groups at the WIPP facility. Information or data from the derived waste accumulation areas, the site-generated hazardous waste accumulation areas, and nonregulated waste accumulation areas are included. It is anticipated that this information is sufficient for identifying the nature and extent of the released materials. The RCRA Emergency Coordinator has access to this information when needed.

The waste received at the WIPP facility must meet the TSDF-WAC (e.g., no more than one percent liquid), which minimizes the possibility of waste container degradation and liquid spills. Should a spill or release occur from a container of site-generated hazardous or TRU mixed waste, following an initial assessment of the event, the RCRA Emergency Coordinator will ensure that the following actions are immediately taken, consistent with radiological control procedures, in compliance with 20.4.1.300 NMAC (incorporating 40 CFR §262.261(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.52(a) and §264.171):

- Assemble the required response equipment, such as protective clothing and gear, heavy equipment, empty drums, overpack drums, hand tools, and absorbent materials
- Transfer the released material to a container that is in good condition and patch or overpack the leaking container into another container that is in good condition
- Once the release has been contained, determine the areal extent of the release and proceed with appropriate cleanup action, such as chemical neutralization, vacuuming, or excavation

D-4c Assessment of the Potential Hazards

Concurrent with the actions described in Sections D-4a and D-4b, and in accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.265(c)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(c)), the RCRA Emergency Coordinator shall assess possible hazards to human health or the environment that may result from the release, fire, or explosion. This assessment will consider both direct and indirect effects of the release, fire, or explosion (e.g., the effects of any toxic, irritating, or asphyxiating gases that are generated, or the effects of any hazardous surface water run-off from water or chemical agents used to control fire and heat-induced explosions). The RCRA Emergency Coordinator will be responsible for identifying and responding to immediate and potential hazards, using the services of trained personnel.

After the materials involved in an emergency are identified, the specific information (e.g., associated hazards, appropriate personal protective equipment (PPE), decontamination) may be obtained from SDSs and from appropriate chemical reference materials at the same location. These information sources are available to the RCRA Emergency Coordinator or may be accessed through several WIPP facility organizations.

If, upon completion of the hazards assessment, the RCRA Emergency Coordinator determines that there are no actual or potential hazards to human health or the environment present, this RCRA Contingency Plan may be terminated. The RCRA Emergency Coordinator will record the
time, date, and details of the incident in the operating record, and the Permittees will ensure that the reporting requirements of Section D-5 are fulfilled.

D-4d Post-Assessment Notifications

Upon RCRA Contingency Plan implementation, post-assessment notifications may be necessary in order to satisfy 20.4.1.300 NMAC (incorporating 40 CFR §262.265(d)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(d)). If it has been determined that the facility has had a fire, an explosion, or a release of hazardous waste or hazardous waste constituents that could threaten human health or the environment outside the facility (i.e., outside the Land Withdrawal Boundary), the RCRA Emergency Coordinator, after consultation with the DOE as the owner of the facility, will ensure that the appropriate local authorities are immediately notified by telephone and/or radio in the event that evacuation is needed. The following notifications satisfy the requirements of 20.4.1.300 NMAC (incorporating 40 CFR §262.265(d)(1)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(d)(1)):

- New Mexico Department of Homeland Security and Emergency Management (telephone number: (505) 476-9635)
- Eddy County via the Regional Emergency Dispatch Authority (telephone number: (575) 616-7155)
- Lea County via the Regional Emergency Dispatch Authority (telephone number: (575) 397-9265)

The RCRA Emergency Coordinator must be available to help appropriate officials decide whether local areas should be evacuated.

After local authorities are notified, the RCRA Emergency Coordinator must immediately notify either the government official designated as the on-scene coordinator for that geographical area, or the National Response Center. For the purposes of the RCRA Contingency Plan, the following notifications satisfy the requirements of 20.4.1.300 NMAC (incorporating 40 CFR §262.265(d)(2)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(d)(2)):

- New Mexico Environment Department (NMED) Department of Public Safety
 24-Hour Emergency Reporting Telephone Number: (505) 827-9329
 FAX number: (505) 827-9368
- National Response Center
 Telephone number: 1-800-424-8802
 FAX number: (202) 479-7181

This notification shall include the following information:

- The name and phone number of the reporter
- The name and address of the facility
D-4e Control and Containment of the Emergency

The RCRA Emergency Coordinator is required to ensure control of an emergency and to minimize the potential for the occurrence, recurrence, or spread of releases due to the emergency situation, as described in 20.4.1.300 NMAC (incorporating 40 CFR §262.265(e) and (f)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(e) and (f)). Standard operating procedures and guides are used to implement initial response measures with priority being control of the emergency, and those actions necessary to ensure confinement and containment in the early, critical stages of a spill or leak. The RCRA Emergency Coordinator, in conjunction with the Incident Commander, is responsible for implementing the following measures:

- Stopping processes and operations
- Collecting and containing released wastes and materials
- Removing or isolating containers of hazardous waste posing a threat
- Ensuring that wastes managed during an emergency are handled, stored, or treated with due consideration for compatibility with other wastes and materials on site and with containers utilized (Section D-4f(2))
- Restricting personnel not needed for response activities from the scene of the incident
- Evacuating the area
- Curtailing nonessential activities in the area
- Conducting preliminary inspections of adjacent facilities and equipment to assess damage
- Maintaining fire equipment on standby at the incident site in cases where ignitable liquids have been or may be released and ensuring that ignition sources are kept out of the area. Ignitable liquids will be segregated, contained, confined, diluted, or otherwise controlled to preclude inadvertent explosion or detonation.
No operation that has been shut down in response to the incident will be restarted until authorized by the RCRA Emergency Coordinator. If a release occurs that involves radioactivity, the RCRA Emergency Coordinator actions will be consistent with radiation control policies and practices.

The standard operating procedures for emergency response may include, but are not limited to, the following actions appropriate for control of releases:

1. Isolating the area from unauthorized entry by fences, barricades, warning signs, or other security and site control precautions. Isolation and evacuation distances vary, depending upon the chemical/product, fire, and weather situations.

2. Establishing drainage controls.

3. Stabilizing physical controls (such as dikes or impoundment[s]).

4. Capping contaminated soils to reduce migration.

5. Using chemicals and other materials to retard the spread of the release or to mitigate its effects.

6. Excavating, consolidating, or removing contaminated soils.

7. Removing wastes containers to reduce exposure risk during situations such as fires.

If the facility stops operations in response to a fire, explosion, or release, the RCRA Emergency Coordinator shall ensure continued monitoring for leaks, pressure buildup, gas generation, or ruptures in valves, pipes, or other equipment, wherever appropriate.

Natural and/or synthetic methods will be employed to limit the releases of hazardous wastes or hazardous waste constituents so that effective recovery and treatment can be accomplished with minimal additional risk to human health or the environment.

Emergency response actions taken to mitigate releases may include, but are not limited to, the following:

1. Physical methods of control may involve any of several processes to reduce the area of the spill/leak, or other release mechanism (such as fire suppression).

 a. Absorption (e.g., absorbent sheets; spill control bucket materials specifically for solvents, neutralization, or acids/caustics; and absorbent socks for general liquids or oils)

 b. Dikes or Diversions (e.g., absorbent socks or earth)

 c. Overpacking

 d. Plug and Patch
e. Transfers from leaking container to new container
f. Vapor Suppression (e.g., aqueous foam blanket)

2. Chemical methods of mitigation may include the following:

a. Neutralization
b. Solidification

Once the Incident Commander informs the RCRA Emergency Coordinator that the emergency scene is stable, the release has been stopped, any reactions have been controlled, the released hazardous materials have been contained within a localized area, and the area of contamination has been secured from unauthorized entry, the field emergency response activity can be terminated.

D-4e(1) Fires

In the event of a fire that involves or threatens TRU mixed waste or site-generated hazardous waste, emergency response actions may include, but are not limited to, the following:

1. The RCRA Emergency Coordinator will remain in contact with and advise the Incident Commander of the known hazards.

2. The Incident Commander will maintain overall control of the emergency and may accept and evaluate the advice of WIPP facility personnel and emergency response organization members; but retains overall responsibility until the emergency is terminated.

3. Only fire extinguishing materials that are compatible with the materials involved in the fire will be used to extinguish fires. Water and dry chemical materials in use at the WIPP facility have been determined to be compatible with all components of the TRU mixed waste and site-generated hazardous waste.

4. In order to ensure that storm drains and/or sewers do not receive potentially hazardous runoff, dikes will be built around storm drains to control discharge as needed. Collected waste will be sampled and analyzed for hazardous constituents, and appropriately disposed.

5. The RCRA Emergency Coordinator will ensure that measures are taken to shut down operational units (e.g., process equipment and ventilation equipment) that have been affected directly or indirectly by the fire.

6. Fire suppression materials used in response to incidents will be retained on-scene, where an evaluation will be performed to determine appropriate recovery and disposal methods.

7. Upon underground evacuation due to a fire in the underground that involves or threatens to involve TRU mixed waste or site-generated hazardous waste, a response plan will be developed depending on the status of the fire. The plan may include
ventilation control, barrier erection, and/or waiting for the fire to self-extinguish or implement active ventilation.

D-4e(2) Explosions

In the event of an explosion that involves or threatens TRU mixed waste or site-generated hazardous waste, emergency response actions may include, but are not limited to, the following:

1. The RCRA Emergency Coordinator will remain in contact with and advise the Incident Commander of the known hazards.

2. The Incident Commander will maintain overall control of the emergency and may accept and evaluate the advice of WIPP facility personnel and emergency response organization members, but retains overall responsibility until the emergency is terminated.

3. The RCRA Emergency Coordinator will ensure measures are taken to shut down operational units (e.g., process equipment and ventilation equipment) that have been affected directly or indirectly by the explosion.

4. If, following an explosion, there is an ensuing fire, see Section D-4e(1).

5. If, following an explosion, there is an underground structural integrity emergency, see Section D-4e(4).

D-4e(3) Unplanned Sudden/Non-Sudden Releases

Spills of Site-Generated Hazardous Waste

If a spill of site-generated hazardous waste has occurred, and 1) the spill cannot be contained with secondary containment methods or absorbents, 2) the spill causes a release of flammable material, or 3) the spill results in toxic fumes, the RCRA Emergency Coordinator will ensure implementation of measures that may include, but are not limited to, the following actions:

1. The RCRA Emergency Coordinator will remain in contact with and advise the Incident Commander of the known hazards.

2. The Incident Commander will maintain overall control of the emergency and may accept and evaluate the advice of WIPP facility personnel and emergency response organization members, but retains overall responsibility until the emergency is terminated.

3. The immediate area will be evacuated.

4. The source of the release will be mitigated, if possible.

5. A dike to contain runoff will be built, if necessary.

6. Dikes around storm drains to control discharge will be built, as needed, to ensure that storm drains and/or sewers do not receive potentially hazardous runoff.
7. Fire equipment will be maintained on standby at the incident site in cases where ignitable liquids have been or may be released, and ignition sources will be kept out of the area of ignitable liquids.

8. Released waste and contaminated media will be collected and placed into drums or other appropriate containers.

Releases of TRU Mixed Waste

If a release of TRU mixed waste has occurred, the emergency will be managed as a potential radiological release, and radiological control measures will determine the activities that can be performed safely, which may include the following:

1. The RCRA Emergency Coordinator will remain in contact with and advise the Incident Commander of the known hazards.

2. The Incident Commander will maintain overall control of the emergency and may accept and evaluate the advice of WIPP facility personnel and emergency response organization members, but retains overall responsibility until the emergency is terminated.

3. Prior to the re-entry following an event involving containers that are managed as TRU mixed waste, a Radiological Work Permit (RWP) will be prepared.

4. During the re-entry phase, the extent of radiological contamination will be determined. This information is used by the RCRA Emergency Coordinator to determine an appropriate course of action to recover the area.

5. During the recovery phase, the necessary resources to conduct decontamination and/or overpacking operations will be used as needed.

6. Prior to returning the affected area and/or equipment to normal activities, the RCRA Emergency Coordinator will determine if additional measures are required by the *RCRA Contingency Plan* (e.g., characterization and disposal of contaminated media).

7. The recovery phase will include activities (e.g., placing the waste material in another container, vacuuming the waste material, overpacking or plugging/patching the affected waste container(s), decontaminating or covering the affected area), as specified in the RWP, to minimize the spread of contamination to other areas.

8. The RWPs and other administrative controls will provide protective measures to help ensure that new hazardous constituents will not be added during decontamination activities.

D-4e(4) Other Occurrences

Natural Phenomena

In the event of a natural phenomenon (e.g., earthquake, flood, lightning strike, tornado) that involves hazardous waste or has threatened to cause a release of hazardous waste or
hazardous waste constituents, emergency response actions may include, but are not limited to, the following:

1. The RCRA Emergency Coordinator will remain in contact with and advise the Incident Commander of the known hazards.

2. The Incident Commander will maintain overall control of the emergency and may accept and evaluate the advice of WIPP facility personnel and emergency response organization members; but retains overall responsibility until the emergency is terminated.

3. Containers which have not been disposed will be inspected for signs of leakage or damage, and containment systems will be inspected for deterioration.

4. Affected equipment or areas associated with hazardous waste management activities will be inspected, and the operability of monitoring systems will be ensured.

5. Affected electrical equipment and lines will be inspected for damage.

6. Affected buildings and fencing directly related to hazardous waste management activities will be inspected for damage.

7. A general survey of the site will be conducted to check for signs of physical damage.

8. The RCRA Emergency Coordinator will ensure that measures are taken to shut down operational units (e.g., process equipment and ventilation equipment) that have been affected by the natural phenomenon.

Underground Structural Integrity Emergencies

In the event of an underground structural integrity emergency that involves or threatens TRU mixed waste (i.e., occurs in an active disposal room) or site-generated hazardous waste, the emergency will be managed as a potential radiological release, and radiological control measures will determine the activities that can be performed safely, and may include the following:

1. The RCRA Emergency Coordinator will remain in contact with and advise the Incident Commander of the known hazards.

2. The Incident Commander will maintain overall control of the emergency and may accept and evaluate the advice of WIPP facility personnel and emergency response organization members; but retains overall responsibility until the emergency is terminated.

3. The RCRA Emergency Coordinator will ascertain whether the roof conditions allow for safe entry and if the waste container or containers in question are accessible.

4. The RCRA Emergency Coordinator may recommend closing the entire panel, or the affected room of waste containers, based on the location of the event and the stability
of the roof and walls in the panel as a method to ensure that measures are taken to shut down affected operational units.

5. Access to the ventilation flow path downstream of the incident will be restricted, as appropriate.

6. Ventilation to the affected room will be restricted to ensure that there is no spread of contamination that may have been released, as appropriate.

7. Accessible containers will be inspected for signs of leakage or damage.

8. The spill area will be covered with material (e.g., plastic, fabric sheets) in a manner that safely isolates the contamination in the area.

9. The RCRA Emergency Coordinator will determine if the covered spill area safely allows for continued waste disposal operations or whether further action is required to reinitiate operations.

D-4f Post-Emergency Activities

Immediately after the emergency, and once initial release or spill control and containment have been completed, the RCRA Emergency Coordinator will ensure that necessary decontamination occurs and that recovered hazardous waste is properly managed, stored, and/or disposed, as required by 20.4.1.300 NMAC (incorporating 40 CFR §262.265(g)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(g)). As required by 20.4.1.300 NMAC (incorporating 40 CFR §262.265(h)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(h)), the RCRA Emergency Coordinator will ensure that incompatibility of waste and restoration of emergency equipment are addressed.

D-4f(1) Management and Disposition of Released Material

When a release of TRU mixed waste has occurred, priority is given to actions required to minimize radiological exposure to workers and the public. If the release is TRU mixed waste, decontamination and disposition will be in accordance with the RWP. If a release of site-generated hazardous waste occurs, the contaminated surface will be cleaned, and decontamination materials will be placed in containers and dispositioned appropriately. In most cases, these actions taken to address a radiological contamination are sufficient to mitigate any health effects associated with contamination by hazardous waste or hazardous waste constituents.

If a release of site-generated hazardous waste occurs, the contaminated surface will be cleaned, and decontamination materials will be placed in containers and dispositioned appropriately. If the release is TRU mixed waste, decontamination and disposition will be in accordance with the RWP.

If radioactive contamination is detected on equipment or on structures, radiological cleanup standards will be used to determine the effectiveness of decontamination efforts and/or the final disposition of the equipment or structures. Many types of equipment are difficult to decontaminate and may have to be discarded as derived waste. Fixatives (e.g., paint or water
spray on salt in the underground) may be used on contaminated structures if the contamination cannot be safely removed.

Following decontamination, the RCRA Emergency Coordinator will ensure that nonradioactive hazardous waste resulting from the cleanup of a fire, an explosion, or a release involving a nonradioactive hazardous waste at the WIPP facility will be contained and managed as a hazardous waste until such time as the waste is disposed of, or determined to be nonhazardous, as defined in 20.4.1.200 NMAC (incorporating 40 CFR Part 261, Subparts C and D). In most cases, knowledge of the material inventories for the various buildings and areas at the facility will allow a hazardous waste determination for the material resulting from the cleanup of a release. When knowledge of the material inventories is not sufficient, samples of the waste will be collected and analyzed using U.S. Environmental Protection Agency (EPA)-approved methods to determine the presence of any hazardous characteristics and/or hazardous waste constituents.

D-4f(2) Incompatible Waste

The RCRA Emergency Coordinator will ensure, in accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.262(h)(1)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(h)(1)), that in the affected area(s) of the facility, no waste that may be incompatible with the released material is treated, stored, or disposed of until cleanup has been completed. The RCRA Emergency Coordinator will not allow hazardous or TRU mixed waste operations to resume in a building or area in which incompatible materials have been released prior to completion of necessary post-emergency cleanup operations to remove potentially incompatible materials. In making the determination of compatibility, the RCRA Emergency Coordinator will have available the resources and information described in Section D-4b, Identification of Released Materials and Assessment of the Extent of the Emergency.

D-4f(3) Cleaning and Restoration of Equipment

The RCRA Emergency Coordinator will take measures to ensure, in accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.262(h)(2)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(h)(2)), that in the affected area(s) of the facility, emergency equipment listed in the RCRA Contingency Plan, and used in the emergency response, is cleaned and fit for its intended use or replaced before operations are resumed.

Any equipment that cannot be decontaminated will be discarded as waste (e.g., hazardous, mixed, solid), as appropriate. After the equipment has been cleaned, repaired, or replaced, a post-emergency facility and equipment inspection will be performed, and the results will be documented.

D-5 Required Reporting

The RCRA Emergency Coordinator, on behalf of the Permittees, will note in the operating record Operating Record the time, date, and details of the incident that required implementation of the RCRA Contingency Plan. In compliance with 20.4.1.300 NMAC (incorporating 40 CFR §262.265(i)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.56(i)), within 15 days after the incident, the Permittees will ensure that a written report on the incident will be submitted to the Secretary of the NMED. The report will include:
• The name, address, and telephone number of the Owner/Operator
• The name, address, and telephone number of the facility
• The date, time, and type of incident (e.g., fire, explosion, or release)
• The name and quantity of material(s) involved
• The extent of injuries, if any
• An assessment of actual or potential hazards to human health or the environment, where this is applicable
• The estimated quantity and disposition of recovered material that resulted from the incident

D-6 Emergency Equipment

A variety of equipment is available at the facility for emergency response, containment, and cleanup operations in the surface HWMUs, the underground HWDUs, and the WIPP facility in general. This includes equipment for spill control, fire control, personnel protection, monitoring, first aid and medical attention, communications, and alarms. This equipment is immediately available to emergency response personnel. A listing of major emergency equipment available at the WIPP facility, as required by 20.4.1.300 NMAC (incorporating 40 CFR §262.261(e)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.52(e)), is shown in Table D-2. Table D-2 also includes the location and a physical description of each item on the list along with a brief outline of its capabilities. The fire-water distribution system map is show in Figure D-5. Equipment specified at the locations listed in Table D-2 are inspected in accordance with the inspection schedule specified in Attachment E, Table E-1, as required by 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)).

D-7 Emergency Response Agreements

The Permittees have established agreements with federal, state, and local emergency response agencies and mining companies in the vicinity of the WIPP facility for firefighting, medical assistance, hazardous materials response, and law enforcement. In the event that on-site response resources are unable to provide the needed response actions during a medical, fire, hazardous materials, or security emergency, the RCRA Emergency Coordinator will notify appropriate emergency response agencies and request assistance. Once on site, emergency response agency personnel will perform emergency response activities under the direction of the Incident Commander.

The agreements with federal, state, and local agencies and mining companies in the vicinity of the WIPP facility for emergency response capabilities are on file at the WIPP facility. Additional agreements may be established when needed. A description of the agreements with federal, state, and local agencies and mining operations in the vicinity of the WIPP facility, as required by 20.4.1.300 NMAC (incorporating 40 CFR §§262.256 and 262.261(c)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.37 and §264.52(c)), include, but is not limited to, the following:
• Agreements with local mining companies, including Intrepid Potash NM LLC, White Marble Mine, and Mosaic Potash Carlsbad Inc. provide for mutual aid and assistance, in the form of MRTs, in the event of a mine disaster or other circumstance at either of the facilities. This provision ensures that the WIPP MOC will have two MRTs available at all times when miners are underground.

• An agreement with the U.S. Department of Interior (DOI), represented by the Bureau of Land Management (BLM), Roswell District, for wildland firefighting support within the WIPP Land Withdrawal Area.

• Agreements for mutual-aid firefighting with Eddy County, the City of Hobbs, and the City of Carlsbad for assistance, including equipment and personnel.

• Mutual-aid Agreements with the City of Hobbs and the City of Carlsbad for mutual ambulance, medical, rescue, and hazardous material response services; for use of WIPP facility radio frequencies during emergencies; and for mutual security and law enforcement services, within the appropriate jurisdiction limits of each party.

• Agreements with the Covenant Health Hobbs Hospital and the Carlsbad Medical Center for the treatment of persons with radiological contamination who have incurred injuries beyond the treatment capabilities at the WIPP site. The WIPP facility provides transport of the patient(s) to these facilities.

• Agreements with the Sheriff of Eddy County and the Sheriff of Lea County for mutual law enforcement services support.

• An agreement with the New Mexico Department of Homeland Security and Emergency Management for mutual emergency management support, access to state law enforcement, public works, and transportation assets.

D-8 Evacuation Plan

If it becomes necessary to evacuate all or part of the WIPP facility, on-site assembly and off-site staging areas have been established. The off-site staging areas are outside the security fence. The Permittees have plans and implementation procedures for both surface and underground evacuations. Drills are performed on these procedures at the WIPP facility at least annually. The following sections describe the evacuation plan for the WIPP facility, as required under 20.4.1.300 NMAC (incorporating 40 CFR §262.261(f)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.52(f)).

D-8a Surface Evacuation On-site Assembly and Off-site Staging Areas

Figures D-6/D-1/Figure D-1-NFB shows the surface assembly and staging areas and the evacuation gates. Security officers remain at the primary staging area WIPP facility main gate 24 hours a day, and the vehicle trap is opened for personnel during emergency evacuations. The north gate has a single-person gate and a large gate which can be opened, similar to the main gates, for the primary staging area. Alternative evacuation route exit points are located at the east and south gates. The east and south gates are turnstile gates. Upon notification, security personnel will respond, open gates, and facilitate egress for evacuation.
If a building or area evacuation is necessary, the RCRA Emergency Coordinator, in conjunction with the Incident Commander, will determine which assembly area is to be used and will communicate the selection to facility personnel. The preferred evacuation route is determined based on the nature of the event, prevailing weather conditions, and actual or potential radiological release. If site evacuation is necessary, the RCRA Emergency Coordinator, in conjunction with the Incident Commander, will decide which staging area is to be used and will communicate the selection to facility personnel. The WIPP site evacuation routes are shown in Figure D-8. The surface evacuation alarm and public address system are used to direct personnel evacuation. Persons responsible for surface accountability will direct personnel to the selected staging area outside the security fence.

Personnel report to the designated assembly or staging area where accountability is conducted (Figure D-6/Figure D-1-NFB). Personnel who are working in a contaminated area when site evacuation is announced will assemble at specific staging areas for potentially contaminated personnel in order to minimize contact with other personnel during the evacuation.

D-8b Underground Assembly Areas and Egress Hoist Stations

Depending upon the type of emergency and level of response, it may be necessary for personnel in the underground to shelter in place, report to designated assembly areas (Figure D-7), or to evacuate the underground. Underground personnel are trained to immediately report to assembly areas under specific circumstances (i.e., loss of underground power or ventilation). Underground accountability is taken when the underground is sheltered in place or evacuated. The Underground Controller is responsible for underground personnel accountability. Each assembly area contains a mine pager phone, miner’s aid station, and evacuation maps.

In accordance with 30 CFR §57.11050, the mine maintains two escapeways. These escapeways are designated as Egress Hoist Stations. When the need for an underground evacuation has been determined, underground personnel report to the Egress Hoist Stations.

Decontamination of underground personnel will be conducted consistent with radiological control procedures pursuant to 10 CFR Part 835 the same way as described for surface decontamination. Contaminated personnel are trained to remain segregated from other personnel until radiological contamination control personnel can respond.

D-8c Plan for Surface Evacuation

Surface evacuation notification is initiated by the CMRO, as directed by the RCRA Emergency Coordinator, via sounding of the surface evacuation alarm and providing incident information via the public address system. The persons responsible for surface accountability assist personnel in evacuation from their areas. Egress routes from buildings and site evacuation routes and instructions are posted in designated areas throughout the site. Egress routes from the WHB Unit are shown in Figures D-6a, D-6b, and D-5 through D-7.

D-8d Plan for Underground Evacuation

Notification for underground evacuation will be made using the underground evacuation alarm and strobe light signals.
Personnel will evacuate to the nearest Egress Hoist Station. Primary underground escape routes (identified by green reflectors on the rib) will be used, if possible. Secondary underground escape routes (identified by red reflectors on the rib) will be used if necessary (Figure D-3D-4). Detailed descriptions of escapeways and an underground escape map are included in the Underground Escape and Evacuation Plan on file at the WIPP facility, as required by MSHA, 30 CFR §57.11053, for underground mining situations. The MSHA required map takes precedence over Figure D-3D-4, Underground Escape and Evacuation Map, should an underground mine related event occur necessitating a change to the evacuation routes. The Underground Controller is responsible for underground personnel accountability and for reporting accountability to the RCRA Emergency Coordinator.

Upon reaching the surface, personnel will report to their on-site surface assembly or off-site staging area, as directed, to receive further instructions.

Members of the WIPP Fire Department and the MRT who may be underground, will assist in the evacuation of the underground when an underground evacuation is called for. A reentry by the MRT will be performed according to 30 CFR Part 49 and MSHA regulations for reentry into a mine. The MRTs are trained in compliance with 30 CFR Part 49 in mine mapping, mine gases, ventilation, exploration, mine fires, rescue, and recovery.

D-8e Further Site Evacuation

In the event of an evacuation involving the need to transport employees, the following transportation will be available:

- Buses/vans—WIPP facility buses/vans will be available for evacuation of personnel. The buses/vans are stationed in the employee parking lot.

- Privately Owned Vehicles—Because many employees drive to work in their own vehicles, these vehicles may be used in an emergency. Personnel will be provided routes to be taken when leaving the facility.

These vehicles may be used to transport personnel who have been released from the site by the RCRA Emergency Coordinator.

The primary evacuation routes for the WIPP facility is Louis Whitlock Road are the main DOE north/south access road, which connects to U.S. Highways 62/180 (to the north) and State Highway 128 via the South Access Road (south). Alternate evacuation routes from the facility are provided at the south side and the east side of the facility. Utilization of the alternate evacuation routes leads to either the main DOE north/south access road or Campbell Road, which travels north and intersects with U.S. Highway 62/180. The primary and alternate evacuation routes are depicted in Figures D-8 and D-8a.

D-9 Location of the RCRA Contingency Plan and Plan Revision

In accordance with 20.4.1.300 NMAC (incorporating 40 CFR §§262 and 262.262(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.53(a)), the owner/operator of the WIPP facility will ensure that copies of this RCRA Contingency Plan are maintained at the WIPP facility and are available to the emergency personnel and organizations described in Section D-2. When the RCRA Contingency Plan is revised, updated copies are distributed (electronically or via site
mail) or hand delivered to applicable WIPP facility emergency personnel and Emergency
Operations Centers. In addition, the Permittees will make copies available to the following
federal, state, and local agencies and mining companies in the vicinity of the WIPP facility, as
required by 20.4.1.300 (incorporating 40 CFR §262.262(a)) and 20.4.1.500 NMAC
(incorporating 40 CFR §264.53(b)):

- Intrepid Potash New Mexico LLC
- White Marble Mine
- Mosaic Potash Carlsbad Inc.
- City of Carlsbad
- Carlsbad Medical Center, Carlsbad
- Covenant Health Hobbs Hospital, Hobbs
- City of Hobbs
- BLM, Carlsbad
- New Mexico State Police
- New Mexico Department of Homeland Security and Emergency Management
- Eddy County Commission
- Sheriff of Eddy County
- Sheriff of Lea County
- Eddy County Fire and Rescue
- Eddy County Emergency Management
- Lea County Emergency Management

In accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.263) and 20.4.1.500 NMAC
(incorporating 40 CFR §264.54), the Permittees will ensure that this plan is reviewed and
amended whenever:

- The Permit for the WIPP facility is revised in any way that would affect the RCRA
 Contingency Plan;
- This plan fails in an emergency;
- The WIPP facility design, construction, operation, maintenance, or other circumstances
 change in a way that materially increases the potential for fires, explosions, or releases
 of hazardous waste or hazardous constituents or change the response necessary in an
 emergency;
- The list of RCRA Emergency Coordinators change(s); or
- The list of WIPP facility emergency equipment changes.
TABLES

1

2
<table>
<thead>
<tr>
<th>Name</th>
<th>Address*</th>
<th>Office Phone</th>
<th>Personal Phone*</th>
<th>24-Hour Emergency Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.E. (Joseph) Bealler</td>
<td>(575) 234-8276 or (575) 234-8916</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.G. (Mike) Proctor</td>
<td>(575) 234-8276 or (575) 234-8143</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.J. (Paul) Paneral</td>
<td>(575) 234-8498</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.C. (Andy) Cooper</td>
<td>(575) 234-8197</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.J. (Chris) Belis</td>
<td>(575) 628-5851</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.R. (Bobby) Franco</td>
<td>(575) 234-8163</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.W. (Gregory) Brown</td>
<td>(575) 234-5862</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.D. (Ryan) Parrish</td>
<td>(575) 234-8638</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.E. (Eric) Chavez</td>
<td>(575) 234-5831</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.L. (Donald) Jurney</td>
<td>(575) 234-8216</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.H. (Robert) Valenzuela</td>
<td>(575) 234-8799</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J.R. (James) Bailey</td>
<td>(575) 234-8276</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.L. (Martin) Mendes</td>
<td>(575) 234-5822</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.J. (Derek) Tweedy</td>
<td>(575) 234-8272</td>
<td>(575) 234-8111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* NOTE: Personal information (home addresses and personal phone numbers) has been removed from informational copies of this Permit.

1 For every shift, one qualified RCRA Emergency Coordinator serves as the primary, and a second qualified RCRA Emergency Coordinator is available to serve as the alternate.
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description and Capabilities</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Fire Alarms</td>
<td>Fire alarm panels, fire alarm transmitter, audible alarm devices (e.g., horns, bells, tones) that provide notification of fires; transmitted to the CMR</td>
<td>Guard and Security Building (Building 458), Water Pumphouse (Building 456), Warehouse/Shops Building (Building 453), Exhaust Shaft Filter Building (Building 413), New Filter Building (NFB) (Building 416), Salt Reduction Building (SRB) (Building 417), Support Building (Building 451), CMR/Computer Room, Waste Handling Building (Building 411), TRUPACT Maintenance Building (Building 412), Salt Handling (SH) Shaft Hoisthouse (Building 384), Auxiliary Warehouse Building (Building 455), Engineering Building (Building 486), Training Building (Building 489), Safety and Emergency Services Facility (Building 452), and CAAs (Buildings 474A and 474B)</td>
</tr>
<tr>
<td>Underground Fire Alarms</td>
<td>Fire alarm panels, fire alarm transmitter, and audible/visual alarm devices (e.g., horns, bells, strobes) that provide notification of fires; transmitted to the CMR</td>
<td>Fire detection and control panel locations: Waste Shaft Underground Station, SH Shaft Underground Station, Between E-140 and E-300 in S-2180 Drift, Fuel Station (N150/W170)</td>
</tr>
<tr>
<td>Site Notification System; Underground Evacuation Alarm System</td>
<td>For surface, alarms and notifications transmitted over paging channel of the public address system, manually initiated; for underground, audible alarm</td>
<td>Site-wide</td>
</tr>
<tr>
<td>Public Address System</td>
<td>Includes intercom phones; handset stations and loudspeaker assemblies</td>
<td>Site-wide</td>
</tr>
<tr>
<td>Equipment</td>
<td>Description and Capabilities</td>
<td>Location</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mine Pager Phones</td>
<td>Battery-operated paging system</td>
<td>Underground at S550/W30, S1000/W30, S1950/E140, SH Shaft Collar and Underground Station Waste Shaft Collar and Underground Station; – surface at Support Building (Building 451, FSM desk, CMR, lamproom), Safety and Emergency Services Facility (Building 452, Fire Department workstation area, Mine Rescue Room)</td>
</tr>
<tr>
<td>Portable Radios</td>
<td>Two-way, portable; transmits and monitors information to/from other transmitters</td>
<td>Issued to individuals</td>
</tr>
<tr>
<td>Plant-Based Radios</td>
<td>Two-way, stationary; transmits and monitors information to/from other transmitters radios</td>
<td>Safety and Emergency Services Facility (Building 452), Guard and Security Building (Building 458), Support Building (Building 451, CMR, FSM desk)</td>
</tr>
<tr>
<td>Mobile Phones</td>
<td>Provide communications link between emergency response personnel, as needed</td>
<td>Issued to individuals plus emergency vehicles</td>
</tr>
</tbody>
</table>

Spill Response Equipment and Materials

| HAZMAT Equipment | Spill response equipment and supplies, PPE, and decontamination supplies stored and maintained in accordance with NFPA 1901 and as documented in WIPP facility files | Surface, in designated areas near Safety and Emergency Services Facility (Building 452) |
| Absorbent Materials | Containment or cleanup of spills, including: Pressurized spill-response gun; Absorbent sheets and/or dikes for containment or cleanup of spills of oil, petroleum-based chemicals, and general liquids; Spill-control material for solvents and neutralizing absorbents and for acids/caustics | Surface, in designated areas near Safety and Emergency Services Facility (Building 452) |

Medical Resources

<p>| Ambulance | A minimum of one ambulance, maintained and equipped in accordance with the New Mexico Ambulance Standard, 18.3.14 NMAC, and as documented in WIPP facility files | Surface at Safety and Emergency Services Facility (Building 452, Vehicle Bay) |
| Medical Cart | A minimum of one medical cart, equipped to provide basic life support operations, as documented in WIPP facility files | Underground (Emergency Vehicle Parking/Charging Area at S700/E140) |
| Miners First Aid Stations | Equipped per 30 CFR 57.15001 | Underground (Salt Shaft Area, Waste Shaft Area, E300 Maintenance Shop, and at S1000/W30, S1300/W30, and S1950/E140) |</p>
<table>
<thead>
<tr>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Detection and Fire Suppression Equipment</td>
</tr>
<tr>
<td>Building Smoke, Thermal Detectors, or Manual Pull Stations</td>
</tr>
<tr>
<td>Devices that trigger an alarm and/or fire suppression system</td>
</tr>
<tr>
<td>Guard and Security Building (Building 458), Warehouse/Shops Building (Building 453), Support Building (Building 451, CMR/Computer Room), Waste Handling Building (Building 411), TRUPACT Maintenance Building (Building 412), Underground Fuel Station (N150/W170), SH Shaft Hoisthouse (Building 384), Engineering Building (Building 486), Safety and Emergency Services Facility (Building 452), and Training Building (Building 489)</td>
</tr>
<tr>
<td>Fire Trucks</td>
</tr>
<tr>
<td>A minimum of two fire trucks with rescue equipment to assist in fighting fires and emergency rescue; firefighter equipped in accordance with NFPA 1901 and/or 1906 and as documented in WIPP facility files</td>
</tr>
<tr>
<td>Surface at Safety and Emergency Services Facility (Building 452, Vehicle Bay)</td>
</tr>
<tr>
<td>Rescue Cart</td>
</tr>
<tr>
<td>A minimum of one light rescue unit, equipped in accordance with the NFPA 1901 and as documented in WIPP facility files</td>
</tr>
<tr>
<td>Underground (Emergency Vehicle Parking/Charging Area at S700/E140)</td>
</tr>
<tr>
<td>Fire Suppression Cart</td>
</tr>
<tr>
<td>A minimum of one special-purpose electric cart to assist in fighting fires; equipped with a minimum of one fire extinguisher</td>
</tr>
<tr>
<td>Underground (Emergency Vehicle Parking/Charging Area at S700/E140)</td>
</tr>
<tr>
<td>Fire Extinguishers</td>
</tr>
<tr>
<td>Hand-held fire extinguishers; located throughout the facility in accordance with NFPA-10</td>
</tr>
<tr>
<td>Surface and underground locations used for hazardous waste management, as documented in WIPP facility files</td>
</tr>
<tr>
<td>Automatic Dry Chemical Extinguishing Systems</td>
</tr>
<tr>
<td>Automatic; actuated by thermal detectors or by manual pull stations</td>
</tr>
<tr>
<td>Underground fuel station (N150/W170)</td>
</tr>
<tr>
<td>Automatic Fire Suppression Systems on liquid fueled vehicles</td>
</tr>
<tr>
<td>Individual automatic fire suppression systems installed on applicable liquid-fueled vehicles, as determined by a fire risk assessment performed in accordance with NFPA 122</td>
</tr>
<tr>
<td>Surface and underground locations used for hazardous waste management, as documented in WIPP facility files</td>
</tr>
</tbody>
</table>
Equipment Description and Capabilities

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Description and Capabilities</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Systems</td>
<td>NFPA water-based fire suppression systems</td>
<td>Water Pumphouse (Building 456), Guard and Security Building (Building 458), Waste Handling Building (Building 411, CH Bay, RH Bay, and Overpack Repair Areas only), TRUPACT Maintenance Building (Building 412), Exhaust Shaft Filter Building (Building 413), NFB (Building 416), SRB (Building 417), and CAAs (Buildings 474A and 474B)</td>
</tr>
<tr>
<td>Water Tanks, Hydrants</td>
<td>Fire suppression water supply; one 180,000-gallon capacity tank, plus a second tank with 100,000-gallon reserve</td>
<td>Tanks are at southwestern edge of WIPP facility; pipelines and hydrants are throughout the surface</td>
</tr>
<tr>
<td>Water Pumphouse</td>
<td>Fire suppression water supply; pumps are minimally rated at 125 pounds per square inch, 1,500 gallons per minute centrifugal pump, one with electric motor drive, the other with diesel engine; pressure maintenance jockey pump</td>
<td>Water Pumphouse (Building 456)</td>
</tr>
<tr>
<td>Personal Protection Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head Lamps</td>
<td>Mounted on hard hat; battery operated</td>
<td>Each person underground</td>
</tr>
<tr>
<td>Underground Self-Rescuer Units</td>
<td>Short-term self-rescue devices per 30 CFR 57.15030</td>
<td>Each person underground</td>
</tr>
<tr>
<td>Self-Contained Self-Rescuer</td>
<td>Air supply; a minimum of 12 caches in the underground; self-contained rescue units shall be adequate to protect an individual for one hour or longer or, alternatively, sufficient to allow the employee time to reach an additional self-contained self-rescue device in the underground per NMSA 69-8-16</td>
<td>Cached throughout the underground</td>
</tr>
<tr>
<td>Mine Rescue Self-Contained Breathing Apparatus (SCBA)</td>
<td>Oxygen supply; 4-hour closed circuit units consistent with 30 CFR 49.6; a minimum of 12 units, one for each Mine Rescue Team member</td>
<td>Safety and Emergency Services Facility (Building 452, Mine Rescue Training Room)</td>
</tr>
<tr>
<td>Fire Department Self-Contained Breathing Apparatus (SCBA)</td>
<td>Air supply; a minimum of 12 units; SCBAs shall meet the minimum requirements established per NFPA 1981</td>
<td>Surface Fire Trucks and Rescue Truck; Underground Rescue Cart</td>
</tr>
<tr>
<td>General Plant Emergency Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Lighting</td>
<td>For employee evacuation, and fire/spill containment; linked to main power supply, and selectively linked to back up diesel power supply and/or battery-backed power supply</td>
<td>Waste Handling Building (Building 411); TRUPACT Maintenance Building (Building 412), Exhaust Shaft Filter Building (Building 413), NFB (Building 416), and SRB (Building 417)</td>
</tr>
<tr>
<td>Backup Power Sources</td>
<td>A minimum of two diesel generators, and battery-powered uninterruptible power supply (UPS)</td>
<td>Generators are located on the surface. UPS is located at the essential loads</td>
</tr>
<tr>
<td>Equipment</td>
<td>Description and Capabilities</td>
<td>Location</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Emergency Hoist</td>
<td>Hoist in Air Intake Shaft</td>
<td>Air Intake Shaft (Building 361)</td>
</tr>
<tr>
<td>Emergency Showers</td>
<td>For emergency flushing of chemical contact or injury</td>
<td>Waste Handling Building (Building 411) is served by the decontamination shower trailer located north of Building 411, in front of Building 952, between Buildings 243 and 455; and CAAs (Building 474A)</td>
</tr>
<tr>
<td>Emergency Eyewash Equipment</td>
<td>For emergency flushing of affected eyes</td>
<td>Waste Handling Building (Building 411, RH Bay, Site Derived Waste Area, Waste Shaft Collar, and Room 108 TRUPACT III only), TRUPACT Maintenance Building (Building 412), Exhaust Shaft Filter Building (Building 413), NFB (Building 416), SRB (Building 417), CAAs, and SAAs</td>
</tr>
<tr>
<td>Overpack containers for TRU Mixed Waste</td>
<td>85 Gallon drums SWBs TDOP</td>
<td>Warehouse Annex (Building 481)</td>
</tr>
<tr>
<td>Aquaset or Cement</td>
<td>Material for solidification of liquid waste generated as a result of firefighting water or decontamination solutions</td>
<td>Surface Connex A, located south of Waste Handling Building (Building 411)</td>
</tr>
<tr>
<td>TDOP Upender</td>
<td>Upender facilitates overpacking standard waste boxes into TDOPs</td>
<td>Waste Handling Building (Building 411)</td>
</tr>
<tr>
<td>Nonhazardous Decontaminating Agents</td>
<td>For decontamination of surfaces, equipment, and personnel</td>
<td>Waste Handling Building (Building 411); Surface Connex A, located south of Building 411</td>
</tr>
</tbody>
</table>
FIGURES
Figure D-1
WIPP Surface Structures
<table>
<thead>
<tr>
<th>BLDG./FAC. #</th>
<th>DESCRIPTION</th>
<th>BLDG./FAC. #</th>
<th>DESCRIPTION</th>
<th>BLDG./FAC. #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3241</td>
<td>EQUIPMENT SHELTER</td>
<td>3284</td>
<td>SALT HANDLING SHAFT HOUSE</td>
<td>3475</td>
<td>GATEHOUSE</td>
</tr>
<tr>
<td>3242</td>
<td>GUARD SHACK</td>
<td>3284A</td>
<td>MINING OPERATIONS</td>
<td>3480</td>
<td>VEHICLE FUEL STATION</td>
</tr>
<tr>
<td>3243</td>
<td>SALT HANDLING TRUCKS SHELTER</td>
<td>3411</td>
<td>WASTE HANDLING BUILDING</td>
<td>3481</td>
<td>WAREHOUSE ANNEX</td>
</tr>
<tr>
<td>3245</td>
<td>TRUPLANT TRACK SHELTER</td>
<td>3412</td>
<td>TRUPLANT MAINTENANCE BUILDING</td>
<td>3486</td>
<td>ENGINEERING BUILDING</td>
</tr>
<tr>
<td>3246</td>
<td>TRUPLANT STORAGE SHELTER</td>
<td>3413</td>
<td>EXHAUST SHAFT FILTER BUILDING</td>
<td>3489</td>
<td>TRAINING BUILDING</td>
</tr>
<tr>
<td>3253</td>
<td>13.8 KV SWITCHGEAR 25P-SW15/1</td>
<td>3413A</td>
<td>MONITORING STATION A</td>
<td>3494</td>
<td>SANDIA TEST WELL</td>
</tr>
<tr>
<td>3254.1</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-1</td>
<td>3413B</td>
<td>MONITORING STATION A</td>
<td>3497</td>
<td>A/S MONITORING</td>
</tr>
<tr>
<td>3254.2</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-2</td>
<td>3414</td>
<td>WATER CHILLER FACILITY & BLOG</td>
<td>3498</td>
<td>VOC AIR MONITORING STATION</td>
</tr>
<tr>
<td>3254.3</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-3</td>
<td>3451</td>
<td>SUPPORT BUILDING</td>
<td>3499</td>
<td>VOC LAB TRAILER</td>
</tr>
<tr>
<td>3254.4</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-4</td>
<td>3452</td>
<td>SAFETY & EMERGENCY SERVICES FACILITY</td>
<td>3490</td>
<td>WORK CONTROL TRAILER</td>
</tr>
<tr>
<td>3254.5</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-5</td>
<td>3453</td>
<td>WAREHOUSE/SHOPS BUILDING</td>
<td>3491</td>
<td>PROCUREMENT/PURCHASING</td>
</tr>
<tr>
<td>3254.6</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-6</td>
<td>3455</td>
<td>AUXILIARY WAREHOUSE BUILDING</td>
<td>3492</td>
<td>TRAILER</td>
</tr>
<tr>
<td>3254.7</td>
<td>AREA SUBSTATION NO. 2 25P-SW15-7</td>
<td>3456</td>
<td>WATERS PUMP HOUSE</td>
<td>3493</td>
<td>MODULAR OFFICE COMPLEX</td>
</tr>
</tbody>
</table>

Figure D-1a

Legend to Figure D-1
Figure D-1-NFB
WIPP Surface Structures with Building 416
<table>
<thead>
<tr>
<th>BLDG. / FAC. #</th>
<th>DESCRIPTION</th>
<th>BLDG. / FAC. #</th>
<th>DESCRIPTION</th>
<th>BLDG. / FAC. #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>EQUIPMENT SHED</td>
<td>46A</td>
<td>MINING OPERATIONS</td>
<td>475</td>
<td>GATEHOUSE</td>
</tr>
<tr>
<td>411</td>
<td>GUARD SHACK</td>
<td>480</td>
<td>WASTE HANDLING BUILDING</td>
<td></td>
<td>VEHICLE FUEL STATION</td>
</tr>
<tr>
<td>412</td>
<td>SALT HANDLING TRUCKS SHLETER</td>
<td>481</td>
<td>TRASH COMPACTOR BUILDING</td>
<td></td>
<td>WAREHOUSE ANNEX</td>
</tr>
<tr>
<td>413</td>
<td>TRASH COMPACTOR SHLETER</td>
<td>486</td>
<td>EXHAUST STACK FILTER BUILDING</td>
<td></td>
<td>ENGINEERING BUILDING</td>
</tr>
<tr>
<td>413A</td>
<td>MONITORING STATION A</td>
<td>489</td>
<td>TRAINING BUILDINGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>413B</td>
<td>13.8 KV SWITCHGEAR 25-5P.SW15/1</td>
<td>81-16</td>
<td>SANDA TEST WELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>AREA SUBSTATION NO. 1 25P-SW15.1</td>
<td>9902</td>
<td>WASTE CHEMICAL FACILITY & BLDG</td>
<td></td>
<td>TRAILER</td>
</tr>
<tr>
<td>414A</td>
<td>AREA SUBSTATION NO. 2 75P-SW15.2</td>
<td>9903</td>
<td>NEW FILTER BUILDING</td>
<td></td>
<td>TRAILER</td>
</tr>
<tr>
<td>417</td>
<td>BLDG. # 2 SUBSTATION NO. 2 75P-SW15.3</td>
<td>9904</td>
<td>SALT REDUCTION BUILDING</td>
<td></td>
<td>TRAILER</td>
</tr>
<tr>
<td>417A</td>
<td>AREA SUBSTATION NO. 3 25P-SW15.4</td>
<td>9917</td>
<td>SUPPORT BUILDING</td>
<td></td>
<td>ASG MONITORING</td>
</tr>
<tr>
<td>417B</td>
<td>AREA SUBSTATION NO. 4 25P-SW15.5</td>
<td>9918A</td>
<td>SAFETY & EMERGENCY SERVICES FACILITY</td>
<td></td>
<td>VOC AIR MONITORING STATION</td>
</tr>
</tbody>
</table>
Figure D-2
Spatial View of the WIPP Facility
Figure D-2-S#5
Spatial View of the WIPP Facility (with S#5)
Figure D-3
WIPP Underground Facilities
Figure D-34
Underground Escape and Evacuation Map
Figure D-45
Fire-Water Distribution System
Figure D-45-NFB
Fire-Water Distribution System with Building 416
Figure D-45-S#5
Fire-Water Distribution System (with S#5)
Figure D-6
WIPP On-Site Assembly Areas and Off-Site Staging Areas
Figure D-6-NFB
WIPP On-Site Assembly Areas and Off-Site Staging Areas with Building 416
Figure D-6b

RH Bay Hot Cell Evacuation Route
Figure D-6c D-7
Evacuation Routes in the Waste Handling Building
Figure D-7
Designated Underground Assembly Areas
Figure D-8
WIPP Site Evacuation Map
Figure D-8a
WIPP Site Evacuation Routes

Maps Data: Google, Imagery ©2021 CNES / Airbus, Landsat / Copernicus, Maxar Technologies, NIMA/US, USDA Farm Service Agency, Map data ©
ATTACHMENT E

INSPECTION SCHEDULE, PROCESS AND FORMS
ATTACHMENT E

INSPECTION SCHEDULE, PROCESS AND FORMS

TABLE OF CONTENTS

Introduction ... 3

E-1 Inspection Schedule .. 3
 E-1a General Inspection Requirements .. 5
 E-1a(1) Types of Problems ... 6
 E-1a(2) Frequency of Inspections ... 6
 E-1a(3) Monitoring Systems ... 6
 E-1b Specific Process Inspection Requirements .. 7
 E-1b(1) Container Inspection ... 7
 E-1b(2) Miscellaneous Unit Inspection ... 8

References .. 9
LIST OF FIGURES

Figure______________________________Title

Figure E-1 Typical Inspection Checklist
Figure E-2 Typical Logbook Entry

LIST OF TABLES

Table Title

Table E-1 Inspection Schedule/Procedures
Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures
Table E-2 Monitoring Schedule
ATTACHMENT E

INSPECTION SCHEDULE, PROCESS AND FORMS

Introduction

This Permit Attachment describes the facility inspections (including container inspections) that are conducted to detect malfunctions, deterioration, operator errors, and discharges that may cause or lead to releases of hazardous waste or hazardous waste constituents to the environment or that could be a threat to human health, malfunctions, and deterioration, operator errors, and discharges which may be causing—or may lead to—(1) release of hazardous waste constituents to the environment or (2) a threat to human health, in accordance with 20.4.1.500 New Mexico Administrative Code (NMAC) (incorporating Title 40 of the Code of Federal Regulations (CFR) §264.15(a)).

E-1 Inspection Schedule

Equipment instrumental in preventing, detecting, or responding to environmental or human health hazards, such as monitoring equipment, safety and emergency equipment, security devices, and operating or structural equipment are inspected. The equipment will be inspected for malfunctions, deterioration, potential for operator errors, and discharges which could lead to a release of hazardous waste constituents to the environment or pose a threat to human health.

The WIPP facility has Permittees have developed and will maintain a series of written procedures that include all the detailed inspection procedures and forms necessary to comply with 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)), during the Disposal Phase. Tables E-1 and E-1a list each item or system requiring inspection under these regulations, the inspection frequency, the organization responsible for the inspection, the applicable inspection procedure, and what to look for during the inspection. The regulations at 20.4.1.500 NMAC (incorporating 40 CFR §§264.15(b), 264.174, and 264.602) list requirements that are applicable to the Waste Isolation Pilot Plant (WIPP) facility. Permit Attachment D, Table D-2, Emergency Equipment Maintained at the Waste Isolation Pilot Plant, identifies the emergency equipment and corresponding locations to be inspected in accordance with Table E-1.

The Permittees maintain Operational procedures detailing the inspections required under 20.4.1.500 NMAC (incorporating 40 CFR §§264.15(a) and (b)), are maintained in electronic format on the WIPP computer network, in the Operating Record and, as appropriate, in controlled document locations at the WIPP facility. Frequency of inspections is discussed in detail in Section E-1a(2). Inspections are conducted often enough to identify problems in time to correct them before they pose a threat to human health or the environment and are based on regulatory requirements. The operational procedures assign responsibility for conducting the inspection, the frequency of each inspection, the types of problems to be watched for, what to do if items fail inspection, directions on record keeping, and inspector signature, date, and time. The operational procedures are maintained at the WIPP facility. Tables E-1 and E-1a summarize inspections, frequencies, responsible organizations, and the types of anticipated problems as well as the references for the operational procedures. Inspection records are maintained at the WIPP site for three years. Beginning with the effective date of this Permit, records that are over the three-year retention period are either maintained at the WIPP site facility or transferred to the WIPP Records Archive located in Carlsbad, NM.
Mexico until closure. The records maintained at the WIPP Records Archive are stored in facilities that are temperature and humidity controlled especially for the long term storage of records and readily retrievable and available for inspection.

Waste handling equipment and area inspections are typically controlled through established procedures and the results are recorded in logbooks or on data sheets: inspection forms. Operators are trained to consult the logbook to identify the status of any piece of waste handling equipment prior to its use. Once a piece of equipment is identified to be operable, a preoperational or pre-evolution inspection is initiated in accordance with the appropriate inspection procedure in Tables E-1, and E-1a, or in operational procedures. Inspection results as described below, are entered in the applicable logbook or inspection form.

Inspections include identifying malfunctions or deteriorating equipment and structures. Inspection results and data, including deficiencies, discrepancies, or needed repairs are recorded. A negative inspection result does not necessarily lead to a repair. A deficiency, such as low fluid level, may be corrected by the inspector immediately. A discrepancy, such as an increasing trend of a data point, may necessitate additional inspection prior to the next scheduled frequency. The actions taken (corrected, additional inspection, procurement action, or Action Request (AR) for repair submitted) are recorded on the inspection form, the WIPP automated Maintenance Management tracking program (CHAMPS) work order sheet, or the equipment logbook, whichever is applicable.

Items that are operational with restrictions are operated in accordance with applicable compensatory measures. Items that are not operational are scheduled for repair or replacement in accordance with work authorization procedures. In such cases, compensatory measures may be needed until the equipment is returned to service. These compensatory measures will provide an equivalent level of protection, be documented in WIPP facility files (e.g., equipment logbook, inspection form), and include an appropriate inspection schedule, when applicable.

Normally, the individual inspecting the equipment/system is not qualified to make repairs and consequently, prepares an AR if repairs are needed. The AR is tracked by the WIPP automated maintenance management tracking program: CHAMPS system through the work control process. When parts are received and work instructions are completed, the work order can be scheduled. The schedule is discussed daily to ensure facility configuration can support scheduled and work items and to allocate and coordinate with other facility activities the resources necessary in order to complete the items.

Work orders are released for work by the responsible organization. When repairs are complete the responsible organization tests the equipment to ensure the repairs corrected the problem, then closes out the work order, to and returns the equipment to an operational status for normal operations to resume. Implementation of these procedures constitutes compliance with 20.4.1.500 NMAC (incorporating 40 CFR §264.15(c)).

The Permittees meet the Requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.15(d)), are met by performing the inspections for each item or system included in Tables E-1 and E-1a. Beginning with the effective date of this Permit, the results of the inspections are maintained in the operating Operating record for three years and are then transferred to the WIPP Records Archive where they are maintained until closure. The inspection logs or summary records include the date and time of inspection, the name of the inspector, a notation of the observations made, and the date and nature of any repairs or other
remedial actions. Major pieces of waste handling equipment are inspected using proceduralized inspections. Current copies of inspection forms are maintained in the Operating Record on file at the WIPP facility. Non-administrative changes to inspections (i.e., changes that affect the frequency or content of the inspections schedules) to inspection forms must be submitted to the NMED in accordance with the appropriate portions of 20 NMAC 4.1.900 (incorporating 40 CFR §270.42). The status of these pieces of waste handling equipment is maintained recorded in an equipment logbook that is separate from the checklist. The logbook contains information regarding the condition of the equipment. Equipment operators are required, by the inspection checklist, to consult the logbook regarding the status of the equipment as the first activity in the inspection procedure. This logbook is maintained in the operating record.

CH Contact-handled (CH) transuranic (TRU) mixed waste equipment that is controlled by a logbook includes the waste handling forklifts, all waste handling cranes, the adjustable center of gravity lift fixture, the CH TRU waste underground transporter, the facility transfer vehicles, the trailer jockey, the Ten-Drum Overpack (TDOP) Updender, the Payload Transfer Station, and the push-pull attachment. RH Remote-handled (RH) TRU mixed waste equipment that is controlled by a logbook includes the 140/25-ton RH Bay overhead bridge crane, cask transfer cars, 25-ton cask unloading room crane, transfer cell shuttle car, RH Bay cask lifting yoke, facility grapple, 6.2-ton overhead hoist, facility cask rotating device, hot cell overhead powered manipulator, 15-ton hot cell crane, facility cask transfer car, 41-ton forklift, facility cask, and emplacement equipment. Inspections of the Cask Unloading Room, Hot Cell, Transfer Cell, Facility Cask Loading Room, and RH Bay and radiation monitoring equipment will be recorded on data sheets inspection forms. In addition to the inspections listed in Tables E-1 and E-1a, many pieces of equipment are subject to regular preventive maintenance, which includes more in-depth inspections of mechanical systems, load testing of lifting systems, calibration of measurement equipment and other actions as recommended by the equipment manufacturer and/or as required by DOE Orders. These preventive maintenance activities along with the Permit-required inspections in Tables E-1 and E-1a, make mechanical failure of waste handling equipment unlikely. The WIPP Safety Analysis Report Documented Safety Analysis (DOE/WIPP-3372, 1999) and the WIPP Remote-Handled Waste Preliminary Safety Analysis Report (RH PSAR) (DOE, 2000) contain the results of a systematic analysis of waste handling equipment and the hazards associated with potential mechanical failures. Equipment subject to failures that cannot practically be mitigated is retained for analysis and is the basis for contingency planning.

The inspection procedures maintained in the Operating Record kept on file at the WIPP facility for operational and preventive maintenance are implemented to assure the equipment is maintained. An example equipment inspection checklist and a typical logbook form are shown as Figures E-1 and E-2. Actual checklists or forms are maintained within the Operating Record.

E-1a General Inspection Requirements

Tables E-1, and E-1a, and E-2 of this Permit Attachment list the major categories of monitoring equipment, safety and emergency systems, security devices, and operating and structural equipment that are important to the prevention or detection of, or the response to, environmental or human health hazards caused by hazardous waste. These systems may include numerous subsystems. These systems are inspected according to the frequency frequencies listed in Tables E-1 and E-1a, a copy of which is maintained at the WIPP facility. The frequency of inspections, which is are based on the nature of the equipment or the hazard and regulatory requirements. When in use, daily inspections are made of areas subject to spills, such as TRU mixed waste loading and unloading areas in the WHB Unit, looking for deterioration in structures, mechanical items, floor coatings, equipment, malfunctions, etc., in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)(4)).
As required in 20.4.1.500 NMAC (incorporating 40 CFR §264.33), the WIPP facility inspection procedures for communication and alarm systems, fire-protection equipment, and spill control and decontamination equipment include provisions for testing and maintenance to ensure that the equipment will be operable in an emergency.

E-1a(1) Types of Problems

The inspections for the systems, equipment, and structures, etc., listed in Tables E-1 and E-1a, include the types of problems (e.g., malfunctions, visible cracks in tubing, coatings, or welds, and deterioration) to be looked for during the inspection of each item or system, if applicable, and are in compliance with 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)(3)).

E-1a(2) Frequency of Inspections

Tables E-1, and E-1a, and E-2 of this Permit Attachment list the inspection frequencies and monitoring schedule for equipment and systems subject to the 20.4.1 NMAC hazardous waste management requirements. The frequency is based on the rate of possible deterioration of the equipment and the probability of an environmental or human health incident if the deterioration or malfunction, or any operator error, goes undetected between inspections. When in use, daily inspections are made of areas subject to spills, such as TRU mixed waste loading and unloading areas in the Waste Handling Building (WHB) Unit, and involve looking for deterioration in structures, mechanical items, floor coatings, equipment, malfunctions, etc., in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)(4)). Areas subject to spills, such as loading and unloading areas, are inspected daily when in use, consistent with the requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)(4)).

When RH TRU mixed waste is present in the RH Complex, inspections are conducted visually and/or using closed-circuit video cameras in order to manage worker dose and to minimize occupational radiation exposures to as low as reasonably achievable (ALARA). More extensive inspections of these areas are performed at least annually during routine maintenance periods and when RH TRU mixed waste is not present, as identified in Table E-1a.

E-1a(3) Monitoring Systems

There are two monitoring systems used at the WIPP facility to provide assurance that facility systems are operating correctly, that areas can be used safely, and that there have been no releases of hazardous waste constituents. These systems are shown in Table E-2 and include the geomechanical monitoring system and the central monitoring system (CMS). The geomechanical monitoring system is used to assess the condition of mined excavations to assure no identification of unsafe conditions are allowed to develop. The CMS continuously assesses the status of the fixed radiation monitoring equipment, electrical power, fire alarm systems, ventilation system, and other facility systems including water tank levels. In addition, the CMS collects data from the meteorological monitoring system. Key equipment monitored by these two systems are identified in Table E-1 and include a specified inspection frequency.
E-1b Specific Process Inspection Requirements

The regulation at 20.4.1.500 NMAC (incorporating 40 CFR §264.15(b)(4)), requires inspections of specific portions of a facility, rather than the general facility. These include container storage areas and miscellaneous units. Both are addressed below.

E-1b(1) Container Inspection

The Permittees use containers to manage TRU mixed waste at the WIPP facility. These containers are described in Permit Part 3 Section 3.3.1, and Permit Attachment A1, Section A1-1b. Off-site waste that will be managed and stored as CH TRU mixed waste will arrive in 55-gallon drums arranged as seven (7) packs, in Ten Drum Overpacks (TDOP), in 85-gallon drums arranged as four (4) packs, in 100-gallon drums arranged as three (3) packs, in standard waste boxes (SWB), in standard large box 2s (SLB2s) or shielded containers as (3)-packs. The waste containers will be visually inspected to ensure that the waste containers are in good condition and that there are no signs that a release has occurred. This visual inspection shall not include the center drums of seven-packs and waste containers positioned such that visual observation is precluded due to the arrangement of waste assemblies on the facility pallets. If CH TRU mixed waste handling operations should stop for any reason with containers located in the TRUPACT-IICH Package Unloading Dock (e.g., at the TRUDOCK's storage area of the WHB Unit) or in room Room 108) while still in the Contact-Handled Packages, primary waste container inspections could not be accomplished until the containers of waste are removed from the shipping containers.

As described in Permit Attachment A1, Section A1-1d(3), off-site waste that will be managed and stored as RH TRU mixed waste will arrive in containers inside Nuclear Regulatory Commission (NRC)-certified casks designed to provide shielding and facilitate safe handling. Canisters, will be loaded singly into an RH-TRU 72-B cask. Drums will be loaded into a CNS 10-160B cask. The cask will be visually inspected upon arrival. Because RH TRU mixed waste is stored in the Parking Area Unit in sealed casks, there are no additional requirements for engineered secondary containment systems. Following removal of the canisters and drums, the interior of the cask will be inspected and surveyed for evidence of contamination that may have occurred during transport.

Off-site waste that will be managed and stored as RH TRU mixed waste is managed and stored in the RH Complex of the WHB. The RH Complex includes the following: RH Bay, the Cask Unloading Room, the Hot Cell, the Transfer Cell, and the Facility Cask Loading Room. As RH TRU mixed waste is held in canisters within a canister rack the physical inspection of the drum or canister is not possible. Inspections of RH TRU mixed waste in these areas occurs remotely via closed-circuit cameras a minimum of once weekly when stored waste is present. Because RH TRU mixed waste is in sealed casks, there are no additional requirements for engineered secondary containment systems. However, the floors in the RH Complex (including the RH Bay, Facility Cask Loading Room and Cask Unloading Room) are coated concrete and during normal operations (i.e., when waste is present), the floor of the RH Complex is inspected visually or by using close-circuit cameras on a weekly basis to verify that it is in good condition and free of visible cracks and gaps.

Inspections of RH TRU mixed waste containers stored in the Hot Cell and Transfer Cell are conducted using remotely operated cameras. RH Remote-handled TRU mixed waste in the Hot Cell is stored in either drums or canisters. The containers in the Hot Cell are inspected to
ensure that they are in acceptable condition. RH remote-handled TRU mixed waste in the Transfer Cell is stored in the RH-TRU 72-B cask or shielded insert; therefore, inspections in this area focus on the integrity of the cask or shielded insert. RH remote-handled TRU mixed waste in the Facility Cask Loading Room is stored in the facility cask; therefore, inspections in this area focus on the integrity of the facility cask.

Inspections will be conducted in the Parking Area Unit (PAU) at a frequency not less than once weekly when waste is present and focus on the inventory and integrity of the shipping containers and the spacing between trailers carrying the CH or RH packages. This aisle spacing is maintained at a minimum of four feet. These inspections are applicable to loaded Contact-Handled CH and Remote-Handled RH Packages. The perimeter fence located at the lateral limit of the Parking Area Unit, coupled with personnel access restrictions into the WHB Unit, will provide the needed security. The perimeter fence and the southern border of the WHB shall mark the lateral limit of the Parking Area Unit. Radiologically controlled areas can be established temporarily with barricades. More permanent structures can be installed. The western boundary can be established with temporary barricades since this area is within the perimeter fence. Access to radiologically controlled areas will only be permitted to personnel who have completed General Employee Radiological Training (GERT), a program defined by the Permittees, or escorted by personnel who have completed GERT. This program ensures that personnel have adequate knowledge to understand radiological posting they may encounter at the WIPP site. The fence of the Radiologically Controlled Area, south from the WHB airlocks, was moved to provide more maneuvering space for the trucks delivering waste. Since TRU mixed waste to be stored in the Parking Area Unit PAU will be in sealed Contact-Handled CH or Remote-Handled RH Packages, there will be no additional requirements for engineered secondary containment systems. Inspections of the Contact-Handled and Remote-Handled Packages stored in the Parking Area Unit shall be conducted at a frequency no less than once weekly and will focus on the inventory and integrity of the shipping containers and the spacing between trailers carrying the Contact-Handled or Remote-Handled Packages. This spacing will be maintained at a minimum of four feet.

Container inspections will be included as part of the surface TRU mixed waste handling areas (i.e. Parking Area Unit and WHB Unit) inspections described in Tables E-1 and E-1a. These inspections will also include the Derived Waste Storage Areas of the WHB Unit. The Derived Waste Storage Areas will consist of containers of 55 or 85-gallon drums or SWBs for CH-TRU mixed waste and 55-gallon drums for RH-TRU mixed waste. A Satellite accumulation area (SAA) may be required in an area adjacent to the TRU Docks for CH TRU mixed waste. An SAA may also be required in the RH Bay and Hot Cell for RH TRU mixed waste. These SAAs will be set up on an as needed basis at or near the point of generation and the derived waste will be discarded into the active derived waste container. All SAA satellite accumulation areas will be inspected in accordance with 20.4.1.300 NMAC (incorporating 40 CFR §262.17).

E-1b(2) Miscellaneous Unit Inspection

The regulations at 20.4.1.500 NMAC (incorporating 40 CFR §264.602), requires that inspections required in the inspection requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.15 and §264.33), as well as any additional inspection requirements needed to protect human health and the environment, be met. The requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.15 and §264.33) are discussed in Section E-1 of this Permit Attachment, along with how the WIPP facility complies with those requirements for standard types of inspections. Inspection
frequencies for geomechanical monitoring equipment are provided in Table E-1. The monitoring schedule for the geomechanical instrumentation system is given addressed in Table E-2. As described in Permit Attachment A2, Section A2-b(2), the geomechanical monitoring program at the WIPP facility is an integral part of the ground-control program. Hazardous waste disposal units, access drifts, the Waste Shaft Station, and the underground transport route are monitored to provide confirmation of structural integrity. Geomechanical data on the performance of the repository shafts is collected as part of the shaft inspections. The results of geomechanical monitoring are reported annually, as identified in Permit Attachment A2, Section A2-b(2).

References

TYPICAL EQUIPMENT WEEKLY CHECK LIST

<table>
<thead>
<tr>
<th>ITEM INSPECTED</th>
<th>Condition</th>
<th>Comments/Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Checks: (examples)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator fluid level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic transmission fluid level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operate all valves/check gauges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency brake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel level (> ¾ full)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pressure (at warm idle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirens, horn, & back-up alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterioration Checks: (examples)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan belts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery (terminals, cables)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run generator 5 min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hose, nozzles & valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaks/Spills Checks: (examples)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaks around pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foam tank level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Equipment: (examples)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspect SCBAs (> 4050 psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand tools & equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma Kit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- OK
- Adjustment Made
- Repairs Required

AR Written [] Yes [] No AR # ______________

(check or complete appropriate information)

- Inspected by: ____________________________
 Print Name ____________________________
 Signature ____________________________
 Time/Date ____________________________

- Inspected by: ____________________________
 Print Name ____________________________
 Signature ____________________________
 Time/Date ____________________________

- Reviewed by: ____________________________
 Print Name ____________________________
 Signature ____________________________
 Time/Date ____________________________

- Comments: __

NOTE: All items that are mandatory for every inspection form are shown in bold.

Figure E-1

Typical Inspection Checklist
<table>
<thead>
<tr>
<th>HOUR METER READING</th>
<th>EQUIPMENT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFICIENCIES NOTED</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE OPS COMPLETED PER (Procedure Number) SAT ______ PROBLEMS NOTED ____
CORRECTIVE ACTIONS TAKEN: ______________________

OPERATOR SIGNATURE DATE TIME SUPERVISOR SIGNATURE/DATE

NOTE: All items that are mandatory for every inspection form are shown in bold.

Figure E-2
Typical Logbook Entry
TABLES
<table>
<thead>
<tr>
<th>System/Equipment Name</th>
<th>Responsible Organization</th>
<th>Inspection Frequency</th>
<th>Procedure Number and Inspection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Intake Shaft Hoist</td>
<td>Underground Operations</td>
<td>Preoperational-c</td>
<td>WP 04-HO1004 Inspecting for Deterioration-h, Safety Equipment, Communication Systems, and Mechanical Operability-m in accordance with Mine Safety and Health Administration (MSHA) requirements</td>
</tr>
<tr>
<td>Ambulance (Surface) and Medical Cart (Underground)</td>
<td>Fire Department</td>
<td>Weekly</td>
<td>WP 12-FP0030 Inspecting for Mechanical Operability-m, Deterioration-h, and Required Equipment-n</td>
</tr>
<tr>
<td>Adjustable Center of Gravity Lift Fixture</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1410 Inspecting for Mechanical Operability-m and Deterioration-h</td>
</tr>
<tr>
<td>Backup Power Supply Diesel Generators</td>
<td>Facility Operations</td>
<td>Monthly</td>
<td>WP 04-ED1301 Inspecting for Mechanical Operability-m and Leaks/Spills by starting and operating both generators. Results of this inspection are logged in accordance with WP 04-AD3008 recorded on EA04AD3008:47-0</td>
</tr>
<tr>
<td>Facility Inspections (Water Diversion Berms)</td>
<td>Facility Engineering</td>
<td>Annually</td>
<td>WP 10-WC3008 Inspecting for Damage, Impediments to water flow, and Deterioration-h</td>
</tr>
<tr>
<td>Central Monitoring Systems (CMS)</td>
<td>Facility Operations</td>
<td>Continuous</td>
<td>Automatic Self-Checking</td>
</tr>
<tr>
<td>Contact-Handled (CH) TRU Underground Transporter</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1603 WP 05-WH1604 Inspecting for Leaks/Spills, Mechanical Operability-m, Deterioration-h, and area around transporter clear of obstacles, and on-board automatic fire suppression system</td>
</tr>
<tr>
<td>Conveyance Loading Car</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1406 Inspecting for Mechanical Operability-m, Deterioration-h, path clear of obstacles, and guards in the proper place</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspectiona Frequency</td>
<td>Procedure Number and Inspection Criteriah</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Facility Transfer Vehicle</td>
<td>Waste Handling Operations</td>
<td>Preoperational-“Pre-evolution”</td>
<td>WP 05-WH1204 Pre-evolution Checks and Operating Instructions, Inspecting for Mechanical Operability, Deterioration; path clear of obstacles, and guards in the proper place</td>
</tr>
<tr>
<td>Emergency Lighting</td>
<td>Fire Department</td>
<td>Monthly/annually Annually</td>
<td>WP 12-FP0051 Inspecting for Deterioration, and Operability of indicator lights in accordance with NFPA 101</td>
</tr>
<tr>
<td>Exhaust Shaft</td>
<td>Underground Operations</td>
<td>Quarterly</td>
<td>PM041099 Inspecting for Deterioration and Leaks/Spills</td>
</tr>
<tr>
<td>Eye Wash and Shower Equipment</td>
<td>Equipment Custodian Environmental, Safety, Industrial Health</td>
<td>Weekly</td>
<td>WP 12-IS1832 Inspecting for Deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-annually</td>
<td>WP 12-IS1832 Inspecting for Deterioration and Fluid Levels–Replace as Required</td>
</tr>
<tr>
<td>Fire Detection and Alarm System</td>
<td>Fire Protection Engineering</td>
<td>Semi-annually/annually Annually</td>
<td>WP 12-FP0027 Inspecting for Deterioration and Operability of underground fuel station fire suppression system in accordance with NFPA 17 (semi-annual inspection); Inspecting for Deterioration and Operability of the alarm panel and transmitter, audible/visual alarm devices, detectors, and pull stations in accordance with NFPA 72 (annual inspection)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monthly/quarterly/annually</td>
<td>WP 12-FP0028 Inspecting for Deterioration, and Operability of the alarm panel and transmitter, audible/visual alarm devices, detectors, and pull stations in accordance with NFPA 72</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspectiona Frequency</td>
<td>Procedure Number and Inspection Criteriah</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fire Extinguishers</td>
<td>Fire Department</td>
<td>Monthly</td>
<td>WP 12-FP0036 Inspecting for Deteriorationb, Leaks/Spills, Expiration, seals, fullness, and pressure</td>
</tr>
<tr>
<td>Fire Hoses</td>
<td>Fire Department</td>
<td>Annually (minimum)</td>
<td>WP 12-FP0031 Inspecting for Deteriorationb and Leaks/Spills</td>
</tr>
<tr>
<td>Fire Hydrants</td>
<td>Fire Protection Engineering</td>
<td>Semi-annual/annually Annually</td>
<td>WP 12-FP0034 Inspecting for Deteriorationb and Leaks/Spills</td>
</tr>
<tr>
<td>Fire Pumps</td>
<td>Fire Protection Engineering</td>
<td>Weekly</td>
<td>WP 12-FP0026 Inspecting for Deteriorationb, Leaks/Spills, fire water valve position(s), and panel light status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually (Electric Pump)</td>
<td>WP 12-FP5113 Inspecting for Deteriorationb, operability, flow, discharge pressure, suction pressure, and pump speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually (Diesel Pump)</td>
<td>WP 12-FP5114 Inspecting for Deteriorationb, operability, flow, discharge pressure, suction pressure, and pump speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually (Electric Pump)</td>
<td>WP 12-FP5113 Inspecting for Deteriorationb, operability, flow, discharge pressure, suction pressure, and pump speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually (Diesel Pump)</td>
<td>WP 12-FP5114 Inspecting for Deteriorationb, operability, flow, discharge pressure, suction pressure, and pump speed</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspection Frequency</td>
<td>Procedure Number and Inspection Criteria</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fire Sprinkler Systems</td>
<td>Fire Protection Engineering</td>
<td>Monthly</td>
<td>WP 12-FP0023, WP 12-FP0063, and WP 12-FP0064 Inspecting for Deterioration, Leaks/Spills, water pressures, and main drain test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly</td>
<td>WP 12-FP0024, WP 12-FP0063, and WP 12-FP0064 Inspecting for Deterioration, Leaks/Spills, water pressures, and main drain test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually</td>
<td>WP 12-FP0025, WP 12-FP0063, and WP 12-FP0064 Inspecting for Deterioration, Leaks/Spills, water pressures, and main drain test</td>
</tr>
<tr>
<td>Fire and Emergency Response Vehicles (Fire Trucks, Fire Suppression Cart, and Rescue Cart)</td>
<td>Fire Department</td>
<td>Weekly</td>
<td>WP 12-FP0033 Inspecting for Mechanical Operability, Deterioration, Leaks/Spills, and Required Equipment</td>
</tr>
<tr>
<td>Electric Forklifts Used for Waste Handling</td>
<td>Waste Operations</td>
<td>Preoperationalc</td>
<td>WP 05-WH1401, WP 05-WH1402, WP 05-WH1403 Inspecting for Leaks/Spills, Mechanical Operability, Deterioration, and presence of on-board fire extinguisher</td>
</tr>
<tr>
<td>Diesel Forklifts Used for Waste Handling (Electric and Diesel forklifts, Push-Pull Attachment)</td>
<td>Waste Handling Operations</td>
<td>Preoperationalc</td>
<td>WP 05-WH1201, WP 05-WH1207, WP 05-WH1401, WP 05-WH1402, WP 05-WH1403, WP 05-WH1412 Inspecting for Leaks/Spills, Mechanical Operability, Deterioration, and on-board automatic fire suppression system</td>
</tr>
<tr>
<td>Automatic on-board fire suppression systems</td>
<td>Fire Protection Engineering</td>
<td>Monthly/Semi-annually</td>
<td>WP 12-FP0085, WP 12-FP0060 Inspecting for Mechanical Operability and Deterioration</td>
</tr>
<tr>
<td>Hazardous Material Response Equipment</td>
<td>Fire Department</td>
<td>Quarterly, Monthly</td>
<td>WP 12-FP0033 Inspecting for Deterioration, and Required Equipment</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspectiona Frequency</td>
<td>Procedure Number and Inspection Criteria</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Head Lamps</td>
<td>Facility Personnel</td>
<td>Daily</td>
<td>Head lamps are operated daily and are repaired or replaced upon failure</td>
</tr>
<tr>
<td>Miners First Aid Station</td>
<td>Fire Department</td>
<td>Quarterly</td>
<td>WP 12-FP0035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspecting for Required Equipmentn</td>
</tr>
<tr>
<td>Mobile Phones</td>
<td>Facility Personnel</td>
<td>Daily</td>
<td>Mobile Phones are operated daily and are repaired or replaced upon failure</td>
</tr>
<tr>
<td>Mine Pager Phones (between surface and underground)</td>
<td>Facility Operations</td>
<td>Monthly/Annually</td>
<td>WP 04-PC3017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP 04-PC3018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Testing of Mine Pager Phones at essential locations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspecting for Air Quality Monitoring Equipment Functional Check</td>
</tr>
<tr>
<td>Perimeter Fence, Gates, Signs</td>
<td>Security</td>
<td>Daily</td>
<td>WP 17-SS1023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspecting for Deteriorationb and Posted Warnings</td>
</tr>
<tr>
<td>Mine Rescue Self-Contained Breathing Apparatus (SCBA)</td>
<td>Mine Rescue Team</td>
<td>30 days</td>
<td>WP 12-ER3007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspection for Deteriorationb and Pressureg</td>
</tr>
<tr>
<td>-Fire Department SCBA</td>
<td>Fire Department</td>
<td>Weekly/monthlyMonthly</td>
<td>WP 12-FP0029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspecting for Deteriorationb and Pressure</td>
</tr>
<tr>
<td>Site Notification System; Underground Evacuation Alarm System</td>
<td>Facility Operations</td>
<td>Monthly/Annually</td>
<td>WP 04-PC3017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WP 04-PC3018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Testing of PA and Underground Alarms</td>
</tr>
<tr>
<td>Radio Equipment</td>
<td>Facility Personnel</td>
<td>Daily</td>
<td>Radios are operated daily and are repaired or replaced upon failure</td>
</tr>
<tr>
<td>Salt Handling Shaft Hoist</td>
<td>Underground Operations</td>
<td>Preoperational c</td>
<td>WP 04-HO1002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inspecting for Deteriorationb, Safety Equipment, Communication Systems, and Mechanical Operabilitym in accordance with MSHA requirements</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspectiona Frequency</td>
<td>Procedure Number and Inspection Criteriah</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Self-Rescuers and Self-Contained Self-Rescuers</td>
<td>Underground Operations</td>
<td>Quarterly</td>
<td>WP 04-AU1026 Inspecting for Deterioration(^b) and Functionality in accordance with MSHA requirements</td>
</tr>
<tr>
<td>Surface CH TRU Mixed Waste Handling Area</td>
<td>Waste Handling Operations</td>
<td>Preoperational(^x) or Weekly</td>
<td>WP 05-WH1101 Inspecting for Deterioration(^b), Leaks/Spills, Required Aisle Space(^g), Posted Warning, Required Permit Part 2, Section 2.6.4 warning signs, Communication Systems, Container Condition, and Floor coating integrity</td>
</tr>
<tr>
<td>TRU Mixed Waste Decontamination Equipment</td>
<td>Waste Handling Operations</td>
<td>Annually</td>
<td>WP 05-WH1101 Inspecting for Required Equipment(^n)</td>
</tr>
<tr>
<td>Underground Openings—Roof Bolts and Travelways</td>
<td>Underground Operations</td>
<td>Weekly</td>
<td>WP 04-AU1007 Inspecting for Deterioration(^b) of Accessible Areas</td>
</tr>
<tr>
<td>Underground—Geomechanical Instrumentation System (GIS)</td>
<td>Geotechnical Engineering</td>
<td>Monthly</td>
<td>WP 07-EU1301 Inspecting for Deterioration(^b)</td>
</tr>
<tr>
<td>Underground TRU Mixed Waste Disposal Area</td>
<td>Waste Handling Operations</td>
<td>Preoperational (^c)</td>
<td>WP 05-WH1810 Inspecting for Deterioration(^b), Leaks/Spills, mine pager phones, equipment, unobstructed access, required Permit Part 2, Section 2.6.4 warning signs, debris, and ventilation</td>
</tr>
<tr>
<td>Uninterruptible Power Supply (Central UPS)</td>
<td>Facility Operations</td>
<td>Daily</td>
<td>WP 04-ED1542 Inspecting for Mechanical Operability(^m) and Deterioration(^b) with no malfunction alarms. Results of this inspection are logged in accordance with WP 04-AD3008-recorded on EA04AD3008-20-0</td>
</tr>
<tr>
<td>TDOP Upender</td>
<td>Waste Handling Operations</td>
<td>Preoperational (^x)Pre-evolution(^p)</td>
<td>WP 05-WH1010 Pre-evolution Checks and Operating Instructions, Inspecting for Mechanical Operability(^m) and Deterioration(^b)</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspection Frequency</td>
<td>Procedure Number and Inspection Criteria</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Waste Handling Cranes</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1407 Inspecting for Mechanical Operability-m, Deterioration-b, and Leaks/Spills</td>
</tr>
<tr>
<td>Waste Hoist</td>
<td>Underground Operations</td>
<td>Preoperational-c</td>
<td>WP 04-HO1003 Inspecting for Deterioration-b, Safety Equipment, Communication Systems, and Mechanical Operability-m, Leaks/Spills, in accordance with MSHA requirements</td>
</tr>
<tr>
<td>Water Tanks</td>
<td>Facility Operations</td>
<td>Daily</td>
<td>WP 04-AD3008 Inspecting for Deterioration-b, valve lineup, and water levels. Results of this inspection are logged in accordance with WP 04-AD3008, recorded on EA04AD3008-12-0 and EA04AD3008-13-0</td>
</tr>
<tr>
<td>Push-Pull Attachments</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1401, WP 05-WH1412 Inspecting for Damage-a, Mechanical Operability-m, and Deterioration-b</td>
</tr>
<tr>
<td>Trailer Jockey</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1405 Inspecting for Leaks/Spills, Mechanical Operability-m and Deterioration-b</td>
</tr>
<tr>
<td>Closure Bulkheads</td>
<td>Underground Operations</td>
<td>Semi-annually</td>
<td>PM000011, PM000045 Integrity and Deterioration-b of in Accessible Areas</td>
</tr>
<tr>
<td>Bolting Robot</td>
<td>Waste Handling Operations</td>
<td>Preoperational-c</td>
<td>WP 05-WH1203 Mechanical Operability-m</td>
</tr>
<tr>
<td>Yard Transfer Vehicle</td>
<td>Waste Handling Operations</td>
<td>Preoperational Pre-evolution-a</td>
<td>WP 05-WH1205 Pre-evolution Checks and Operating Instructions, Mechanical Operability-m, Deterioration-b, Path clear of obstacles and Guards in proper place</td>
</tr>
<tr>
<td>Payload Transfer Station</td>
<td>Waste Handling Operations</td>
<td>Preoperational Pre-evolution-a</td>
<td>WP 05-WH1208 Pre-evolution Checks and Operating Instructions, Mechanical Operability-m, Deterioration-b, and Guards in proper place</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspection Frequency</td>
<td>Procedure Number and Inspection Criteria</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Monorail Hoist Waste Handling Operations</td>
<td>Preoperational Pre-evolution</td>
<td>WP 05-WH1202 Pre-evolution Checks and Operating Instructions, Mechanical Operability, Deterioration, and Leaks/Spills</td>
<td></td>
</tr>
<tr>
<td>Bolting Station Waste Handling Operations</td>
<td>Preoperational c</td>
<td>WP 05-WH1203 Mechanical Operability, Deterioration, and Guards in proper place</td>
<td></td>
</tr>
</tbody>
</table>
Table E-1 (Continued)
Inspection Schedule/Procedures Notes

a Inspection may be accomplished as part of or in addition to regularly scheduled preventive maintenance inspections for each item or system. Certain structural systems of the WHB, and Waste Hoist and Station A are also subject to inspection following severe natural events including earthquakes, tornados, and severe storms. Structural systems include columns, beams, girders, anchor bolts and concrete walls.

b Deterioration includes: obvious visible cracks, erosion, salt build-up, damage, corrosion, loose or missing parts, malfunctions, and structural deterioration.

c “Preoperational” signifies that inspections are required prior to the first use during a calendar day. For calendar days in which the equipment is not in use, no inspections are required. For an area this includes: area is clean and free of obstructions (for emergency equipment); adequate aisle space; emergency and communications equipment is readily available, properly located and sign-posted, visible, and operational. For equipment, this includes: checking fluid levels, pressures, valve and switch positions, battery charge levels, pressures, general cleanliness, and that all functional components and emergency equipment is present and operational.

d These weekly inspections apply to container storage areas when containers of waste are present for a week or more.

e Inspections are performed per manufacturer’s maintenance instructions.

f Inspections and PM’s are not required for equipment that is out of service. However, if compensatory measures have been established to ensure an equivalent level of protection during the period that the equipment is out of service (e.g., required equipment/supplies from an out-of-service emergency vehicle have been temporarily relocated), appropriate inspections will be scheduled, conducted, and documented in the Operating Record, in accordance with Attachment E, Section E-1.

i Head Lamps, Mobile Phones, and Radios are not routinely “inspected.” They are typically used in day-to-day operations. They are used until they fail, at which time they are replaced and repaired.

j Fire extinguisher inspections are performed in accordance with NFPA 10.

k Surface CH TRU mixed waste handling areas include the Parking Area Unit PAU, the WHB unit, and unloading areas.

l No log forms are used for daily readings. However, readings that are out of tolerance are reported to the CMR and logged by CMR operator. Inspection includes daily functional checks of portable equipment.

m Mechanical Operability means that the equipment has been checked and is operating in accordance with site safety requirements (e.g., proper fluid levels and tire pressure; functioning lights, alarms, sirens, and power/battery units; and belts, cables, nuts/bolts, and gears in good condition), as appropriate.

n Required Equipment means that the equipment identified in Table D-2 is available and usable (i.e., not expired/depleted and works as designed).

o Mine pager phones in non-essential locations are not routinely “inspected”. Many are used in day-to-day operations. They are used until they fail, at which time they are repaired. Mine pager phones are used routinely by Underground Operations.

p “Pre-evolution” signifies that inspections are required prior to equipment use in the waste handling process. A TRUPACT-III shipment evolution is considered to be the process that begins with placing a loaded TRUPACT-III package on the Yard Transfer Vehicle (YTV) in the PAU, includes waste storage in the WHB Unit, and ends when the empty TRUPACT-III is removed from the YTV in the PAU. Additionally, a TDOP-Upender evolution is considered to be the process that begins with the empty TDOP placed on the Upender, and ends with storage of the overpacked waste container in the WHB Unit.

q In the PAU, the aisle spacing between trailers carrying the CH or RH packages are maintained at a minimum of four feet. In the CH Bay Storage Area of the WHB Unit, a minimum aisle space of 44 inches between loaded facility pallets in maintained. Also, in the CH Bay, a minimum aisle space of 44 inches is maintained between the walls of the CH Bay and a loaded facility pallet.
<table>
<thead>
<tr>
<th>System/Equipment Name</th>
<th>Responsible Organization</th>
<th>Inspection Frequency</th>
<th>Procedure Number (Latest Revision)</th>
<th>Inspection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cask Transfer Car(s)</td>
<td>Waste Operations</td>
<td>Pre-evolution.c,d,e</td>
<td>WP05-WH1701 PM041887</td>
<td>Yes NA Pre-evolution Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Semi-Annual)</td>
<td></td>
</tr>
<tr>
<td>RH Bay Overhead Bridge Crane</td>
<td>Waste Operations</td>
<td>Preoperational.c,d,e,i</td>
<td>WP05-WH1741 PM041232 PM041177</td>
<td>Yes Yes Pre-operational Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication Electrical Inspection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Quarterly) (Annual)</td>
<td></td>
</tr>
<tr>
<td>Facility Cask Transfer Car</td>
<td>Waste Operations</td>
<td>Pre-evolution.c,d,e,f</td>
<td>WP05-WH1713 PM041201 PM041203</td>
<td>Yes NA Pre-evolution Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication Electrical Inspection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Annual) (Annual)</td>
<td></td>
</tr>
<tr>
<td>RH Bay Cask Lifting Yoke</td>
<td>Waste Operations</td>
<td>Preoperational.c,d,e,i</td>
<td>WP05-WH1741 PM041469</td>
<td>Yes NA Pre-operational Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication Electrical Inspection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Annual)</td>
<td></td>
</tr>
<tr>
<td>Facility Cask Transfer Car</td>
<td>Waste Operations</td>
<td>Pre-evolution.c,d,e,f</td>
<td>WP05-WH1704 PM041186 PM041195</td>
<td>Yes Yes Pre-evolution Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication Electrical Inspection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Quarterly) (Annual)</td>
<td></td>
</tr>
<tr>
<td>Facility Cask Rotating Device</td>
<td>Waste Operations</td>
<td>Pre-evolution.c,d,e,f</td>
<td>WP05-WH1713 PM041475 PM041476</td>
<td>Yes Yes Pre-evolution Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication Electrical Inspection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Annual) (Annual)</td>
<td></td>
</tr>
<tr>
<td>Facility Grapple</td>
<td>Waste Operations</td>
<td>Pre-evolution.c,d,e</td>
<td>WP05-WH1721 PM041472 PM041473</td>
<td>Yes NA Pre-evolution Checks and Operating Instructions. Mechanical Inspection for Wear. Non-Destructive Examination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Quarterly) (Annual)</td>
<td></td>
</tr>
<tr>
<td>6.25-Ton Grapple Hoist</td>
<td>Waste Operations</td>
<td>Pre-evolution.c,d,e</td>
<td>WP05-WH1721 PM041028</td>
<td>Yes Yes Pre-evolution Checks and Operating Instructions. Mechanical Inspection for Wear and Lubrication.</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspection Frequency</td>
<td>Procedure Number (Latest Revision)</td>
<td>Inspection Criteria</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Transfer Cell Shuttle Car</td>
<td>Waste Operations</td>
<td>Pre-evolution, Pre-operational</td>
<td>WP 05-WH1705, PM041184, PM041222</td>
<td>Deteriorationb, Leaks/spills, Pre-evolution Pre-operational Checks and Operating Instructions, Mechanical Inspection for Wear and Lubrication, Electrical Inspection</td>
</tr>
<tr>
<td>Hot Cell Overhead Powered Manipulator</td>
<td>Waste Operations</td>
<td>Preoperational</td>
<td>WP 05-WH1743, PM041215, PM041216, IC411037</td>
<td>Yes, Pre-operational Checks and Operating Instructions, Mechanical Inspection for Wear and Lubrication, Electrical Inspection, Load Cell Calibration</td>
</tr>
<tr>
<td>Hot Cell Bridge Crane</td>
<td>Waste Operations</td>
<td>Preoperational</td>
<td>WP 05-WH1742, PM041217, PM041208, IC411038</td>
<td>Yes, Pre-operational Checks and Operating Instructions, Mechanical Inspection for Wear and Lubrication, Electrical Inspection, Load Cell Calibration</td>
</tr>
<tr>
<td>Radiation Monitoring Equipment</td>
<td>Radiation Control</td>
<td>Preoperational</td>
<td>WP12-HR1245, IC240010, WP12-HR1307, IC534000, WP12-HR1314</td>
<td>Yes, Operability Checks, Functional Checks, Instrument calibrations, Flow Calibration, Efficiency Checks</td>
</tr>
<tr>
<td>Cask Unloading Room Crane</td>
<td>Waste Operations</td>
<td>Preoperational</td>
<td>WP 05-WH1719, PM041190, PM041191, PM041192, IC411035</td>
<td>Yes, Pre-operational Checks and Operating Instructions, Mechanical Inspection for Wear and Lubrication, Electrical Inspection, Load Cell Calibration</td>
</tr>
<tr>
<td>System/Equipment Name</td>
<td>Responsible Organization</td>
<td>Inspection Frequency</td>
<td>Procedure Number (Latest Revision)</td>
<td>Inspection Criteria</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>------------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Horizontal Emplacement Machine and Retrieval Equipment or functionally equivalent equipment</td>
<td>Waste Operations</td>
<td>Pre-evolution [d,e,i]</td>
<td>WP 05- WH1733* WP05-WH1700 PM052010 (Semi-Annual)* PM052011 (Annual) PM052013 PM052012 PM052014 (Annual)</td>
<td>Deterioration [b] Yes Yes Assembly and Operating Instructions. Electrical Inspection. Position Transducer Calibration. Tilt Sensor Calibration. * Procedure WP 05-WH1733 is currently not active. The procedure number has been designated for the Horizontal Emplacement Machine when activities are initiated to support resumption of RH waste emplacement.</td>
</tr>
<tr>
<td>41-Ton Forklift</td>
<td>Waste Operations</td>
<td>Preoperational [d,e,i]</td>
<td>WP 05-WH1602 PM074061 PM052003 (Hours of Use) PM074027 (Quarterly) PM074029 & PM074051 (Annual)</td>
<td>Yes Yes Pre-Operational Checks. and on-board automatic fire suppression system PM performed every 100 hours of operation, every 500 hours of operation or every 5 years. Quarterly Engine Emission Test. Annual Electrical Inspection. Annual NDE.</td>
</tr>
</tbody>
</table>
Table E-1a (Continued)

<table>
<thead>
<tr>
<th>RH TRU Mixed Waste Inspection Schedule/Procedures Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Inspection may be accomplished as part of or in addition to regularly scheduled preventive maintenance inspections for each item or system. Certain structural systems of the WHB are also subject to inspection following severe natural events including earthquakes, tornados, and severe storms. Structural systems include columns, beams, girders, anchor bolts, and concrete walls.</td>
</tr>
<tr>
<td>b. Deterioration includes: visible cracks, erosion, salt build-up, damage, corrosion, loose or missing parts, malfunctions, and structural deterioration.</td>
</tr>
<tr>
<td>c. “Pre-evolution” signifies that inspections are required prior to equipment use in the waste handling process. (An evolution is considered to be from the receipt of a cask into the RH Bay through canister emplacement in the underground.) For an area, preoperational inspection includes: area is clean and free of obstructions (for emergency equipment); adequate aisle space; emergency and communications equipment is readily available, properly located and sign-posted, visible, and operational. For equipment, this includes: checking fluid levels, pressures, valve and switch positions, battery charge levels, pressures, general cleanliness, and that functional components and emergency equipment are present and operational. When the equipment is not in use, no inspections are required.</td>
</tr>
<tr>
<td>d. When equipment needs to be inspected while handling waste (i.e., during waste unloading or transfer operations), general cleanliness and functional components will be inspected to detect any problem that may harm human health or the environment. The inspection will verify that emergency equipment is present.</td>
</tr>
<tr>
<td>e. Inspection of RH TRU mixed waste equipment and areas in the RH Complex applies only after RH TRU mixed waste receipt begins.</td>
</tr>
<tr>
<td>f. The inspection/maintenance activities associated with these pieces of equipment are performed when the RH Complex is empty of RH TRU mixed waste. If contamination is present, a radiation work permit may be needed.</td>
</tr>
<tr>
<td>g. For the Hot Cell and Transfer Cell, if RH TRU mixed waste is present, camera inspections will be performed in lieu of physical inspection.</td>
</tr>
<tr>
<td>h. The integrity of the floor coating will be inspected weekly if RH TRU mixed waste is present.</td>
</tr>
<tr>
<td>i. “Preoperational” signifies that inspections are required prior to the first use in a calendar day. For an area, preoperational inspection includes: area is clean and free of obstructions (for emergency equipment); adequate aisle space; emergency and communications equipment is readily available, properly located and sign-posted, visible, and operational. For equipment, this includes: checking fluid levels, pressures, valve and switch positions, battery charge levels, pressures, general cleanliness, and that functional components and emergency equipment are present and operational. When the equipment is not in use, no inspections are required.</td>
</tr>
<tr>
<td>k. Responsible organizations refers to the organization that owns the equipment. Preventive Maintenance (PM) procedures are conducted by either mine maintenance or surface operations maintenance personnel and Instrument Calibration (IC) procedures are conducted by instrument and calibration maintenance personnel.</td>
</tr>
<tr>
<td>l. Inspection will be performed after 250 evolutions (actual and training emplacements), if such usage occurs prior to the semi-annual inspection.</td>
</tr>
<tr>
<td>m. Inspections and PMs are not required for equipment that is out of service.</td>
</tr>
</tbody>
</table>

In the RH Bay of the WHB Unit, a minimum aisle space of 44 inches between loaded casks in maintained. For other locations within the RH Complex, sufficient aisle space is maintained to assure that emergency equipment can be assessed or moved to the necessary locations.
<table>
<thead>
<tr>
<th>System/Equipment Name</th>
<th>Responsible Organization</th>
<th>Monitoring Frequency</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomechanical<sup>a</sup></td>
<td>Geotechnical Engineering</td>
<td>Monthly</td>
<td>To evaluate the geotechnical performance of the underground facility and to detect ground conditions that could affect operational safety</td>
</tr>
<tr>
<td>Central Monitoring System</td>
<td>Facility Operations</td>
<td>System Dependent</td>
<td>Monitor and provide status for the following facility parameters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Equipment is listed as Underground-Geomechanical Instrumentation System (GIS) in Table E-1.
^d Equipment listed as Backup Power Supply Diesel Generator in Table E-1.
^e Equipment listed as Fire Detection and Alarm System in Table E-1.
^f Equipment listed as Ventilation Exhaust in Table E-1.
^g Not RCRA equipment.
^h Equipment listed as Fire Pumps in Table E-1.
ⁱ Equipment listed as Water Tank Level in Table E-1.
^j Equipment listed as Waste Hoist in Table E-1.
ATTACHMENT F

FACILITY PERSONNEL PERMIT TRAINING PROGRAM
ATTACHMENT F

FACILITY PERSONNEL PERMIT TRAINING PROGRAM

TABLE OF CONTENTS

Introduction ... 2
F-1 Outline of the Facility Personnel Permit Training Program ... 3
F-1a Facility Personnel Permit Training Program Design .. 3
F-1b Job Title/Job Description ... 4
 F-1b(1) Training Content ... 5
 F-1b(2) Training Frequency ... 5
 F-1b(3) Training Techniques .. 5
F-1c Training Manager .. 6
F-1d Relevance of Training to Job Position .. 6
F-2 Implementation of Training Program .. 7
ATTACHMENT F

FACILITY PERSONNEL PERMIT TRAINING PROGRAM

F-0 Introduction

This attachment describes the Facility Personnel Permit Training Program for the Waste Isolation Pilot Plant (WIPP) facility in accordance with the requirements of the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act as described in 20.4.1.500 New Mexico Administrative Code (NMAC) (incorporating Title 40 of the Code of Federal Regulations (CFR) §264.16), and 20.4.1.900 NMAC (incorporating 40 CFR §270.14(b)(12)).

The primary objective of the Facility Personnel Permit Training Program is to prepare facility personnel to operate and maintain the WIPP facility in a safe and environmentally sound manner in compliance with 20.4.1.500 NMAC (incorporating 40 CFR §264.16). To achieve this objective, the program provides WIPP facility employees with training relevant to their positions.

Waste Isolation Pilot Plant (WIPP) facility employees, including those not directly involved in transuranic (TRU) mixed waste handling activities or emergency response, receives an introduction to the RCRA regulations and emergency preparedness in their General Employee Training (GET) class. General Employee Training emphasizes that WIPP facility personnel and site visitors are required to comply with directions from emergency personnel and alarm system notifications and to follow instructions concerning emergency equipment, shutdown procedures, signage, and emergency evacuation routes and exits. In this way employees at the WIPP facility are given, at a minimum, a basic understanding of the regulatory requirements and emergency procedures. This ensures that facility employees know how to respond effectively to emergencies through familiarization with emergency procedures, emergency equipment, and emergency systems. Facility employees in TRU mixed waste management or emergency response positions receive additional classroom and on-the-job training designed specifically to teach them how to perform their duties safely and in conformance with regulatory requirements of 20.4.1.500 NMAC (incorporating 40 CFR Part 264). TRU Transuranic mixed waste management personnel receive the required training before being allowed to work unsupervised, and emergency response personnel receive appropriate training before being called upon to respond to actual emergencies.

The training requirements of the Facility Personnel Permit Training Program are implemented via the WIPP Training Program and apply to appropriate facility personnel of the U.S. Department of Energy (DOE) and contractors, subcontractors, and bargaining-unit members who:

- Regularly work at the facility that may come in contact with and/or manage TRU mixed waste, or
- Oversee the operations of the facility that may come in contact with and/or manage TRU mixed waste, or
- Supervise individuals who may come in contact with and/or manage TRU mixed waste, or
- Provide emergency response capabilities.
This *Facility Personnel Permit Training Program* describes the introductory and continuing training provided to personnel at the WIPP facility, with emphasis on those facility personnel and their supervisors whose jobs are such that their actions or failure to act could result in a spill or release, or the immediate threat of a spill or release of TRU mixed waste.

This *Facility Personnel Permit Training Program* does not apply to facility employees who manage site-generated hazardous waste, low-level waste, universal waste, or other forms of hazardous waste that are not categorized as TRU mixed waste.

F-1 Outline of the Facility Personnel Permit Training Program

Employee training for the purpose of TRU mixed waste management and emergency response at the WIPP facility is the overall responsibility of the Management and Operating Contractor (MOC) Project Manager, with responsibility for implementation delegated to Technical Training. Technical Training is managed by the Technical Training Manager. The Technical Training Manager (or designee) has the responsibility for directing the *Facility Personnel Permit Training Program*. The list of job titles in Table F-1 presents the jobs at the WIPP facility that include the personnel with identified responsibilities for TRU mixed waste management and emergency response.

F-1a Facility Personnel Permit Training Program Design

In developing the *WIPP Training Program*, Technical Training has used a modified version of the Systematic Approach to Training (SAT) which has five distinct phases to develop training programs. These phases are:

- Analysis
- Design
- Development
- Implementation
- Evaluation

Technical Training utilizes guidance provided within the DOE Handbooks, “Training Program Handbook: A Systematic Approach to Training (DOE-HDBK-1078-94),” and “Alternative Systematic Approaches to Training (DOE-HDBK-1074-95)” to direct these five phases.

Technical Training ensures that Permit-required training is conducted by qualified instructors as indicated in the *WIPP Training Program*.

Cognizant line managers provide significant input on training requirements for the WIPP facility personnel to qualified instructors who develop the following, as required:

- Classroom Instruction
- Required reading, structured self-study, eLearning, computer-based training
- On-the-Job Training

Upon completion of the specific classroom, computer-based training, eLearning or structured self-study technical training courses, trainees must successfully complete written (includes in person examinations, computer, and web based training examinations) or oral examinations to demonstrate competency.
Technical training documentation and records are maintained by Technical Training located at the WIPP facility. Documents and records required by 20.4.1.500 NMAC (incorporating 40 CFR §264.16(d)(1), (2), (3), and (4)) are maintained in WIPP facility files and include the following:

- Job titles for positions related to TRU mixed waste management and emergency response and names of the employee filling those positions
- Written job descriptions for the applicable positions
- Written description of the type and amount of introductory and continuing training given for each applicable position
- Records documentation that the training or job experience required has been given to or completed by facility personnel include as appropriate:
 - Course Attendance
 - Completed Qualification Cards
 - Off-Site Training Documentation
 - Training or job experience given and completed for each position

Documentation is maintained which includes records of training qualifications, and course attendance. The documentation is used to identify course refresher and requalification dates. Training records on current personnel are kept in the Technical Training files until facility closure. Technical training records on former employees are kept by Technical Training for at least three years from the date of employment termination from the WIPP facility. Training documentation for emergency response training received by personnel called out in the RCRA Contingency Plan (Permit Attachment D) is also maintained by Technical Training.

F-1b Job Title/Job Description

Facility personnel who are involved in TRU mixed waste management and emergency response activities receive the same core RCRA training. A list of TRU mixed waste management and emergency response job titles and position descriptions is provided in Table F-1. An up-to-date list of personnel assigned to these positions is maintained in WIPP facility files by the Permittees in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.16(d)(1)). The core TRU mixed waste management and emergency response training courses are indicated in Table F-2. Any changes to the Facility Personnel Permit Training Program specified training course materials (contained in WIPP facility files) that affect the Table F-2 training course content will be evaluated to determine if a permit modification is required, as specified in 20.4.1.900 NMAC (incorporating 40 CFR §270.42) The job titles listed in Tables F-1 include:

- Emergency Coordinator
- TRU Mixed Waste Worker
- TRU Mixed Waste Worker Supervisor
- Inspector
- RCRA Training Director
- Emergency Responder
F-1b(1) Training Content

To ensure that facility personnel are knowledgeable in responding effectively to emergency situations, every employee, regardless of whether they hold a position in TRU mixed waste management or emergency response, receives GET and the annual GET refresher training on topics relevant to the management of TRU mixed waste and emergency response that include:

- Emergency Preparedness and Response
- RCRA (including the Permit and the RCRA Contingency Plan)
- Fire Protection
- Safety Signage

Training course updates are identified by periodically reviewing the Table F-2 Permit-required training courses to ensure the content remains consistent with applicable Federal and State regulations. This review will be performed in accordance with the WIPP Training Program and the review will be documented in the WIPP facility files.

To facilitate identification of changes to Table F-2 Permit-required training courses, changes to training course materials, which will be maintained in the WIPP facility files, will have revision numbers and a change history summary. This training course information will be available for NMED inspection upon request.

F-1b(2) Training Frequency

TRU mixed waste management and emergency response courses are offered at a frequency that ensures new hires or transfers can receive relevant Permit-specified training within six months of assuming their new position (although some emergency response training may require longer time periods to complete certifications). Annual refresher training is required for each Permit course. Employees do not work unsupervised in TRU mixed waste management positions until they have completed the Permit-required initial training. In cases where an employee's annual refresher training has lapsed, that employee cannot work unsupervised until the initial training has been repeated. The cognizant manager notifies the Human Resources Department who notifies the training staff when any employee is transferred into or out of a position associated with TRU mixed waste management or emergency response.

F-1b(3) Training Techniques

A variety of instructional techniques are used at the WIPP facility depending on the subject matter and the techniques that best suit the learning objectives. Many courses may include a combination of classroom, on-the-job training, computer-based training, eLearning, self-paced study, laboratory work, and/or comprehensive examinations. Most equipment operation courses include hands-on practical instruction.

Written examinations (includes in person examinations, computer, and web based training examinations) are used as a technique to test and document the knowledge level of individuals participating in classroom training courses. The length and content of each exam varies according to its objective. If individuals fail a written examination, in accordance with WIPP training procedures, they are disqualified from working unsupervised for the role or task associated with the failed training until the training course examination has been successfully completed.
On-the-job training at the WIPP facility follows a prescribed set of standards specific to the job to be performed. Typically, to become qualified to operate a piece of equipment or system, employees must be able to demonstrate the location and purpose of specified controls and gauges, describe proper startup and shutdown procedures, describe specific safety features and limitations of the equipment, and, in some cases, perform maintenance functions. They must also demonstrate the ability to operate the equipment or system. On-the-job training may also be function specific, such as performing a specific administrative function that is regulated. The terms “on-the-job-training," “on-the-job-evaluation," and “job performance measures" are considered equivalent with respect to training courses or qualification cards in accordance with DOE-HDBK-1074-95.

In addition to on-the-job training, some positions require the trainee to attend an oral board. The oral board is given upon completion of on-the-job training and prior to operating any equipment unsupervised. In the oral board, the trainee is quizzed on knowledge learned in on-the-job training. The purpose of the oral board is to determine if the trainee fully understands and can apply the knowledge learned in the training process.

Individuals who provide evidence of equivalency for specific requirements or prerequisites identified in the Table F-2 Permit-required training courses may be granted an exception from further training to those requirements in accordance with the WIPP Training Program. Requests for exceptions/equivalences are made and evaluated in accordance with the WIPP Training Program. Training exceptions/equivalences must be approved by the RCRA Training Director with concurrence of the Environmental Compliance Manager or his/her designee. Each exception/equivalency request is evaluated per specific criteria, such as 1) completion of previous training (transcripts, training completion records), 2) previous experience (résumé) that demonstrates the application of knowledge and/or skills presented by course objectives, and 3) satisfactory completion of an examination having equivalent course objectives. Each exception/equivalency will be granted in writing and documented in the individual’s training record.

F-1c **Technical Training Manager (RCRA Training Director)**

The Technical Training Manager (or designee) directs the Facility Personnel Permit Training Program, implemented via the WIPP Training Program, and is responsible for establishing technical training requirements in cooperation with the line managers. Specifically, this includes analysis, design, development, implementation, and evaluation of technical training. The Technical Training Manager (or designee) is trained in hazardous waste management procedures. The Technical Training Manager (or designee) is also required to be knowledgeable of the applicable regulations, orders, guidelines, and the specific training process employed at the WIPP facility.

The name and qualifications of the current Technical Training Manager are documented in WIPP facility files.

F-1d **Relevance of Training to Job Position**

The **WIPP Training Program** provides employees and their supervisors with training relevant to their positions. The SAT process mentioned in Section F-1a is a systematic method for determining the proper training for each TRU mixed waste management position. It compels managers and training staff to look critically at each position and determine the necessary
training program for each employee to perform their work in a manner that protects human health and the environment and complies with the Permit.

Several training topics are considered relevant for all WIPP facility personnel. The basic philosophy at the WIPP facility is that, as a RCRA-regulated facility, facility personnel must understand the basic regulatory requirements under which the WIPP facility must operate as well as emergency actions required of facility personnel. Therefore, all WIPP facility personnel receive an introduction to the RCRA during their GET.

Beyond these universal topics, training is designed and implemented relevant to the specific job functions being performed. For example, employees who operate key pieces of equipment necessary to manage contact-handled (CH) or remote-handled (RH) TRU mixed waste (e.g., forklifts, hoists, bridge cranes, cask transfer cars) must be trained to perform their duties in a way that ensures the WIPP facility is operated in compliance with the Permit. These employees receive on-the-job training and demonstrate the ability to operate the equipment, as appropriate, and must at a minimum be able to respond effectively to emergencies that might arise while performing their duties. Emergency response personnel receive training, commensurate with their duties, that ensures their familiarity with emergency procedures, emergency equipment, and emergency systems including, but not limited to:

- Procedures for using and inspecting facility emergency equipment:
- Communications and alarm systems; and
- Response to fires or explosions.

As there are no automatic waste feed systems at the WIPP facility, training on parameters for waste feed cut-off systems is not required. Similarly, as there is no potential for groundwater contamination incidents at the WIPP facility, training for responding to such incidents is not required.

F-2 Implementation of Facility Personnel Permit Training Program

The WIPP Training Program has been formulated to implement the requirements of this Facility Personnel Permit Training Program, thereby ensuring TRU mixed waste management and emergency response personnel employed at the facility receive the training necessary to comply with the requirements of 20.4.1.500 NMAC (incorporating 40 CFR Part 264.16).

Newly hired employees, whose job positions are listed in Table F-2, receive the indicated training within six months of their date of hire or their transfer to a new position pursuant to 20.4.1.500 NMAC (incorporating 40 CFR §264.16(b). Personnel do not work unsupervised in TRU mixed waste management or emergency response positions until they successfully complete the Permit-indicated training requirements. (Note that some emergency responder certifications may take more than six months to complete.) TRU mixed waste management and emergency response personnel attend annual refresher courses that review the initial training received and document knowledge transfer. Per the WIPP Training Program, annual Permit refresher training is to be completed within 30 calendar days of an employee’s training anniversary date. If an employee’s annual refresher training has lapsed, they do not work unsupervised in TRU mixed waste management or emergency response positions until they have successfully repeated the Permit-required initial training.
Records relating to the Facility Personnel Permit Training Program for TRU mixed waste management and emergency response personnel are maintained by WIPP Technical Training as personally identifiable information. These records are located at the WIPP facility and include a roster of employees in hazardous waste management positions; a list of courses required for each position; course descriptions; documentation when each employee has received and completed appropriate training. Training records of current personnel are kept by Technical Training until closure of the WIPP facility. Records of former employees are kept by Technical Training for at least three years from the date the employee last worked at the facility.

F-3 References

U.S. Department of Energy, “Alternative Systematic Approaches to Training (DOE-HDBK-1074 95)”
TABLES
TABLE F-1
TRU MIXED WASTE MANAGEMENT AND EMERGENCY RESPONSE JOB TITLES AND DESCRIPTIONS

<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>POSITION DESCRIPTION</th>
</tr>
</thead>
</table>
| TRU Mixed Waste Worker | Responsible for or involved in the surface processing, transport, and underground emplacement of contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste. May come into contact with TRU mixed waste while carrying out job duties, actions or failure to act could result in a spill or release of TRU mixed waste at the WIPP facility, and job is important for operating the facility safely and in compliance with the hazardous waste regulations. Depending upon the TRU Mixed Waste Worker’s specific job position, this may involve one or more of the following:
 - Operating waste handling equipment and support systems to unload, handle, and emplace TRU mixed waste into the repository
 - Performing spot decontamination of shipping casks, waste containers, and waste handling equipment
 - Performing waste container overpacking operations
 - Conducting routine inspections of incoming shipping containers for contamination and damage
 - Conducting routine contamination surveys during waste handling activities
 - Operating the Waste Shaft Hoist
 - Loading and unloading of the Waste Shaft Conveyance above and below ground
 - Managing and dispositioning of waste resulting from releases of TRU mixed waste or TRU mixed waste constituents
 - Cleaning and restoring emergency response equipment after a release of TRU mixed waste or TRU mixed waste constituents and prior to resumption of normal operations |
| TRU Mixed Waste Worker Supervisor| Supervisors of TRU Mixed Waste Workers are directly responsible for day-to-day operations related to TRU mixed waste. Depending upon the TRU Mixed Waste Worker Supervisor’s specific job position, job duties may involve one or more of the following:
 - Overseeing TRU mixed waste management activities performed by TRU Mixed Waste Workers
 - Coordinating and directing the daily operation and maintenance of the Waste Shaft Hoist and Waste Shaft |
| Emergency Responder | Emergency responders provide expertise and support to the Incident Command. Depending upon the Emergency Responder’s specific job position, job duties may involve one or more of the following:
 - Responding to fires, explosions, or emergencies involving releases of TRU mixed waste or TRU mixed waste constituents
 - Performing technical rescue operations
 - Performing emergency medical response
 - Operating emergency vehicles and equipment
 - Establishing conditions at the incident scene
 - Managing incident operations, personnel, and resources
 - Ensuring that fires, explosions, and releases of TRU mixed waste do not occur, recur, or spread to other hazardous waste at the facility by stopping processes and operations, collecting and containing released TRU mixed waste, and removing or isolating containers, as applicable |
<table>
<thead>
<tr>
<th>JOB TITLE</th>
<th>POSITION DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Coordinator</td>
<td>In the event of a fire, explosion, release of TRU mixed waste or TRU mixed waste constituents that could threaten human health or the environment, the Emergency Coordinator is responsible for carrying out the implementation of the RCRA Contingency Plan. Emergency Coordinators ensure emergency responders have current and specific information to properly address the incident and minimize hazards to human health and the environment. Emergency Coordinators implement measures and procedures to ensure the safety of personnel, such as ensuring that alarms have been activated, personnel have been accounted for, and evacuation of personnel has occurred, if necessary. Upon implementation of the RCRA Contingency Plan, depending upon the Emergency Coordinator’s specific job position, the job duties may involve one or more of the following:</td>
</tr>
<tr>
<td>JOB TITLE</td>
<td>POSITION DESCRIPTION</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Inspector | Responsible for routine inspection and maintenance (including repairing and replacement, as appropriate) of equipment instrumental in preventing, detecting, or responding to environmental or human health hazards, such as monitoring equipment, safety and emergency equipment, and operating or structural equipment. Inspections are performed at the facility to detect malfunctions, deterioration, operator errors, and discharges that may cause or lead to releases of TRU mixed waste or TRU mixed waste constituents to the environment or that could be a threat to human health. Depending on the Inspector’s specific job position, job duties may involve one or more of the following:
 - Performing functional and operational checks of waste handling equipment and support systems as well as conducting waste container storage inspections
 - Conducting routine inspections of emergency response equipment and vehicles, on site
 - Performing routine inspections of the hoisting equipment for the Air Intake Shaft, Salt Handling Shaft, and Waste Shaft
 - Conducting routine inspections and testing of facility fire suppression and detection systems
 - Inspecting and testing of communication systems, site notification system, the public address system, and alarm systems for proper function
 - Performing routine inspections of the backup power supply diesel generators
 - Performing routine inspections of the eye wash and shower equipment
 - Performing routine inspections of the underground geomechanical instrumentation system
 - Performing routine inspections of the central uninterruptible power supply
 - Performing routine inspections of the fire water storage tank
 - Performing routine inspections of the ventilation exhaust fans |
| RCRA Training Director | Responsible for directing the hazardous waste management training at the WIPP facility. To meet the 20.4.1.500 NMAC (incorporating 40 CFR §264.16(a)(2)) requirements, the RCRA Training Director must be a person trained in hazardous waste management procedures. |
Table F-2
PERMIT-REQUIRED TRAINING COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>TRU Mixed Waste Worker</th>
<th>TRU Mixed Waste Worker Supervisor</th>
<th>Inspector</th>
<th>Emergency Responder</th>
<th>Emergency Coordinator</th>
<th>RCRA Training Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Employee Training – WIPP facility employees must be escorted at the WIPP facility until this course has been completed. Course content contains information on RCRA, the Permit, the WIPP RCRA Contingency Plan, emergency preparedness, emergency response and evacuation procedures, fire protection, and safety signage. There is an annual refresher required for this course.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RCRA Regulations/Hazardous Waste Facility Permit Overview – This course includes an overview of 40 CFR Parts 260-282; New Mexico Hazardous Waste Act (Title 20 of the NMAC, Part 4.1); protocol for facility and waste handling equipment inspections; overview of communication systems; overview of security systems; overview of RCRA Contingency Plan; overview of WIPP emergency equipment use, inspection, and repair; overview of training requirements; overview of Permit recordkeeping requirements; overview of NMED facility inspections; and consequences of Permit noncompliance. This course also provides an overview of the screening process (for procedures, facility configuration changes, training program changes, etc.) to ensure compliance with the Permit, along with an overview of the Permit modification process. There is an annual refresher required for this course.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Course Details

<table>
<thead>
<tr>
<th>Course</th>
<th>TRU Mixed Waste Worker</th>
<th>TRU Mixed Waste Worker Supervisor</th>
<th>Inspector</th>
<th>Emergency Responder</th>
<th>Emergency Coordinator</th>
<th>RCRA Training Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste Worker – This course addresses regulatory requirements for personnel who manage hazardous waste, including an in-depth review of the Hazard Communication Standard, principles of toxicology, hazard identification, and an overview of personal protective equipment for work activities associated with TRU mixed waste management. It also prepares emergency response personnel for hazardous waste handling, containment, and decontamination. There is an annual refresher required for this course.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hazardous Waste Responder – Employees must complete Hazardous Waste Worker training before taking this course. Upon successful completion of the course and its prerequisites, a trainee will be able to respond to emergencies involving TRU mixed waste. Course curriculum includes an overview of the regulatory requirements, incident evaluation, overview of response operations, maintaining safety during an emergency response, and an overview of the Incident Command System at the WIPP facility. There is an annual refresher required for this course.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hazardous Waste Worker Supervisor – This course addresses manager and/or supervisor responsibilities for TRU mixed waste management. It addresses individual and corporate liability under applicable hazardous waste regulations. Course discusses impacts that decisions made during emergency situations may have, some with serious legal and safety consequences directly impacting the entities involved. There is an annual refresher required for this course.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>TRU Mixed Waste Worker</td>
<td>TRU Mixed Waste Worker Supervisor</td>
<td>Inspector</td>
<td>Emergency Responder</td>
<td>Emergency Coordinator</td>
<td>RCRA Training Director</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Permit Inspections/Recordkeeping – These technical work documents are under the purview of the responsible organization identified in Table E-1 of Permit Attachment E, Inspection Schedule, Process and Forms. This course addresses protocols for conducting Permit-specified inspections to detect malfunctions, deterioration, operator errors, and discharges; completion of inspection records; Permit-specified inspection frequencies; and corrective actions, including notifications and establishment of compensatory measures. This course also addresses review of the completed inspection record for completeness and accuracy; and the Permit-specified recordkeeping requirements. There is an annual refresher required for this course.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCRA Contingency Plan – This course provides an in-depth review of the WIPP RCRA Contingency Plan addressing when the Plan is to be implemented, appropriate emergency response actions, required notifications, evacuation plan details, and post-emergency RCRA-required activities. This course also addresses where copies of the Plan are required to be located and when the Plan must be amended. There is an annual refresher required for this course.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT G
CLOSURE PLAN
ATTACHMENT G

CLOSURE PLAN

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>G-1</td>
<td>Closure Plan</td>
</tr>
<tr>
<td>G-1a</td>
<td>Closure Performance Standard</td>
</tr>
<tr>
<td>G-1a(1)</td>
<td>Container Storage Units</td>
</tr>
<tr>
<td>G-1a(2)</td>
<td>Miscellaneous Unit</td>
</tr>
<tr>
<td>G-1a(3)</td>
<td>Post-Closure Care</td>
</tr>
<tr>
<td>G-1b</td>
<td>Requirements</td>
</tr>
<tr>
<td>G-1c</td>
<td>Maximum Waste Inventory</td>
</tr>
<tr>
<td>G-1d</td>
<td>Schedule for Closure</td>
</tr>
<tr>
<td>G-1d(1)</td>
<td>Schedule for Panel Closure</td>
</tr>
<tr>
<td>G-1d(2)</td>
<td>Schedule for Final Facility Closure</td>
</tr>
<tr>
<td>G-1d(3)</td>
<td>Extension for Closure Time</td>
</tr>
<tr>
<td>G-1d(4)</td>
<td>Amendment of the Closure Plan</td>
</tr>
<tr>
<td>G-1e</td>
<td>Closure Activities</td>
</tr>
<tr>
<td>G-1e(1)</td>
<td>Panel Closure</td>
</tr>
<tr>
<td>G-1e(2)</td>
<td>Decontamination and Decommissioning</td>
</tr>
<tr>
<td>G-1e(3)</td>
<td>Performance of the Closed Facility</td>
</tr>
<tr>
<td>G-2</td>
<td>Notices Required for Disposal Facilities</td>
</tr>
<tr>
<td>G-2a</td>
<td>Certification of Closure</td>
</tr>
<tr>
<td>G-2b</td>
<td>Survey Plat</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table Title

Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs
Table G-2 Anticipated Overall Schedule for Closure Activities
Table G-3 Governing Regulations for Borehole Abandonment

LIST OF FIGURES

Figure Title

Figure G-1 Location of Underground HWDUs and WPC Locations
Figure G-2 WIPP Panel Closure Schedule
Figure G-3 WIPP Facility Final Closure 84-Month Schedule
Figure G-4 Bulkhead and ROM Salt Locations
Figure G-4a Typical Substantial Barrier and Bulkhead
Figure G-5a Typical Disposal Panel Dimensions for Panels 1-7
Figure G-5b Typical Disposal Panel Dimensions for Panel 8
Figure G-6 Approximate Locations of Boreholes in Relation to the WIPP Underground
ATTACHMENT G
CLOSURE PLAN

Introduction

This Permit Attachment contains the Closure Plan that describes the activities necessary to close the Waste Isolation Pilot Plant (WIPP) individual units and facility. Since the current plans for operations extend over several decades, the Permittees will periodically reapply for an operating permit in accordance with 20.4.1.900 New Mexico Administrative Code (NMAC) (incorporating Title 40 of the Code of Federal Regulations (CFR) §270.10(h)). Consequently, this Closure Plan describes several types of closures. The first type is panel closure, which involves constructing closures for each of the underground hazardous waste disposal units (HWDUs) after they are filled. The second type is partial closure, which can be less than the entire facility and, therefore, less than an entire unit as described herein for the Waste Handling Building (WHB) Container Storage Unit (WHB Unit), the Parking Area Container Storage Unit (PAU), or Permit-related surface equipment, structures and contaminated soils. The third type of closure is final facility closure at the end of the Disposal Phase, which will entail “clean” closure of all remaining surface storage units and construction of shaft seal systems for each shaft.

Finally, in the event a new permit is not issued prior to expiration of an existing permit, a modification to this Closure Plan will be sought to perform contingency closure. Contingency closure defers the final closure of waste management facilities such as the Waste Handling Building Container Storage Unit (WHB Unit), the conveyances, the shafts, and the haulage ways because these will be needed to continue operations with non-mixed Transuranic (TRU) waste.

The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB Unit, the PAU parking area HWMU, and Panels 1 through 8, Panel 11, and Panel 12, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

This plan was submitted to the New Mexico Environment Department (NMED) in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.14(b)(13)). Closure at the panel level will include the construction of barriers that will contribute to limiting the emission of hazardous waste constituents from the panel into the mine ventilation air stream below levels that meet environmental performance standards. The Post-Closure Plan (Permit Attachment H) includes the implementation of institutional controls to limit access and groundwater monitoring to assess disposal system performance. Until final closure is complete and has been certified in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.115), a copy of the approved Closure Plan and all-approved revisions will be on file at the WIPP facility and will be available to the Secretary of the NMED in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.112(a)(2)) or the U.S. Environmental Protection Agency (EPA) Region VI Administrator upon request.

This Closure Plan uses the terms Disposal Phase, facility closure period, and post-closure care period. The Disposal Phase began with the first waste emplacement in March 1999 and extends until the facility reaches its maximum capacity as defined in Section G-1c. The facility closure period is the 10-year period that begins once the final waste has been emplaced in the
underground. The post-closure care period extends for 30-years after completion of facility closure period.

G-1 Closure Plan

This Closure Plan is prepared in accordance with the requirements of 20.4.1.500 NMAC (incorporating 40 CFR Part §264, Subparts G, I, and X), Closure and Post-Closure, Use and Management of Containers, and Miscellaneous Units. The WIPP underground HWDUs, shown on Figure M-43G-1, will be closed under this Closure Plan to meet the performance standards in 20.4.1.500 NMAC (incorporating 40 CFR §264.601). The WIPP surface facilities, including the WHB Waste Handling Building Container Storage Unit and the PAU Parking Area Container Storage Unit, will be closed in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.178). The Permittees may perform partial closure of the WHB Unit, PAU HWMUs, or Permit-related surface equipment, structures and contaminated soils prior to final facility closure and certification. For final facility closure, this plan also includes closure and sealing of the facility shafts in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.601).

Following completion of waste emplacement in each underground HWDU, the HWDU will be closed. The Permittees will notify the NMED of the closure of each underground HWDU as specified in the schedule in Figure M-61G-2. For the purpose of this Closure Plan, panel closure is defined as the process of rendering underground HWDUs in the repository inactive and closed according to the facility Closure Plan. The Post-Closure Plan (Permit Attachment H) addresses requirements for future monitoring that are deemed necessary for the post-closure period, prior to final facility closure.

For the purposes of this Closure Plan, final facility closure is defined as closure that will occur when all permitted HWDUs are filled or have achieved their maximum capacities as outlined in Permit Part 4, Table 4.1.1, or when the WIPP facility achieves its capacity of 6.2 million cubic feet (ft³) (175,564 cubic meters (m³)) of Land Withdrawal Act (LWA)TRU waste volume. At final facility closure, the surface container storage areas will be closed, and equipment that can be decontaminated and used at other facilities will be cleaned and sent off site. Equipment that cannot be decontaminated plus any derived waste resulting from decontamination will be placed in the last open underground HWDU. In addition, shafts and boreholes which lie within the WIPP Site Boundary and penetrate the Salado Formation (Salado) will be plugged and sealed, and surface and subsurface facilities and equipment will be decontaminated, if necessary, and removed and dispositioned appropriately or, alternatively, disposed in the last open underground HWDU as derived waste. Final facility closure will be completed to demonstrate compliance with the Closure Performance Standards contained in 20.4.1.500 NMAC (incorporating 40 CFR §264.111, 178, and 601).

In the event the Permittees fail to obtain an extension of the hazardous waste permit in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.51) or fail to obtain a new permit in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.10(h)), the Permittees will seek a modification to this Closure Plan in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.42) to accommodate a contingency closure. Under contingency closure, storage units will undergo clean closure in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.178); waste handling equipment, shafts, and haulage ways will be inspected for hazardous waste residues (using, among other techniques, radiological surveys to indicate potential hazardous waste releases as described in Permit Attachment G3) and decontaminated as...
necessary; and underground HWDUs that contain radioactive mixed waste will be closed in accordance with the panel closure design described in this Closure Plan. Final facility closure, however, will be redefined and a time extension for final closure will be requested. A copy of this Closure Plan will be maintained by the Permittees at the WIPP facility and at the U.S. Department of Energy (DOE) Carlsbad Field Office. The primary contact person at the WIPP facility is:

Manager, Carlsbad Field Office
U.S. Department of Energy
Waste Isolation Pilot Plant
P. O. Box 3090
Carlsbad, New Mexico 88221-3090
(575) 234-7300

G-1a Closure Performance Standard

The closure performance standard specified in 20.4.1.500 NMAC (incorporating 40 CFR §264.111), states that the closure shall be performed in a manner that minimizes the need for further maintenance; that minimizes, controls, or eliminates the escape of hazardous waste; and that conforms to the closure requirements of §264.178 and §264.601. These standards are discussed in the following paragraphs.

G-1a(1) Container Storage Units

Final or partial closure of the permitted container storage units (the WHB Waste Handling Building Unit and PAU Parking Area Unit) will be accomplished by removing all waste and waste residues. Indication of waste contamination will be based, among other techniques, on the use of radiological surveys as described in Permit Attachment G3. Radiological surveys use very sensitive radiation detection equipment to indicate if there has been a potential release of TRU mixed waste, including hazardous waste components, from a container. This allows the Permittees to indicate potential releases that are not detectable from visible evidence such as stains or discoloration. Visual inspection and operating records will also be used to identify areas where decontamination is necessary. Contaminated surfaces will be decontaminated until radioactivity is below DOE-established radiological protection limits¹. Once surfaces are determined to be free of radioactive waste constituents, they will be sampled for hazardous waste contamination. Hazardous waste decontamination, if needed, will be conducted in accordance with the requirements of the Permit and the standards in 20.4.1.500 NMAC (incorporating 40 CFR Part 264). These surface decontamination activities will ensure the removal of waste residues to levels protective of human health and the environment. The facility is expected to require no decontamination at closure because any waste spilled or released during operations will be contained and removed immediately. Solid waste management units listed in Attachment K, Table K-4 will be subject to closure.

Once the container storage units are decontaminated and certified by the Permittees to be clean, no further maintenance is required. The facilities and equipment in these units will be available reused for other purposes as needed. If portions of the facilities or equipment in these units, which require decontamination, cannot be decontaminated, these portions will be

¹ Title 10 CFR Part 835.
removed, and the resultant wastes will be managed consistent with radiological control procedures pursuant to 10 CFR Part 835.

G-1a(2) Miscellaneous Unit

Post-closure migration of hazardous waste or hazardous waste constituents to ground or surface waters or to the atmosphere, above levels that will harm human health or the environment, will not occur due to facility engineering and the geological isolation of the unit. The engineering aspects of closure are centered on the use of panel closures on each of the underground HWDUs and final facility seals placed in the shafts. The design of the panel closure system is based on the criteria that the closure system for closed underground HWDUs will prevent migration of hazardous waste constituents in the air pathway in concentrations above health-based levels beyond the WIPP land withdrawal boundary during the Disposal Phase 35-year operational and facility closure period.

Consistent with the definitions in 20.4.1.101 NMAC (incorporating 40 CFR §260.10), the process of panel closure is considered partial closure because it is a process of rendering a part of the repository inactive and closed according to the approved underground HWDU partial closure plan. Panel closure will be complete when the panel closure system is emplaced and operational, when that underground HWDU and related equipment and structures have been decontaminated (if necessary), and when the NMED has been notified of the closure.

Shaft seals are designed to provide effective barriers to the inward migration of ground-water and the outward migration of gas and contaminated brine over two discrete time periods. Several components become effective immediately and are expected to function for 100 years. Other components become effective more slowly, but provide permanent isolation of the waste. The final shaft seal design is specified in Permit Attachment G2.

The facility will be finally closed to minimize the need for continued maintenance. Protection of human health and the environment includes, but is not limited to:

- Prevention of any releases that may have adverse effects on human health or the environment due to the migration of waste constituents in the groundwater or in the subsurface environment [20.4.1.500 NMAC, incorporating 40 CFR §264.601(a)].

- Prevention of any releases that may have adverse effects on human health or environment due to migration of waste constituents in surface water, in wetlands, or on the soil surface [20.4.1.500 NMAC, incorporating 40 CFR §264.601(b)].

- Prevention of any release that may have adverse effects on human health or the environment due to migration of waste constituents in the air [20.4.1.500 NMAC, incorporating 40 CFR §264.601(c)].

As part of final facility closure, surface recontouring and reclamation will establish a stable vegetative cover, and further surface maintenance will not be necessary to protect human health and the environment. Prior to cessation of active controls, monuments will be emplaced to serve as long-term site markers to discourage activities that would penetrate the facility or impair the ability of the salt formation to isolate the waste from the surface environment for at least 10,000 years. The Federal government will maintain administrative responsibility for the repository site in perpetuity and will limit future use of the area.
If, during panel or final facility closure activities, unexpected events require modification of this Closure Plan to demonstrate compliance with closure performance standards, a Closure Plan amendment will be submitted in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.42).

G-1a(3) Post-Closure Care

The post-closure care period will begin after completion of the first panel closure and will continue for 30 years after final facility closure. The post-closure care period may be shortened or lengthened at the discretion of the NMED regulatory agency based on evidence that human health and the environment are being protected or that they are at risk. During the post-closure care period, the WIPP facility shall be maintained in a manner that complies with the environmental performance standards in 20.4.1.500 NMAC (incorporating 40 CFR §264.601). Post-closure activities are described in Permit Attachment H.

G-1b Requirements

The Permit specifies a sequential process for the closure of individual HWMUs at the WIPP facility. Each underground HWDU will undergo panel closure when waste emplacement in that HWDU panel is complete. Following waste emplacement in the underground HWDU, construction-side ventilation will be terminated, and waste-disposal-side ventilation will be established in the next underground HWDU to be used, and the underground HWDU containing the waste will be closed. The Permittees will notify the NMED of the closure of each of the underground HWDUs as they are sequentially filled on a HWDU-by-HWDU basis. The HWMUs in the WHB and in the parking area will be closed as part of final facility closure of the WIPP facility.

The Permittees will notify the Secretary of the NMED in writing at least 60 days prior to the date on which closure activities are scheduled to begin.

G-1c Maximum Waste Inventory

The maximum waste inventory (maximum capacity) for the permitted HWDUs is established in Permit Part 4, Table 4.1.1. During the Disposal Phase, and in accordance with the LWA, the WIPP facility will receive no more than 6.2 million ft³ (175,564 m³) of LWA TRU waste volume, which may include up to 250,000 ft³ (7,079 m³) of remote-handled (RH) TRU mixed waste.

Excavations are mined as permitted when needed during operations to maintain a reserve of disposal areas. The amount of waste placed in each room is limited by structural and physical considerations of equipment and design. Transuranic mixed waste volumes include waste received from off-site generator locations as well as derived waste from disposal and decontamination operations. For closure planning purposes, a maximum achievable volume of 685,100 ft³ (19,400 m³) of TRU mixed waste per panel HWDU is used, listed in Permit Part 4, Table 4.1.1. This equates to 662,150 ft³ (18,750 m³) of contact-handled (CH) TRU mixed waste and 22,950 ft³ (650 m³) of RH TRU mixed waste per panel.

The maximum extent of operations during the term of this permit is expected to be includes Panels 1 through 10, and Panels 10-12, as shown on Figure G-1, the WHB Container Storage Unit, and the PAU Parking Area Container Storage Unit. Note that panels Panel 9 will not be used for TRU mixed waste disposal and Panel 10 is not authorized for waste emplacement under this permit. If other waste management units are permitted during the Disposal Phase,
this Closure Plan will be revised to include the additional waste management units. The design basis for a panel assumes that it takes about 30 months to fill the HWDU and initiate panel closure (DOE, 1997). However, it is anticipated that Panel 7, Panel 8, and Panel 10 (if authorized in the future for TRU mixed waste disposal) will take longer than 30 months to fill due to the reduction in available ventilation capability, ground conditions in Panel 10 and associated remediation efforts, and radiological contamination in Panel 10. These assumptions have been used in preparing the closure schedule in Table G-1. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.

G-1d Schedule for Closure

For the purpose of establishing a schedule for closure, the final waste disposal will mark the end of the Disposal Phase and will occur when permitted HWDUs are filled or have achieved their maximum capacities as outlined in Permit Part 4, Table 4.1.1, or when the WIPP facility achieves its capacity of 6.2 million cubic feet (ft³) (175,564 cubic meters (m³)) of LWA TRU waste volume. The Permittees also assume closure will take 10 years—an operating and closure period of no more than 35 years (25 years for disposal operations and 10 years for closure) is assumed. This operating period, the Disposal Phase, may be extended or shortened, within the authorized capacities, depending on a number of factors, including the rate of waste approved for shipment to the WIPP facility and the schedules of TRU mixed waste generator sites, and future decommissioning activities.

G-1d(1) Schedule for Panel Closure

The anticipated schedule for the closure of the underground HWDUs is shown in Figure M-61G-2. Underground HWDUs should be ready for closure according to the schedule in Table G-1. Table G-1 shows actual dates for completed activities and future dates based on the facility design parameters discussed in Section G-1c. These future dates are estimates for planning and permitting purposes. Actual dates may vary depending on the availability of waste from the generator sites.

In the schedule in Figure M-61G-2, notification of intent to close occurs 30 days before placing the final waste in an HWDU panel. Once an HWDU panel is full, the Permittees will initially block ventilation through the HWDU panel as described in Permit Attachment A2, Section A2-2a(3) “Subsurface Structures,” and then will assess the closure area for ground conditions and contamination so that a definitive schedule and closure location can be determined. If as the result of this assessment the Permittees determine that a panel closure cannot be emplaced in accordance with the schedule in this Closure Plan, a modification will be submitted requesting an extension to the time for closure.

G-1d(2) Schedule for Final Facility Closure

The Disposal Phase for the WIPP facility is expected to require a period of 25 years beginning with the first receipt of TRU waste at the WIPP facility and followed by a period ranging from 7 to 10 years for decontamination, decommissioning, and final closure. The Disposal Phase may therefore extend until 2024, and the latest expected year of final closure of the WIPP facility (i.e., date of final closure certification) would be 2034. If, as is currently projected, the WIPP facility is dismantled at closure, all surface and subsurface facilities (except the hot cell portion
of the WHB, which will remain as an artifact of the Permanent Marker System ([PMS]) will be
disassembled and either salvaged or disposed in accordance with applicable standards.
Subsurface facilities and equipment will be disassembled and disposed or salvaged to the
extent practicable based on underground mining practice. In addition, asphalt and crushed
caliche that was used for paving will be removed, and the area will be recontoured and
revegetated in accordance with a land management plan. A detailed closure schedule will be
submitted in writing to the Secretary of the NMED, along with the notification of closure.
Throughout the closure period, all necessary steps will be taken to prevent threats to human
health and the environment in compliance with all applicable Resource Conservation and
Recovery Act ([RCRA]) permit requirements. Figure M-62G-3 presents an estimate of a final
facility closure schedule based on 84 months to implement final closure.

The schedule for final facility closure is considered to be a best estimate because closure of the
facility is driven by policies and practices established for the decontamination, if necessary, and
decommissioning of radioactively contaminated facilities. These required activities include
extensive radiological contamination surveys and hazardous constituent surveys using, among
other techniques, radiological surveys to indicate potential hazardous waste releases. Both
types of surveys will be performed at the all-areas of the WIPP site where hazardous waste
were managed as appropriate. These surveys, along with historical radiological survey records,
will provide the basis for determining the disposition/release of structures, equipment, and
components for (i.e., disposal or decontamination for release off-site). Specifications will be
developed for each structure to be removed. A cost benefit analysis may be needed to
evaluate decontamination options if extensive decontamination is necessary. Individual
equipment surveys, structure surveys, and debris surveys may be required prior to
disposition. Size-reduction techniques may be required to dispose of mixed or radioactive waste
at the WIPP site. Current DOE policy requires the preparation of a final
decontamination decommissioning and decommissioning decontamination ([D&D]) plan
immediately prior to final facility closure. In this way, the specific conditions of the facility at the
time D&D is initiated will be addressed. Section G-1e(23) provides a more detailed discussion of
final facility closure activities.

Figure M-62G-3 shows the schedule for the final facility closure consisting of decontamination,
as needed, of the TRU waste-handling equipment, and of the aboveground equipment and
facilities, including closure of surface HWMUs; decontamination of the shaft and haulage ways
(if needed); disposal of decontamination derived wastes in the last open underground HWDU;
and subsequent closure of this underground HWDU. Subsequent activities will include
installation of repository shaft seals.

An overall schedule for final facility closure, showing anticipated durations for currently
scheduled dates for the start and end of final facility closure activities, is shown in Table G-2.
This schedule is based on notification of the intent to close as the initial activity, 60 days prior to
the final facility closure start date. The dates assume a startup date of March 1999 and
continued permitting of the WIPP facility until it is filled. Schedule details for panel closures are
shown on Table G-1.

G-1d(3) Extension for Closure Time

As indicated by the closure schedule presented in Figure M-62G-3, the activities necessary to
perform facility closure of the WIPP facility may require more than 180 days to complete
because of additional stringent requirements for managing radioactive materials. Therefore, the
Permit provides an extension of the 180-day final closure requirement in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.113). During the extended closure period, the Permittees will continue to demonstrate compliance with applicable permit requirements and will take the all-steps necessary to prevent threats to human health and the environment as a result of TRU mixed waste management at the WIPP facility including all of the applicable measures in Permit Part 2.10, (Preparedness and Prevention).

In addition, according to the schedules in Figure M-62G-3, the final derived wastes that are generated as the result of decontamination activities will not be disposed of for 16 months after the initiation of final facility closure. In accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.113(a)), the Permit provides an extension of the 90-day limit to dispose of final derived waste resulting from the closure process. This provision is necessitated by the fact that the radioactive nature of the derived waste makes placement in the WIPP repository the best disposition, and the removal of these wastes will, by necessity, take longer than 90 days in accordance with the closure schedules. During this extended period of time, the Permittees will take the all-steps necessary to prevent threats to human health and the environment, including compliance with all-applicable permit requirements. These steps include all of the applicable preparedness and prevention measures in Permit Part 2, Section 2.10, (Preparedness and Prevention).

Finally, in the event the hazardous waste permit is not renewed as assumed in the schedule, the Permittees will submit a modification to the Closure Plan to implement a contingency closure that will allow the Permittees to continue to operate for the disposal of non-mixed TRU waste. This modification will include a request for an extension of the time for final facility closure. This modified Closure Plan will be submitted to the NMED for approval.

G-1d(4) Amendment of the Closure Plan

If it becomes necessary to amend the Closure Plan for the WIPP facility, the Permittees will submit, in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.42), a written notification of or request for a permit modification in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §270.42). This notification of, or request for, a permit modification will describe any change in operation or facility design that affects the Closure Plan. The written notification of, or request for, a permit modification will include a copy of the amended Closure Plan for approval by the NMED. The Permittees will submit a written notification of, or request for, a permit modification to authorize a change in the approved plan, if:

- There are changes in operating plans or in the waste management unit facility design that affect the Closure Plan
- There is a change in the expected year of closure
- Unexpected events occur during panel or final facility closure that require modification of the approved Closure Plan
- Changes in State or Federal laws affect the Closure Plan
- Permittees fail to obtain permits for continued operations as discussed above
The Permittees will submit a written request for a permit modification with a copy of the amended Closure Plan at least 60 days prior to the proposed change in facility design or operation or within 60 days of the occurrence of an unexpected event that affects the Closure Plan. If the unexpected event occurs during final closure, the permit modification will be requested within 30 days of the occurrence. If the Secretary of the NMED requests a modification of the Closure Plan, a plan modified in accordance with the request will be submitted within 60 days of notification or within 30 days, if the change in facility condition occurs during final closure.

G-1e Closure Activities

Closure activities include those instituted for panel closure (i.e., closure of filled underground HWDUs), contingency closure (i.e., closure of surface HWMUs and decontamination of other waste handling areas), and final facility closure (i.e., closure of surface HWMUs, D&D of surface facilities and the areas surrounding the WHB, and placement of repository shaft seals). Panel closure systems will be emplaced to separate areas of the facility and to isolate panels. Permit Attachments G1 and G2 provide panel closure system and shaft seal designs, respectively. ClosureAll closure activities will meet the applicable quality assurance (QA)/quality control (QC) program standards in place at the WIPP facility. Facility monitoring procedures in place during operations will remain in place through final closure, as applicable.

G-1e(1) Panel Closure

Following completion of waste emplacement in each underground HWDU, the HWDU will be closed. A WIPP Panel Closure (WPC) will be emplaced in the panel access drifts, in accordance with the design in Permit Attachment G1 and the schedule in Figure M-61G-2 and Table G-1. Alternatively, panels may be closed simultaneously by placing panel closures in the north-south mains (E-300, E-140, W-30, and W-170), as shown in Figure M-43G-1. If this alternative is used to close Panels 3, 4, 5, and 6, then Panel 9 will not be used for TRU mixed waste disposal. The panel closure system is designed to meet the following requirements that were established by the DOE for the design to comply with 20.4.1.500 NMAC (incorporating 40 CFR §264.601(a)):

- the panel closure system shall contribute to meeting the closure performance standards in Permit Part 6, Section 6.10.1 by mitigating the migration of volatile organic compounds (VOCs) from closed panels
- the panel closure system shall consider potential flow of VOCs through the disturbed rock zone (DRZ) in addition to flow through closure components
- the panel closure system shall perform its intended functions under loads generated by creep closure of the tunnels
- the panel closure system shall perform its intended function under the conditions of a postulated thermal runaway involving nitrate salt bearing waste (Golder, 2016)
- the nominal operational life of the closure system is 35 years, however, the inspection and maintenance, if needed, of accessible bulkheads can continue until the initiation of final facility closure
1. the panel closure system may require minimal maintenance per 20.4.1.500 NMAC (incorporating 40 CFR 264.111)
2. the panel closure system shall address the expected ground conditions in the waste disposal area
3. the panel closure system shall be built of substantial construction and non-combustible material except for flexible flashing used to accommodate salt movement
4. the design and construction shall follow conventional mining practices
5. structural analysis shall use data acquired from the WIPP underground
6. materials shall be compatible with their emplacement environment and function
7. treatment of surfaces in the closure areas shall be considered in the design
8. a QA/QC program shall verify material properties and construction
9. construction of the panel closure system shall consider shaft and underground access and services for materials handling

The closure performance standard for air emissions from the WIPP facility is one excess cancer death in one million and a hazard index (HI) of 1 for a member of the public living outside the WIPP Site Boundary as specified in Permit Part 6, Section 6.10.1. Releases shall be below these limits for the facility to remain in compliance with standards to protect human health and the environment. The panel closure design has been shown, through analysis, to meet these standards, if emplaced in accordance with the specifications in Permit Attachment G1. Compliance will be demonstrated by the Repository VOC Monitoring Program (RVMP) in Permit Attachment N. Compliance with the standards established for the RVMP constitutes compliance with the closure standards in Permit Part 6, Table 6.10.1.

The design basis for this closure is such that the migration of hazardous waste constituents from closed panels during the operational and closure period would result in concentrations well below health-based standards. The source term used as the design basis included the average concentrations of VOCs from CH waste containers as measured in headspace gases through November 2010. The VOCs are assumed to have been released by diffusion through the container vents and are removed from the closed room by air leakage that occurs due to ventilation-related pressure differentials.

Figures G-4, G-4a, and G-5 show diagrams of the panel closure design, the substantial barrier, and installation envelopes are depicted in Permit Attachment G1, Appendix G1-B, Figure M-63, and Figure M-42. Permit Attachment G1 provides the detailed design and the design analysis for the panel closure system. The Permittees shall use bulkheads as specified in Attachment G1 for the closure of filled panels. A run-of-mine (ROM) salt component will be included in the closure for Panel 9 and Panel 10. The substantial barrier in Figure M-63 G-4a will be installed in Panels 7 and 8.
G-1e(2) Prerequisite Activities for Panel 6 Final Closure

The NMED-approved WIPP Nitrate Salt Bearing Waste Container Isolation Plan (DOE, 2015) provides for performing prerequisite activities associated with ground control, equipment readiness, work control authorization, and ventilation prior to construction of the final closure in Panel 6. These activities are considered closure activities and will be completed in accordance with the WIPP Nitrate Salt Bearing Waste Container Isolation Plan (DOE, 2015).

G-1e(23) Decontamination and Decommissioning

Decontamination is defined as those activities which are performed to remove contamination from surfaces and equipment that are not intended to be disposed of at the WIPP facility. The policy at the WIPP facility will be to decontaminate as many areas as possible or to fix the contaminants to the surface so they are not easily removable, consistent with radiological protection policy. Decontamination or fixing are part of closure activities and are a necessary activity in the clean closure of the surface container management units. Decontamination or fixing determinations are based upon radiological surveys.

Decommissioning is the process of removing equipment, facilities, or surface areas from further use and closing the facility. Decommissioning is part of final facility closure only and will involve the removal of equipment, buildings, closure of the shafts, and establishing active and passive institutional controls for the facility. Passive institutional controls are not included in the Permit.

The objective of D&D activities at the WIPP facility is to return the surface to as close to the preconstruction condition as reasonably possible, while protecting the health and safety of the public and the environment. Major activities required to accomplish this objective include, but are not limited to the following:

1. Review of operational records for historical information on releases
2. Visual examination of surface structures for evidence of spills or releases
3. Performance of site contamination surveys
4. Decontamination, if necessary, of usable equipment, materials, and structures including surface facilities and areas surrounding the WHB.
5. Disposal of equipment/materials that cannot be decontaminated but that meet the treatment, storage, and disposal facility waste acceptance criteria (TSDF-WAC) in an underground HWDU
6. Emplacement of panel closure system in the last HWDU
7. Emplacement of shaft seals

For the purposes of planning, the conclusion of shaft sealing is used by the DOE as the end of closure activities and the beginning of the Post-Closure Care Period.
8. Regrading the surface to approximately original contours

9. Initiation of active controls

This Closure Plan will be amended prior to the initiation of final closure activities to specify the methods to be used.

G-1e(2)(a) Hazards Survey

Before final closure activities begin, radiation protection personnel will conduct a hazards survey of the unit(s) being closed. A release of radionuclides could also indicate a release of hazardous constituents. If radionuclides are not detected, sampling for hazardous constituents will still be performed if there is documentation or visible evidence that a spill or release has occurred. The purpose of the hazards survey will be to identify potential contamination concerns that may present hazards to workers during the closure activities and to specify any control measures necessary to reduce worker risk. This survey will provide the information necessary for the health physics personnel to identify worker qualifications, personal protective equipment (PPE), safety awareness, work permits, exposure control programs, and emergency coordination that will be required to perform closure related activities.

G-1e(23)(ba) Determine the Extent of Contamination

The first activities performed as part of decontamination include those needed to determine the extent of any contamination that needs to be removed or fixed prior to decommissioning a facility. This includes activities 1 to 3 above and, as can be seen by the schedules in Figures M-61G-2 and M-62G-3, these surveys are anticipated to take 10 months to perform, including obtaining the results of any sample analyses. The process of identifying areas that require decontamination or fixing include three sources of information. First, operating records will be reviewed to determine where contamination has previously been found as the result of historical releases and spills. Even though releases and spills in the above ground storage units will have been cleaned up at the time of occurrence, newer equipment and technology may allow further cleaning. Second, surfaces of facilities and structures will be examined visually for evidence of spills or releases. Finally, extensive detailed contamination surveys will be performed to document the level of cleanliness for surface structures and equipment that are subject to decontamination. If equipment or areas are identified as contaminated, the Permittees will notify NMED as specified in Permit Part 1, and a plan and procedure(s) will be developed and implemented to address decontamination-related questions, including:

- Should the component be decontaminated or disposed of as waste?
- What is the most cost-effective method of decontaminating the component?
- Will the decontamination procedures adequately contain the contamination?

Radiological and hazardous constituent surveys will be used in determining the presence of hazardous waste and hazardous waste residues in areas where spills or releases have occurred. Radiological surveys are described in Permit Attachment G3. For contamination that is cleaned up, once cleanup of the radioactivity has been completed, the surface will be sampled for the hazardous constituents associated with the EPA Hazardous Waste Numbers specified in Permit Attachment B to determine that they, too, have been cleaned up. Sampling and analysis protocols will be consistent with EPA’s document SW-846 (EPA, 2015).
G-1(e)(23)(cb) Decontamination Activities

Once the extent of contamination is known, radiological control activities (e.g., decontamination, or fixing) activities will be planned and performed. Consistent with radiological control procedures pursuant to 10 CFR Part 835, decontamination activities will be performed, as necessary. Hazardous waste decontamination, if needed, will be conducted in accordance with the requirements of the Permit and the standards in 20.4.1.500 NMAC (incorporating 40 CFR Part 264). Radiological control and the control of hazardous waste residues are the primary criteria used in the design of decontamination activities. Radiological control procedures require that careful planning and execution be used in decontamination activities to prevent the exposure of workers beyond applicable standards and to prevent the further spread of contamination. Careful control of entry, cleanup, and ventilation are vital components of radiological control activities decontamination. The level of care mandated by DOE orders and occupational protection requirements results in closure activities that will exceed the 180 days allowed in 20.4.1.500 NMAC (incorporating 40 CFR §264.113(b)). Decontamination activities are included as item 4 above and are shown on the schedules for contingency closure and final facility closure (Figures G-2 and M-62G-3) as Activities activities D, E, and F. These activities are anticipated to have a duration of 20 months for both contingency closure and for final facility closure. The result of these activities is the clean closure of the surface container management units. Under contingency closure, the other areas that have been decontaminated will not be closed. Instead they will remain in use for continued waste management activities involving non-mixed waste. Under final facility closure, other areas that are decontaminated are eligible for closure.

The operating philosophy of the WIPP Project, which is described as “Start Clean – Stay Clean,” is intended to minimize the will provide for minimum need for decontamination at closure. However, the need for decontamination techniques may arise. Decontamination activities are managed consistent with radiological control procedures pursuant to 10 CFR Part 835, which includes the as-low-as-reasonably-achievable (ALARA) principle. The ALARA principle is an approach/philosophy to radiation protection to manage and control exposures (both individual and collective) to the work force and to the general public to as low as is reasonable, taking into account social, technical, economic, practical, and public policy considerations. It is assumed that the process of localized surface decontamination will remove the hazardous waste constituents along with the radioactive waste constituents.

Decontamination activities will be coordinated with closure activities so that areas that have been decontaminated will not be recontaminated. All waste resulting from decontamination activities will be surveyed and analyzed for the presence of radioactive contamination and a determination of the hazardous constituents associated with the EPA Hazardous Waste Numbers specified in Part A of the Permit Application Permit Attachment B. The waste will be characterized as non-radioactive/non-hazardous, hazardous, mixed, or radioactive and will be packaged and handled appropriately. Mixed and radioactive waste, classified as TRU mixed waste, will be managed in accordance with the applicable Permit requirements. Derived mixed waste collected during decontamination activities that are generated before repository shafts have been sealed will be emplaced in the facility, if appropriate, or will be managed together with decontamination derived waste collected after the underground is closed. This waste will be classified and shipped off site to an appropriate, permitted facility for treatment, if necessary, and for disposal.
Removal of Hazardous Waste Residues

Because of the type of waste management activities that will occur at the WIPP facility, waste residues that may be encountered during the operation of the facility and at closure may include derived waste. Derived wastes result from the management of the waste containers or may be collected as part of the closure activities (such as those during which wipes were used to sample the containers and equipment for potential radioactive contamination or those involving solidified decontamination solutions, the handling of equipment designated for disposal, and the handling of residues collected as a result of spill cleanup). Derived wastes collected during the operation and closure of the WIPP facility will be identified and managed as TRU mixed wastes. These wastes will be disposed in the active underground HWDU. Decontamination and decommissioning derived wastes and equipment designated for disposal will be placed in the last underground HWDU panel before closure of that unit.

Surface Container Storage Units

The procedures employed for waste receipt at the WIPP facility minimize the likelihood for any waste spillage to occur on the surface outside the WHB. TRU mixed waste is shipped to the WIPP facility in approved shipping containers (i.e., Contact-Handled or Remote-Handled Packages) that are not opened until they are inside the WHB. Therefore, it is unlikely that soil in the Parking Area Unit or elsewhere in the vicinity of the WHB will become contaminated with TRU mixed waste constituents as a result of TRU mixed waste management activities. An evaluation of the soils in the vicinity of the WHB will only be necessary if an event resulting in a release of hazardous waste has occurred outside the WHB.

The “Start Clean—Stay Clean” operating philosophy of the WIPP Project will minimize the need for decontamination of the WHB during decommissioning and closure. Procedures for opening shipping containers in the WHB limit the opportunity for waste spillage.

Should the need for decontamination of the WHB arise, the following methods may be employed, as appropriate, for the hazardous constituent/contaminant type and extent:

- Chemical cleaning (e.g., water, mild detergent cleanser, and polyvinyl alcohol)
- Nonchemical cleaning (e.g., sandblasting, grinding, high-pressure water spray, scabbler pistons and needle scalers, ice-blast technology, dry-ice blasting)
- Removal of contaminated components such as pipe and ductwork

Waste generated as a result of WHB decontamination activities will be managed as derived waste in accordance with applicable Permit requirements and will be emplaced in the last open underground HWDU for disposal.

Waste Handling Contaminated Underground Equipment

The waste conveyance, and associated waste handling equipment, and underground support equipment (e.g., mining equipment, carts) that has become contaminated with hazardous waste constituents associated with TRU mixed waste will be decontaminated to background or characterized and dispositioned (i.e., disposed of as derived waste) as part of both contingency and final facility closure. Procedures for detection and sampling will be as
described above. Equipment cleanup will be as above using chemical or nonchemical techniques.

Personnel Decontamination

Personal protective equipment (PPE) worn by personnel performing closure activities in areas determined to be contaminated will be disposed of appropriately. Disposable PPE used in such areas will be placed into containers and managed as TRU mixed waste. Non-disposable PPE will be decontaminated, if possible. Non-disposable PPE that cannot be decontaminated will be managed as TRU mixed waste.

In accordance with DOE policy, TRU mixed waste PPE will be considered to be contaminated with all of the hazardous waste constituents contained in the containers that have been managed within the unit being closed. Wastes collected as a result of closure activities and that may be contaminated with radioactive and hazardous constituents will be considered TRU mixed wastes. These wastes will be managed as derived wastes and disposed of in the final open underground HWDU, as described in Permit Attachment A2. Such waste, collected as the result of closure of the WIPP facility, will be disposed of in the final open underground HWDU.

Cleanup Criteria

Radiological decontamination will be managed consistent with radiological control procedures, or to less than or equal whatever levels that may be established by DOE at the time of cleanup.

Hazardous waste decontamination will be conducted in accordance with standards in 20.4.1.500 NMAC (incorporating 40 CFR Part §264) or as incorporated into the Permit.

Final Contamination Sampling and Quality Assurance

Verification samples will be analyzed by an approved laboratory that has been qualified by the DOE according to a written program with strict criteria. The QA requirements of EPA/SW-846, “Test Methods for Evaluating Solid Waste” (EPA, 2015), will be met for hazardous constituent sampling and analyses.

Quality Assurance/Quality Control

Because decisions about closure activities may be based, in part, on analyses of samples of potentially contaminated surfaces and media, a program to ensure reliability of analytical data is essential. Data reliability will be ensured by following a QA/QC program that mandates adequate precision and accuracy of laboratory analyses. Field documentation will be used to document the conditions under which each sample is collected. The documented QA/QC program in place at the WIPP facility will meet applicable RCRA QA requirements.

Field blanks and duplicate samples will be collected in the field to determine potential errors introduced in the data from sample collection and handling activities. To determine the potential for cross-contamination, rinsate blanks (consisting of rinsate from decontaminated sampling equipment) will be collected and analyzed in accordance with applicable EPA guidance. At least

3 Title 10 CFR Part 835
one rinsate blank will be collected for every 20 field samples. Duplicate samples will be
collected at a frequency of one duplicate sample for every ten field samples. In no case will less
than one rinsate blank or duplicate sample be collected for a field sampling effort. These blank
and duplicate samples will be identified and treated as separate samples. Acceptance criteria
for QA/QC hazardous constituent sample analyses will adhere to the most recent version of
EPA SW-846 or other applicable EPA guidance.

G-1e(23)(de) Dismantling

G-1e(23)(de)(1) Dismantling During Final Closure

Final facility closure will include dismantling of structures on the surface and in the underground.
These are items 6 and 7 above and are represented as Activity G in the final facility closure
schedule in Figure M-62G-3. During dismantling, priority will be given to contaminated
structures and equipment that cannot be decontaminated to assure these are properly disposed
of in the remaining open underground HWDU in a timely manner. All such facilities and
equipment are expected to be removed and disposed of 16 months after the initiation of closure.
Dismantling of the balance of the facility, including those structures and equipment that are not
included in the application and are not used for TRU mixed waste management, is anticipated to
take an additional 66 months. The placement of D&D waste into the final underground HWDU may, by necessity, involve the placement of uncontainerized bulk
materials such as concrete components, building framing, structural members, disassembled or
partially disassembled equipment, or containerized materials in non-standard waste boxes.
Such placement will only occur if it can be shown that it is protective of human health and the
environment and are described in an amendment to the Closure Plan. Identification of bulk items is not possible at this time since their size and quantity will depend on
the extent of non-removable contamination.

G-1e(23)(de)(2) Dismantling of Permit-Related Surface Equipment, Structures, and
Contaminated Soils During Partial Closure

Partial closure may include dismantling of Permit-related structures and/or equipment
and removal of contaminated soils on the surface prior to final closure. During dismantling,
priority will be given to structures and equipment contaminated with hazardous waste or
hazardous waste constituents that cannot be decontaminated due to the presence of
radioactivity to ensure these are properly disposed of at the WIPP facility or at another
designated disposal facility in a timely manner. It should be noted that the placement of D&D
waste into a WIPP HWDU may, by necessity, involve the placement of uncontainerized bulk
materials such as concrete components, building framing, structural members, disassembled or
partially disassembled equipment, or containerized materials in non-standard waste boxes.
Such placement will only occur if it can be shown that it is protective of human health and the
environment and items are described in the operating record. Identification of bulk items is not
possible at this time since their size and quantity will depend on the extent of non-removable
contamination.

G-1e(23)(ed) Closure of Open Underground HWDU

The closure of the final underground HWDU is shown by Activity H in Figure M-62G-3. This
closure will be consistent with the description in Section G-1e(1) and the design in Permit
Attachment G1. Detailed closure schedules for underground HWDUs are given in Figure M-61G-2 and Table G-1.

G-1e(23)(fe) Final Facility Closure

Final facility closure includes several activities designed to assure both the short-term isolation of the waste and the long-term integrity of the disposal system. These include the placement of plugs in boreholes that penetrate the salt and the placement of the repository sealing system. In addition, the surface will be returned to as near its original condition as practicable, and will be readied for the construction of markers and monuments that will provide permanent marking of the repository location and contents.

Figure M-43G-6 identifies where three existing boreholes overlie the proximate area of the repository footprint. Of these identified boreholes in Figure M-43G-6, all but ERDA-9 are terminated hundreds of feet above the repository horizon. Only ERDA-9, which is accounted for in long-term performance modeling, is drilled through the repository horizon, near the WIPP facility excavations.

To mitigate the potential for migration beyond the repository horizon, the DOE has specified that borehole seals be designed to limit the volume of water that could be introduced to the repository from the overlying water-bearing zones and to limit the volume of contaminated brine released from the repository to the surface or water-bearing zones.

Borehole plugging activities have been underway since the 1970s, from the early days of the development of the WIPP facility. Early in the exploratory phase of the project, a number of boreholes were sunk in Lea and Eddy counties. After the WIPP site was situated in its current location, an evaluation of all-vertical penetrations was made by Christensen and Peterson (1981).

As an initial criterion, any borehole that connects a fluid-producing zone with the repository horizon becomes a plugging candidate.

Grout plugging procedures are routinely performed in standard oil-field operations; however, quantitative measurements of plug performance are rarely obtained. The Bell Canyon Test reported by Christensen and Peterson (1981) was a field test demonstration of the use of cementitious plugging materials and modification of existing industrial emplacement techniques to suit repository plugging requirements. Cement emplacement technology was found to be “generally adequate to satisfy repository plugging requirements.” Christensen and Peterson (1981) also report “that grouts can be effective in sealing boreholes, if proper care is exercised in matching physical properties of the local rock with grout mixtures. Further, the reduction in fluid flow provided by even limited length plugs is far in excess of that required by bounding safety assessments for the WIPP.” The governing regulations for plugging and/or abandonment of boreholes are summarized in Table G-3.

The proposed repository sealing system design will prevent water from entering the repository and will prevent gases or brines from migrating out of the repository. The proposed design includes the following subsystems and associated principal functions:

- Near-surface: to prevent subsidence at and around the shafts
• Rustler Formation: to prevent subsidence at and around the shafts and to ensure compliance with federal and New Mexico groundwater protection requirements

• Salado: to prevent transporting hazardous waste constituents beyond the point of compliance specified in Permit Part 5

The repository sealing system will consist of natural and engineered barriers within the WIPP repository that will withstand forces expected to be present because of rock creep, hydraulic pressure, and probable collapses in the repository and will meet the closure requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.601 and §264.111). Permit Attachment G2 presents the final repository sealing system design.

Once shaft sealing is completed, the Permittees will consider closure complete and will provide the NMED with a certification of such within 60 days.

G-1e(23)(gf) Final Contouring and Revegetation

In the preparation of its Final Environmental Impact Statement (DOE, 1980), the DOE committed to restore the site to as near to its original condition as is practicable. This involves removal of access roads, unneeded utilities, fences, and any other structures built by the DOE to support WIPP operations. Provisions would be left for active post-closure controls of the site and for the installation of long-term markers and monuments for the purpose of permanently marking the location of the repository and waste. Permit Attachment H, Section H-1a(1) discusses the active and long-term controls proposed for the WIPP facility. Installation of borehole seals are anticipated to take 12 months, shaft seals 52 months, and final surface contouring 8 months.

G-1e(23)(hg) Closure, Monuments, and Records

A record of the WIPP facility Project shall be listed in the public domain in accordance with the requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.116). Active access controls will be employed for at least the first 100 years after final facility closure. In addition, a passive control system consisting of monuments or markers will be erected at the site to inform future generations of the location of the WIPP repository (see “Permanent Marker Conceptual Design Report” [DOE, 19951996]).

This Permit requires only a 30-year post-closure period. This is the maximum post-closure time frame allowed in an initial Permit for any facility, as specified in 20.4.1.500 NMAC (incorporating 40 CFR §264.117(a)). The Secretary of the NMED may shorten or extend the post-closure care period at any time in the future prior to completion of the original post-closure period (30 years after the completion of construction of the shaft seals). The Permanent Marker Conceptual Design Report and other provisions during the first 100 years after closure are addressed under another federal regulatory program.

Closure of the WIPP facility will contribute to the following:

• Prevention of the intrusion of fluids into the repository by sealing the shafts
• Prevention of human intrusion after closure
• Minimization of future physical and environmental surveillance
Detailed records shall be filed with local, state, and federal government agencies to ensure that the location of the WIPP facility is easily determined and that appropriate notifications and restrictions are given to anyone who applies to drill in the area. This information, together with land survey data, will be on record with the U.S. Geological Survey and other agencies. The federal government will maintain permanent administrative authority over those aspects of land management assigned by law. Details of post-closure activities are in Permit Attachment H.

G-1e(34) Performance of the Closed Facility

20.4.1.500 NMAC (incorporating 40 CFR §264.601) requires that a miscellaneous unit be closed in a manner that protects human health and the environment. The RCRA Part B permit application addressed the expected performance of the closed facility during the 30-year post closure period. Groundwater monitoring will provide information on the performance of the closed facility during the post-closure care period, as specified in Permit Attachment H, Section H-1a(2) (Monitoring) of Permit Attachment H.

The principal barriers to the movement of hazardous constituents from the facility or the movement of waters into the facility are the halite of the Salado (natural barrier) and the repository seals (engineered barrier). Data and calculations that support this discussion were presented in Renewal Application Addendum N1 (DOE, 2020) the permit application. The majority of the calculations performed for the repository are focused on long-term performance and making predictions of performance over the first 300-years of the 10,000-years performance assessment. In the short term (300 years), the repository is reaching a steady state configuration where the hypothetical brine inflow rate is affected by the increasing pressure in the repository due to gas generation and creep closure. These three phenomena are related in the numerical modeling performed to support the permit application. The modeling parameters, assumptions and methodology were described in detail in Renewal Application Addendum N1 (DOE, 2020) the permit application.

G-2 Notices Required for Disposal Facilities

G-2a Certification of Closure

Within 60 days after completion of closure activities for a HWMU (i.e., for each storage unit and each disposal unit), the Permittees will submit to the Secretary of the NMED a certification that the unit (and, after completion of final closure, the facility) has been closed in accordance with the specifications of this Closure Plan. The certification will be signed by the Permittees and by an independent New Mexico registered professional engineer. Documentation supporting the independent registered engineer’s certification will be furnished to the Secretary of the NMED with the certification.

G-2b Survey Plat

Within 60 days of completion of closure activities for each underground HWDU, and no later than the submission of the certification of closure of each underground HWDU, the Permittees will submit to the Secretary of the NMED a survey plat indicating the location and dimensions of hazardous waste disposal units with respect to permanently surveyed benchmarks. The plat will be prepared and certified by a professional land surveyor and will contain a prominently displayed note that states the Permittees’ obligation to restrict disturbance of the hazardous
waste disposal unit. In addition, the land records in the Eddy County Courthouse, Carlsbad, New Mexico, will be updated through filing of the final survey plats.
References

DOE, see U.S. Department of Energy

EPA, see U.S. Environmental Protection Agency

Table G-1
Anticipated Earliest Closure Dates for the Underground HWDUs

<table>
<thead>
<tr>
<th>HWDU</th>
<th>Operations Start</th>
<th>Operations End</th>
<th>Closure Start<sup>b</sup></th>
<th>Closure End<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL 1</td>
<td>3/99*</td>
<td>3/03*</td>
<td>3/03*</td>
<td>5/20*</td>
</tr>
<tr>
<td>PANEL 2</td>
<td>3/03*</td>
<td>10/05*</td>
<td>10/05*</td>
<td>5/20*</td>
</tr>
<tr>
<td>PANEL 3</td>
<td>4/05*</td>
<td>2/07*</td>
<td>2/07*</td>
<td>8/19*</td>
</tr>
<tr>
<td>PANEL 4</td>
<td>1/07*</td>
<td>5/09*</td>
<td>5/09*</td>
<td>8/19*</td>
</tr>
<tr>
<td>PANEL 5</td>
<td>3/09*</td>
<td>7/11*</td>
<td>7/11*</td>
<td>8/19*</td>
</tr>
<tr>
<td>PANEL 6</td>
<td>3/11*</td>
<td>1/14*</td>
<td>1/14*</td>
<td>8/19*</td>
</tr>
<tr>
<td>PANEL 7</td>
<td>9/13*</td>
<td>5/22/24</td>
<td>5/22/24</td>
<td>12/22/24</td>
</tr>
<tr>
<td>PANEL 9**</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PANEL 10</td>
<td>8/25/128</td>
<td>9/30</td>
<td>10/30</td>
<td>3/31<sup>SEE NOTE 1</sup></td>
</tr>
<tr>
<td>PANEL 11</td>
<td>8/25</td>
<td>7/28</td>
<td>8/28</td>
<td>2/29</td>
</tr>
<tr>
<td>PANEL 12</td>
<td>7/28</td>
<td>6/31</td>
<td>7/31</td>
<td>1/32</td>
</tr>
</tbody>
</table>

^{* Actual month and year}

^{** Panel 9 was not used for TRU mixed waste disposal. Closures for Panels 3, 4, 5 and 6 were placed in the north-south mains (E-300, E-140, W-30 and W-170), as shown in Figure G-1, pursuant to Section G-1e(1).}

^{a The point of closure start is defined as 60 days following notification to the NMED of closure.}

^{b The point of closure end is defined as 180 days following placement of final waste in the panel.}

NOTE 1: The time to close these areas may be extended depending on the nature and extent of the disturbed rock zone. The excavations that constitute these panels will have been opened for as many as 40 years so that the preparation for closure may take longer than the time allotted in Figure G-2. If this extension is needed, it will be requested as an amendment to the Closure Plan.

NOTE 2: For the purposes of preparing the closure schedule, the “Operations Start” date for each additional HWDU is the same as the “Operations End” date of the immediately prior HWDU. The “Operations End” date for each additional HWDU is 30 months after the “Operations Start” date. The “Closure Start” date for each additional HWDU is 1 month after the “Operations End” date. The “Closure End” date for each additional HWDU is 6 months after the “Operations End” date.

N/A--Not Applicable
Table G-2

Anticipated Overall Schedule for Final Facility Closure Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Start Month</th>
<th>Stop Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notify NMED of Intent to Close WIPP (or to Implement Contingency Closure)</td>
<td>October 2030</td>
<td>N/A</td>
</tr>
<tr>
<td>Perform Contamination Surveys in both Surface Storage Areas</td>
<td>October 2030</td>
<td>6 Months April 2031</td>
</tr>
<tr>
<td>Sample Analysis</td>
<td>December 2030</td>
<td>8 Months July 2031</td>
</tr>
<tr>
<td>Decontamination as Necessary of both Surface Storage Areas</td>
<td>June 2031</td>
<td>8 Months January 2032</td>
</tr>
<tr>
<td>Final Contamination Surveys of both Surface Storage Areas</td>
<td>February 2032</td>
<td>8 Months September 2032</td>
</tr>
<tr>
<td>Sample Analysis</td>
<td>June 2032</td>
<td>8 Months January 2033</td>
</tr>
<tr>
<td>Prepare and Submit Container Management Unit Closure Certification</td>
<td>February 2033</td>
<td>4 Months May 2033</td>
</tr>
<tr>
<td>Dispose of Closure-Derived Waste</td>
<td>November 2030</td>
<td>14 Months January 2032</td>
</tr>
<tr>
<td>Closure of Open Underground HWDU panel</td>
<td>February 2032*</td>
<td>8 Months September 2032</td>
</tr>
<tr>
<td>Install Borehole Seals</td>
<td>October 2032</td>
<td>12 Months September 2033</td>
</tr>
<tr>
<td>Install Repository Seals</td>
<td>June 2033</td>
<td>52 Months September 2033</td>
</tr>
<tr>
<td>Recontour and Revegetate</td>
<td>October 2037</td>
<td>8 Months May 2038</td>
</tr>
<tr>
<td>Prepare and Submit Final (Contingency) Closure Certification</td>
<td>October 2037</td>
<td>2 Months May 2038</td>
</tr>
<tr>
<td>Post-closure Monitoring</td>
<td>July 2038</td>
<td>Up to 30 Years N/A</td>
</tr>
</tbody>
</table>

N/A—Not Applicable

Refer to Figures M-62G-3 and Permit Attachment G1, Appendix G1-BG-4 for precise activity titles.

This assumes the final waste is placed in this unit in January 2032 and notification of closure for this HWDU is submitted to the NMED in December 2031.
Table G-3
Governing Regulations for Borehole Abandonment

<table>
<thead>
<tr>
<th>Federal or State Land</th>
<th>Type of Well or Borehole</th>
<th>Governing Regulation</th>
<th>Summary of Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>Groundwater Surveillance</td>
<td>State and Federal regulation in effect at time of abandonment</td>
<td>Monitor wells no longer in use shall be plugged in such a manner as to preclude migration of surface runoff or groundwater along the length of the well. Where possible, this shall be accomplished by removing the well casing and pumping expanding cement from the bottom to the top of the well. If the casing cannot be removed, the casing shall be ripped or perforated along its entire length if possible, and grouted. Filling with bentonite pellets from the bottom to the top is an acceptable alternative to pressure grouting.</td>
</tr>
<tr>
<td>Federal</td>
<td>Oil and Gas Wells</td>
<td>43 CFR Part 3160, §§ 3162.3-4</td>
<td>The operator shall promptly plug and abandon, in accordance with a plan first approved in writing or prescribed by the authorized officer.</td>
</tr>
<tr>
<td>Federal</td>
<td>Potash</td>
<td>43 CFR Part 3590, § 3593.1</td>
<td>(b) Surface boreholes for development or holes for prospecting shall be abandoned to the satisfaction of the authorizing officer by cementing and/or casing or by other methods approved in advance by the authorized officer. The holes shall also be abandoned in a manner to protect the surface and not endanger any present or future underground operation, any deposit of oil, gas, or other mineral substances, or any aquifer.</td>
</tr>
</tbody>
</table>
| State | Oil and Gas Well Outside the Oil-Potash Area | State of New Mexico, Oil Conservation Division, Rule 202 (eff. 3-1-91) | B. Plugging
(1) Prior to abandonment, the well shall be plugged in a manner to permanently confine all oil, gas, and water in the separate strata where they were originally found. This can be accomplished by using mud-laden fluid, cement, and plugs singly or in combination as approved by the Division on the notice of intention to plug.
(2) The exact location of plugged and abandoned wells shall be marked by the operator with a steel marker not less than four inches (4”) in diameter, set in cement, and extending at least four feet (4’) above mean ground level. The metal of the marker shall be permanently engraved, welded, or stamped with the operator name, lease name, and well number and location, including unit letter, section, township, and range. |
| State | Oil and Gas Wells Inside the Oil-Potash Area | State of New Mexico, Oil Conservation Division, Order No. R-111-P (eff. 4-21-88) | F. Plugging and Abandonment of Wells
(1) All existing and future wells that are drilled within the potash area, shall be plugged in accordance with the general rules established by the Division. A solid cement plug shall be provided through the salt section and any water-bearing horizon to prevent liquids or gases from entering the hole above or below the salt selection. It shall have suitable proportions—but no greater than three (3) percent of calcium chloride by weight—of cement considered to be the desired mixture when possible. |
Figure G-1
Location of Underground HWDUs and Anticipated Closure Locations
Figure G-2
WIPP Panel Closure Schedule
Figure G-3
WIPP Facility Final Closure 84-Month Schedule
Figure G-4

Waste Isolation Pilot Plant Hazardous Waste Facility Permit Updated Renewal Application

32

NOTES

1. RECESS OUT-BYE BULKHEAD MIN. 5 FT FROM INTERSECTION WITH ANOTHER DRIFT OR MAIN ENTRY.

2. OFFSET OUT-BYE BULKHEAD FROM EXPLOSION-ISOLATION WALL. MINIMUM OFFSET DISTANCE IS 2.0 x ACCESS DRIFT HEIGHT.

3. FOR PANELS WITHOUT EXPLOSION-ISOLATION WALLS, OFFSET OUT-BYE BULKHEAD FROM WASTE CONTAINERS. MINIMUM OFFSET DISTANCE IS 22 FT.

4. INSTALL IN-BYE BULKHEAD AT LEAST 22 FT FROM THE NEAREST WASTE CONTAINER.

5. WPC-B BULKHEADS SHOULD BE PLACED AT LEAST 5 FT FROM THE TOE OF ROM SALT (IF APPLICABLE) ASSUMING ROM SALT END SLOPES OF 2H:1V.

6. MINIMUM LENGTH OF WPC-B ROM SALT IS A FUNCTION OF THE MAIN ENTRY WIDTH AS FOLLOWS:

<table>
<thead>
<tr>
<th>ENTRY WIDTH (ft)</th>
<th>MIN. ROM SALT LENGTH (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
</tr>
</tbody>
</table>

MINIMUM ROM SALT LENGTH EXCLUDING END SLOPES:

<table>
<thead>
<tr>
<th>ENTRY WIDTH</th>
<th>MIN. ROM SALT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>35</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
</tr>
</tbody>
</table>

WPC-A FOR PANEL ACCESS DRIFTS WITH EXPLOSION-ISOLATION WALLS - PANELS 1, 2, AND 5

WPC-A FOR PANEL ACCESS DRIFTS WITHOUT EXPLOSION-ISOLATION WALLS - PANELS 3, 4, 6, 7, AND 8

WPC-A FOR PANEL 9 - WASTE PLACEMENT SOUTH OF S2750

WPC-B FOR PANEL 10 - WASTE PLACEMENT SOUTH OF S1600
Figure G-4a
Typical Substantial Barrier and Bulkhead

NOTES
1. CONFIGURATION AND PLACEMENT OF THE SUBSTANTIALLY BARRIER AND THE BULKHEAD
 ARE DEPENDENT ON AS BUILT FIELD CONDITIONS, AS DESIGNATED BY THE CONSIDERATION
 ENGINEER.
2. SUBSTANTIAL BARRIER MATERIAL WILL CONSIST OF NON-FUSSIBLE MATERIAL OR OTHER
 APPROVED NON-FUSSIBLE MATERIAL AS DESIGNATED BY THE CONTENTS ENGINEER.
3. SUBSTANTIAL BARRIER MATERIAL SHOULD BE AGAINST THE WASTE FACE. THE HEIGHT
 OF THE SUBSTANTIAL BARRIER NEAR THE WASTE WILL BE AT LEAST EQUAL TO THE HEIGHT
 OF THE BULKHEAD OR WASTE.
4. DIMENSIONS ARE APPROXIMATE. THE HEIGHT OF THE SUBSTANTIALLY BARRIER IS
 MEASURED AT THE WASTE FACE. THE LENGTH OF THE SUBSTANTIALLY BARRIER IS
 MEASURED FROM THE BOTTOM OF THE WASTE FACE TO THE TOP OF THE SUBSTANTIALLY
 BARRIER MATERIAL.
Figure G-5a
Typical Disposal Panel Dimensions for Panels 1-7
Figure G-5b
Typical Disposal Panel Dimensions for Panel 8
Figure G-6
Approximate Locations of Boreholes in Relation to the WIPP Underground
ATTACHMENT G1

WIPP PANEL CLOSURE DESIGN DESCRIPTION AND SPECIFICATIONS

Adapted from the October 2016 Design Report – WIPP Panel Closure
WASTE ISOLATION PILOT PLANT
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

ATTACHMENT G1

WIPP PANEL CLOSURE DESIGN DESCRIPTION AND SPECIFICATIONS

TABLE OF CONTENTS

G1-1 Introduction ... 4
G1-2 WPC Description.. 4
 G1-2a Permit Design Requirements.. 4
 G1-2b Design Component Descriptions.. 4
 G1-2b(1) Steel Bulkhead .. 5
 G1-2b(2) ROM Salt .. 5
G1-3 Constructability .. 5
G1-4 Technical Specifications .. 6
G1-5 Drawings ... 6
G1-6 References ... 6
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-1</td>
<td>WIPP Panel Closure Technical Specifications</td>
</tr>
<tr>
<td>G1-2</td>
<td>WIPP Panel Closure Drawings</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-1</td>
<td>WPC Locations</td>
</tr>
<tr>
<td>G1-2</td>
<td>WPC Details – Bulkhead and ROM Salt Locations</td>
</tr>
<tr>
<td>G1-3</td>
<td>WPC Details – Bulkhead Front-View and Attachment Detail</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-A</td>
<td>Technical Specifications</td>
</tr>
<tr>
<td>G1-B</td>
<td>Drawings</td>
</tr>
<tr>
<td>#</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Permit</td>
</tr>
<tr>
<td>2</td>
<td>RCRA</td>
</tr>
<tr>
<td>3</td>
<td>ROM</td>
</tr>
<tr>
<td>4</td>
<td>VOC</td>
</tr>
<tr>
<td>5</td>
<td>WIPP</td>
</tr>
<tr>
<td>6</td>
<td>WPC</td>
</tr>
</tbody>
</table>
ATTACHMENT G1

WIPP PANEL CLOSURE DESIGN DESCRIPTION AND SPECIFICATIONS

G1-1 Introduction

An important aspect of repository operations at the Waste Isolation Pilot Plant (WIPP) facility is the closure of waste disposal panels, also referred to as Hazardous Waste Disposal Units (HWDUs), under the Resource Conservation and Recovery Act (RCRA). Each of Panels 1 through 8, 11, and 12 consists of a panel air-intake drift, a panel air-exhaust drift, and seven rooms. Panels 9 and 10 consist of the main entries (North to South) and cross entries (East to West). The closure of individual panels shall meet the closure requirements described in Attachment G and shall be built in accordance with the specifications in this attachment. This attachment describes the panel closure design and presents the applicable specifications and requirements for fabrication, installation, and maintenance of the WIPP Panel Closure (WPC).

The design discussed in this attachment is based on the Design Report, prepared by Golder Associates (Golder, 2016). Calculations demonstrating compliance with the volatile organic compounds (VOC) emission standards are included with the Design Report. Calculations addressing the performance of the WPC under the geometries in the access drifts and main entries, including an assessment of the required length of the run-of-mine (ROM) salt component, are also included in the Design Report. The specifications for standard steel bulkheads and ROM salt are included as Attachment G1 Appendix G1-A Technical Specifications and Attachment G1 Appendix G1-B Drawings.

G1-2 WPC Description

The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8, 11 and 12. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A with ROM salt is also installed in Panel 9 in the main entries between S-2750 and S-2520, as the closures for Panels 3 through 6. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Permit Attachment G1, Appendix G1-B Figure G1-1.

G1-2a Permit Design Requirements

The applicable design requirements are provided in Permit Attachment G, Section G-1e(1). The WPC meets these design requirements as documented in the Design Report.

G1-2b Design Component Descriptions

The following subsections present a description of the WPC components. Individual specifications address shaft and underground access and materials handling, construction quality control, treatment of surfaces in the closure areas, and applicable design and construction standards.

The WPC-A consists of a standard steel bulkhead in the panel access drifts for Panels 1 through 8, near the intersection with the main entries or relocated to the main north-south drifts as determined by the geotechnical engineer. This bulkhead is referred to as the closure/out-bye
bulkhead and it will be maintained for as long as it is accessible. Additional ventilation barriers may remain in the panels as part of the operational controls prior to WPC installation. These ventilation barriers include steel bulkheads, brattice cloth and chain link, as well as concrete block walls in Panels 1, 2, and 5. These ventilation barriers are not part of the WPC design and will not impact the WPC-A bulkheads nor will they impede construction and maintenance of closure bulkheads. WPC-A with ROM salt has been will also be emplaced in the main entries between Panels 9 and 10 (between S-2520 and S-2750).

The WPC-B design for the closure installed in the main entries north of Panel 10 (north of S-1600) consists of ROM salt between in-by and out-by bulkheads as shown in Permit Attachment G1, Appendix G1-B Figure G1-2.

G1-2b(1) Steel Bulkhead

A bulkhead (shown in Permit Attachment G1, Appendix G1-B Figure G1-3) serves to close panels by blocking ventilation to the intake and exhaust access drifts of the panel and preventing personnel access. This use of a bulkhead is a standard practice and the closure bulkhead shall be constructed as a typical WIPP facility bulkhead. The bulkhead will consist of a steel member frame covered with sheet metal. Telescoping tubular steel or functionally equivalent material shall be used to bolt the bulkhead to the floor and roof. Flexible flashing material such as a rubber conveyor belt (or other appropriate material) will be attached to the steel frame and the salt as a gasket, thereby providing an effective yet flexible blockage to ventilation air. The steel bulkheads will be maintained for as long as they are accessible to workers. In this regard, accessible bulkheads will be repaired, renovated, or replaced as required. Permit Attachment E, Table E-1 provides the schedule for inspecting panel closure bulkheads.

G1-2b(2) ROM Salt

Run-of-mine salt material from mining operations will be used in the main entries north of Panel 10. The salt will be emplaced to a specified design length based on geomechanical calculations described in detail in the Design Report.

G1-3 Constructability

The WPC-A and WPC-B can be constructed using available technologies for the construction of bulkheads. The use of bulkheads is a standard practice at the WIPP facility and the closure bulkheads will be constructed as typical WIPP facility bulkheads. Run-of-mine salt is available from mining operations in sufficient quantities. The construction methods and materials required for the ROM salt placement north of Panel 10 will use available technologies as discussed in the Design Report.

Conventional WIPP facility mining practices will be used for the WPC construction. Work packages will be prepared for the fabrication and installation of steel bulkheads and will list the materials used, the equipment used, special precautions, and limitations. Each work package will address location-specific prerequisites for installing the closure components, will contain the bulkhead specifications, as appropriate, and the location where the closure components are to be installed. Details on the conventional mining practices and work package preparation are discussed in the Design Report and, further construction details are given in the technical specifications included in Attachment G1, Appendix G1-A.
G1-4 Technical Specifications

The technical specifications are included in Attachment G1, Appendix G1-A, and are listed in Table G1-1.

G1-5 Drawings

The drawings are included in Attachment G1, Appendix G1-B and are listed in Table G1-2.

G1-6 References

Table G1-1
WIPP Panel Closure Technical Specifications

<table>
<thead>
<tr>
<th>Division</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 1 – General Requirements</td>
<td>01010</td>
<td>Summary of Work</td>
</tr>
<tr>
<td></td>
<td>01090</td>
<td>Reference Standards</td>
</tr>
<tr>
<td></td>
<td>01400</td>
<td>Contractor Quality Control</td>
</tr>
<tr>
<td></td>
<td>01600</td>
<td>Material and Equipment</td>
</tr>
<tr>
<td>Division 2 – Site Work</td>
<td>02010</td>
<td>Mobilization and Demobilization</td>
</tr>
<tr>
<td></td>
<td>02222</td>
<td>Excavation</td>
</tr>
<tr>
<td>Division 3 – WPC Components</td>
<td>03100</td>
<td>Run-of-Mine Salt</td>
</tr>
<tr>
<td></td>
<td>03200</td>
<td>Steel Bulkheads</td>
</tr>
</tbody>
</table>
Table G1-2
WIPP Panel Closure Drawings

<table>
<thead>
<tr>
<th>Drawing Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>262-001</td>
<td>WIPP Panel Closure (WPC) Title Sheet</td>
</tr>
<tr>
<td>262-002</td>
<td>WPC Locations</td>
</tr>
<tr>
<td>262-003</td>
<td>Typical Panel Layout and Mined Entry Cross-Sections</td>
</tr>
<tr>
<td>262-004</td>
<td>WPC Details – Bulkhead and ROM Salt Locations</td>
</tr>
<tr>
<td>262-005</td>
<td>WPC Details – Bulkhead Front-View and Attachment Detail</td>
</tr>
</tbody>
</table>
Figure G1-1
WPC Locations
Figure G1-2
WPC Details—Bulkhead and Run-of-Mine Salt Locations

1. RECESS OUT-BYE BULKHEAD MIN. 5 FT FROM INTERSECTION WITH ANOTHER DRIFT OR MAIN ENTRY.
2. OFFSET OUT-BYE BULKHEAD FROM EXPLOSION-ISOLATION WALL. MINIMUM OFFSET DISTANCE IS 2.0 x ACCESS DRIFT HEIGHT.
3. FOR PANELS WITHOUT EXPLOSION-ISOLATION WALLS, OFFSET OUT-BYE BULKHEAD FROM WASTE CONTAINERS. MINIMUM OFFSET DISTANCE IS 22 FT.
4. INSTALL IN-BYE BULKHEAD AT LEAST 22 FT FROM THE NEAREST WASTE CONTAINER.
5. WPC-B BULKHEADS SHOULD BE PLACED AT LEAST 5 FT FROM THE TOE OF ROM SALT (IF APPLICABLE) ASSUMING ROM SALT END SLOPES OF 2H:1V.
6. MINIMUM LENGTH OF WPC-B ROM SALT IS A FUNCTION OF THE MAIN ENTRY WIDTH AS FOLLOWS:

<table>
<thead>
<tr>
<th>ENTRY WIDTH (ft)</th>
<th>MIN. ROM SALT LENGTH (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>65</td>
</tr>
</tbody>
</table>

MINIMUM ROM SALT LENGTH - EXCLUDING END SLOPES.
Figure G1-3

WPC Details – Bulkhead Front-View and Attachment Detail
Abstract

This report describes a shaft sealing system design for the Waste Isolation Pilot Plant (WIPP), a proposed nuclear waste repository in bedded salt. The system is designed to limit entry of water and release of contaminants through the four existing shafts after the WIPP is decommissioned. The design approach applies redundancy to functional elements and specifies multiple, common, low-permeability materials to reduce uncertainty in performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These evaluations indicate that the design guidance is addressed by effectively limiting transport of fluids within the shafts, thereby limiting transport of hazardous material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for placement of the seal components combined with the use of available, common materials assure that the design can be constructed.

This report was modified to make it a part of the RCRA Facility Permit issued by the New Mexico Environment Department (NMED). The modifications included removal of Appendices C and D from the original document. Although they were important to demonstrate compliance with the performance standards in the hazardous waste regulations, they do not provide plans or procedures that will be implemented under the authority of the Permit. Appendices A, B and E are retained as Attachments to the Permit (Attachments G2-A, G2-B and G2-E). The Figures
in this report, which were interspersed in the text in the original document, have been moved to a common section following the References.

Acknowledgments

The work presented in this document represents the combined effort of a number of individuals at Sandia National Laboratories, Parsons Brinckerhoff (under contract AG-4909), INTERA (under contract AG-4910), RE/SPEC (under contract AG-4911), and Tech Reps. The Sandian responsible for the preparation of each section of the report and the lead individual(s) at firms under contract to Sandia that provided technical expertise are recognized below.

<table>
<thead>
<tr>
<th>Section</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>F. D. Hansen, Sandia</td>
</tr>
<tr>
<td>Section 1, Introduction</td>
<td>J. R. Tillerson, Sandia</td>
</tr>
<tr>
<td>Section 2, Site Geologic, Hydrologic, & Geochemical Setting</td>
<td>A. W. Dennis and S. J. Lambert, Sandia</td>
</tr>
<tr>
<td>Section 3, Design Guidance</td>
<td>A. W. Dennis, Sandia</td>
</tr>
<tr>
<td>Section 4, Design Description</td>
<td>A. W. Dennis, Sandia</td>
</tr>
<tr>
<td>Section 5, Material Specifications</td>
<td>F. D. Hansen, Sandia</td>
</tr>
<tr>
<td>Section 6, Construction Techniques</td>
<td>E. H. Ahrens, Sandia</td>
</tr>
<tr>
<td>Section 7, Structural Analyses of Shaft Seals</td>
<td>L. D. Hurtado, Sandia; M. C. Loken and L.L. Van Sambeek, RE/SPEC</td>
</tr>
<tr>
<td>Section 8, Hydrologic Evaluation of the Shaft Seal System</td>
<td>M. K. Knowles, Sandia; V.A. Kelley, INTERA</td>
</tr>
<tr>
<td>Section 9, Conclusions</td>
<td>J. R. Tillerson and A. W. Dennis, Sandia</td>
</tr>
<tr>
<td>Appendix A, Material Specifications</td>
<td>F. D. Hansen, Sandia</td>
</tr>
<tr>
<td>Appendix B, Shaft Sealing Construction Procedures</td>
<td>E. H. Ahrens, Sandia, with the assistance of Parsons Brinckerhoff Construction and Scheduling staff</td>
</tr>
<tr>
<td>Appendix C, Fluid Flow Analyses</td>
<td>M. K. Knowles, Sandia; V.A. Kelley, INTERA</td>
</tr>
<tr>
<td>Appendix D, Structural Analyses</td>
<td>L. D. Hurtado, Sandia; M. C. Loken and L. L. Van Sambeek, RE/SPEC</td>
</tr>
</tbody>
</table>
Appendix E, Design Drawings

Design reviews provided by Malcolm Gray, Atomic Energy Canada Ltd., Whiteshell Laboratory; Stephen Phillips, Phillips Mining, Geotechnical & Grouting, Inc.; and John Tinucci, Itasca Consulting Group. Inc. are appreciated, as are document reviews provided by Don Galbraith, U.S. Department of Energy Carlsbad Area Office; William Thompson, Carlsbad Area Office Technical Assistance Contractor; Robert Stinebaugh, Palmer Vaughn, Deborah Coffey, and Wendell Weart, Sandia.

T. P. Peterson and S. B. Kmetz, Tech Reps, served as technical editors of this document.
TABLE OF CONTENTS

Executive Summary .. 9
Introduction ... 9
Site Setting .. 9
Design Guidance .. 9
Design Description ... 10
Structural Analysis .. 11
Hydrologic Evaluations ... 13
Concluding Remarks ... 15

1. Introduction .. 15
 1.1 Purpose of Compliance Submittal Design Report ... 15
 1.2 WIPP Description ... 15
 1.3 Performance Objective for WIPP Shaft Seal System .. 16
 1.4 Sealing System Design Development Process .. 16
 1.5 Organization of Document ... 17
 1.6 Systems of Measurement ... 18

2. Site Geologic, Hydrologic, and Geochemical Setting .. 19
 2.1 Introduction .. 19
 2.2 Site Geologic Setting .. 19
 2.2.1 Regional WIPP Geology and Stratigraphy ... 19
 2.2.2 Local WIPP Stratigraphy .. 20
 2.2.3 Rock Mechanics Setting .. 20
 2.3 Site Hydrologic Setting .. 21
 2.3.1 Hydrostratigraphy .. 21
 2.3.2 Observed Vertical Gradients ... 25
 2.4 Site Geochemical Setting ... 26
 2.4.1 Regional and Local Geochemistry in Rustler Formation and Shallow Units 26
 2.4.2 Regional and Local Geochemistry in the Salado Formation 28

3. Design Guidance ... 31
 3.1 Introduction .. 31
 3.2 Design Guidance and Design Approach .. 31

4. Design Description .. 33
 4.1 Introduction .. 33
 4.2 Existing Shafts ... 33
 4.3 Sealing System Design Description .. 37
 4.3.1 Salado Seals ... 38
 4.3.1.1 Compacted Salt Column .. 38
 4.3.1.2 Upper and Lower Salado Compacted Clay Columns 39
 4.3.1.3 Upper, Middle, and Lower Concrete-Asphalt Waterstops 40
 4.3.1.4 Asphalt Column .. 40
 4.3.1.5 Shaft Station Monolith ... 41
 4.3.2 Rustler Seals .. 41
 4.3.2.1 Rustler Compacted Clay Column .. 41
7.4.4.3 Shrinkage Analysis .. 60

7.5 Disturbed Rock Zone Considerations ... 60
7.5.1 General Discussion of DRZ .. 60
7.5.2 Structural Analyses ... 60
7.5.2.1 Salado Salt .. 60
7.5.2.2 Salado Anhydrite Beds .. 61
7.5.2.3 Near-Surface and Rustler Formations 61

7.6 Other Analyses ... 61
7.6.1 Asphalt Waterstops .. 61
7.6.2 Shaft Pillar Backfilling .. 62

8. Hydrologic Evaluation of the Shaft Seal System .. 63
8.1 Introduction ... 63
8.2 Performance Models .. 63
8.3 Downward Migration of Rustler Groundwater ... 63
8.3.1 Analysis Method ... 64
8.3.2 Summary of Results .. 64
8.4 Gas Migration and Consolidation of Compacted Salt Column 65
8.4.1 Analysis Method ... 66
8.4.2 Summary of Results .. 66
8.5 Upward Migration of Brine .. 68
8.6 Intra-Rustler Flow ... 68

9. Conclusions ... 69

10. References ... 71

Appendix G2-A Material Specifications
Appendix G2-B Shaft Sealing Construction Procedures
Appendix C* Fluid Flow Analyses
Appendix D* Structural Analyses
Appendix G2-E Design Drawings

* Appendices C and D are not included in the facility Permit.
1

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-1</td>
<td>View of the WIPP Underground Facility</td>
</tr>
<tr>
<td>G2-2</td>
<td>Location of the WIPP in the Delaware Basin</td>
</tr>
<tr>
<td>G2-3</td>
<td>Chart Showing Major Stratigraphic Divisions, Southeastern New Mexico</td>
</tr>
<tr>
<td>G2-4</td>
<td>Generalized Stratigraphy of the WIPP Site Showing Repository Level</td>
</tr>
<tr>
<td>G2-5</td>
<td>Arrangement of the Air Intake Shaft Sealing System</td>
</tr>
<tr>
<td>G2-6</td>
<td>Multi-deck Stage Illustrating Dynamic Compaction</td>
</tr>
<tr>
<td>G2-7</td>
<td>Multi-deck Stage Illustrating Excavation for Asphalt Waterstop</td>
</tr>
<tr>
<td>G2-8</td>
<td>Drop Pattern for 6-m-Diameter Shaft Using a 1.2-m-Diameter Tamper</td>
</tr>
<tr>
<td>G2-9</td>
<td>Plan and Section Views of Downward Spin Pattern of Grout Holes</td>
</tr>
<tr>
<td>G2-10</td>
<td>Plan and Section Views of Upward Spin Pattern of Grout Holes</td>
</tr>
<tr>
<td>G2-11</td>
<td>Example of Calculation of an Effective Salt Column Permeability from the Depth-Dependent Permeability at a Point in Time</td>
</tr>
<tr>
<td>G2-12</td>
<td>Effective Permeability of the Compacted Salt Column using the 95% Certainty Line</td>
</tr>
</tbody>
</table>

NOTE: All Figures are attached following References

18

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2-1</td>
<td>Salado Brine Seepage Intervals(1)</td>
</tr>
<tr>
<td>G2-2</td>
<td>Permeability and Thickness of Hydrostratigraphic Units in Contact with Seals</td>
</tr>
<tr>
<td>G2-3</td>
<td>Freshwater Head Estimates in the Vicinity of the Air Intake Shaft</td>
</tr>
<tr>
<td>G2-4</td>
<td>Chemical Formulas, Distributions, and Relative Abundance of Minerals in the Rustler and Salado Formations (after Lambert, 1992)</td>
</tr>
<tr>
<td>G2-5</td>
<td>Major Solutes in Selected Representative Groundwater from the Rustler Formation and Dewey Lake Redbeds, in mg/L (after Lambert, 1992)</td>
</tr>
<tr>
<td>G2-6</td>
<td>Variations in Major Solutes in Brines from the Salado Formation, in mg/L (after Lambert, 1992)</td>
</tr>
<tr>
<td>G2-7</td>
<td>Shaft Sealing System Design Guidance</td>
</tr>
<tr>
<td>G2-8</td>
<td>Drawings Showing Configuration of Existing WIPP Shafts (Drawings are in Appendix G2-E)</td>
</tr>
<tr>
<td>G2-9</td>
<td>Summary of Information Describing Existing WIPP Shafts</td>
</tr>
<tr>
<td>G2-10</td>
<td>Drawings Showing the Sealing System for Each Shaft (Drawings are in Appendix G2-E)</td>
</tr>
<tr>
<td>G2-11</td>
<td>Drawings Showing the Shaft Station Monoliths (Drawings are in Appendix G2-E)</td>
</tr>
<tr>
<td>G2-12</td>
<td>Summary of Results from Performance Model</td>
</tr>
</tbody>
</table>
ACRONYMS

<table>
<thead>
<tr>
<th></th>
<th>ACRONYM</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AIS</td>
<td>Air Intake Shaft</td>
</tr>
<tr>
<td>3</td>
<td>AMM</td>
<td>asphalt mastic mix</td>
</tr>
<tr>
<td>4</td>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>5</td>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>6</td>
<td>DRZ</td>
<td>disturbed rock zone</td>
</tr>
<tr>
<td>7</td>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>8</td>
<td>HMAC</td>
<td>hot mix asphalt concrete</td>
</tr>
<tr>
<td>9</td>
<td>MDCF</td>
<td>Multimechanism Deformation Coupled Fracture</td>
</tr>
<tr>
<td>10</td>
<td>MD</td>
<td>Munson-Dawson</td>
</tr>
<tr>
<td>11</td>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>12</td>
<td>NMVP</td>
<td>No Migration Variance Petition</td>
</tr>
<tr>
<td>13</td>
<td>PA</td>
<td>performance assessment</td>
</tr>
<tr>
<td>14</td>
<td>PTM</td>
<td>Plug Test Matrix</td>
</tr>
<tr>
<td>15</td>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>16</td>
<td>SMC</td>
<td>Salado Mass Concrete</td>
</tr>
<tr>
<td>17</td>
<td>SPVD</td>
<td>Site Preliminary Design Validation</td>
</tr>
<tr>
<td>18</td>
<td>SSSPT</td>
<td>Small Scale Seal Performance Test</td>
</tr>
<tr>
<td>19</td>
<td>SWCF</td>
<td>Sandia WIPP Central Files</td>
</tr>
<tr>
<td>20</td>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>21</td>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
</tbody>
</table>
Executive Summary

Introduction

This report documents a shaft seal system design developed as part of a submittal to the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) that will demonstrate regulatory compliance of the Waste Isolation Pilot Plant (WIPP) for disposal of transuranic waste. The shaft seal system limits entry of water into the repository and restricts the release of contaminants. Shaft seals address fluid transport paths through the opening itself, along the interface between the seal material and the host rock, and within the disturbed rock surrounding the opening. The entire shaft seal system is described in this Permit Attachment and its three appendices, which include seal material specifications, construction methods, rock mechanics analyses, fluid flow evaluations, and the design drawings. The design represents a culmination of several years of effort that has most recently focused on providing to the EPA and NMED a viable shaft seal system design. Sections of this report and the appendices explore function and performance of the WIPP shaft seal system and provide well documented assurance that such a shaft seal system could be constructed using available materials and methods. The purpose of the shaft seal system is to limit fluid flow within four existing shafts after the repository is decommissioned. Such a seal system would not be implemented for several decades, but to establish that regulatory compliance can be achieved at that future date, a shaft seal system has been designed that exhibits excellent durability and performance and is constructable using existing technology. The design approach is conservative, applying redundancy to functional elements and specifying various common, low-permeability materials to reduce uncertainty in performance. It is recognized that changes in the design described here will occur before construction and that this design is not the only possible combination of materials and construction strategies that would adequately limit fluid flow within the shafts.

Site Setting

One of the U.S. Department of Energy’s (DOE’s) site selection criteria is a favorable geologic setting which minimizes fluid flow as a transport mechanism. Groundwater hydrology in the proximity of the WIPP site is characterized by geologic strata with low transmissivity and low hydrologic gradients, both very positive features with regard to sealing shafts. For purposes of performance evaluations, hydrological analyses divide lithologies and requirements into the Rustler Formation (and overlying strata) and the Salado Formation, comprised mostly of salt. The principal design concern is fluid transport phenomena of seal materials and lithologies within the Salado Formation. The rock mechanics setting is an important consideration in terms of system performance. Rock properties affect hydrologic response of the shaft seal system. The stratigraphic section contains lithologies that exhibit brittle and ductile behavior. A zone of rock around the shafts is disturbed owing to the creation of the opening. The disturbed rock zone (DRZ) is an important design consideration because it possesses higher permeability than intact rock. Host rock response and its potential to fracture, flow, and heal around WIPP shaft openings are relevant to the performance of the shaft seal system.

Design Guidance

Use of both engineered and natural barriers to isolate wastes from the accessible environment is required by 20.4.1.500 NMAC (incorporating 40 CFR §§264.111 and 264.601) and 40 CFR §191.14(d). The use of engineered barriers to prevent or substantially delay movement of water,
hazardous constituents, or radionuclides toward the accessible environment is required by 20.4.1.500 NMAC (incorporating 40 CFR §§264.111 and 264.601) and 40 CFR §194.44. Hazardous constituent release performance standards are specified in Permit Part 5 and 20.4.1.500 NMAC (incorporating 40 CFR §§264.111(b), 264.601(a), and 264 Subpart F). Radionuclide release limits are specified in 40 CFR §191 for the entire repository system (EPA, 1996a; 1996b). Design guidance for the shaft seal system addresses the need for the WIPP to comply with system requirements and to follow accepted engineering practices using demonstrated technology. Design guidance is categorized below:

- limit hazardous constituents reaching regulatory boundaries,
- restrict groundwater flow through the sealing system,
- use materials possessing mechanical and chemical compatibility,
- protect against structural failure of system components,
- limit subsidence and prevent accidental entry, and
- utilize available construction methods and materials.

Discussions of the design presented in the text of this report and the details presented in the appendices respond to these qualitative design guidelines. The shaft seal system design was completed under a Quality Assurance program that includes review by independent, qualified experts to assure the best possible information is provided to the DOE on selection of engineered barriers (40 CFR §194.27). Technical reviewers examined the complete design including conceptual, mathematical, and numerical models and computer codes (40 CFR §194.26). The design reduces the impact of uncertainty associated with any particular element by using multiple sealing system components and by using components constructed from different materials.

Design Description

The shaft sealing system comprises 13 elements that completely fill the shaft with engineered materials possessing high density and low permeability. Salado Formation components provide the primary regulatory barrier by limiting fluid transport along the shaft during and beyond the 10,000-year regulatory period. Components within the Rustler Formation limit commingling between brine-bearing members, as required by state regulations. Components from the Rustler to the surface fill the shaft with common materials of high density, consistent with good engineering practice. A synopsis of each component is given below.

Shaft Station Monolith. At the bottom of each shaft a salt-saturated concrete monolith supports the local roof. A salt-saturated concrete, called Salado Mass Concrete (SMC), is specified and is placed using a conventional slickline construction procedure where the concrete is batched at the surface. SMC has been tailored to match site conditions. The salt-handling shaft and the waste-handling shaft have sumps which also will be filled with salt-saturated concrete as part of the monolith.

Clay Columns. A sodium bentonite is used for three compacted clay components in the Salado and Rustler Formations. Although alternative construction specifications are viable, labor-intensive placement of compressed blocks is specified because of proven performance. Clay columns effectively limit brine movement from the time they are placed to beyond the 10,000-year regulatory period. Stiffness of the clay is sufficient to promote healing of fractures in the surrounding rock salt near the bottom of the shafts, thus removing the proximal DRZ as a
potential pathway. The Rustler clay column limits brine communication between the Magenta and Culebra Members of the Rustler Formation.

Concrete-Asphalt Waterstop Components. Concrete-asphalt waterstop components comprise three elements: an upper concrete plug, a central asphalt waterstop, and a lower concrete plug. Three such components are located within the Salado Formation. These concrete-asphalt waterstop components provide independent shaft cross-section and DRZ seals that limit fluid transport, either downward or upward. Concrete fills irregularities in the shaft wall, while use of the salt-saturated concrete assures good bonding with salt. Salt creep against the rigid concrete components establishes a compressive stress state and promotes early healing of the salt DRZ surrounding the concrete plugs. The asphalt intersects the shaft cross section and the DRZ.

Compacted Salt Column. Each shaft seal includes a column of compacted WIPP salt with 1.5 percent weight water added to the natural material. Construction demonstrations have shown that mine-run WIPP salt can be dynamically compacted to a density equivalent to approximately 90% of the average density of intact Salado salt. The remaining void space is removed through consolidation caused by creep closure. The salt column becomes less permeable as density increases. The location of the compacted salt column near the bottom of the shaft assures the fastest achievable consolidation of the compacted salt column after closure of the repository. Analyses indicate that the salt column becomes an effective long-term barrier in under 100 years.

Asphalt Column. An asphalt-aggregate mixture is specified for the asphalt column, which bridges the Rustler/Salado contact and provides a seal essentially impermeable to brine for the shaft cross-section and the shaft wall interface. All asphalt is placed with a heated slickline.

Concrete Plugs. A concrete plug is located just above the asphalt column and keyed into the surrounding rock. Mass concrete is separated from the cooling asphalt column with a layer of fibercrete, which permits work to begin on the overlying clay column before the asphalt has completely cooled. Another concrete plug is located near the surface, extending downward from the top of the Dewey Lake Redbeds.

Earthen Fill. The upper shaft is filled with locally available earthen fill. Most of the fill is dynamically compacted (the same method used to construct the salt column) to a density approximating the surrounding lithologies. The uppermost earthen fill is compacted with a sheepsfoot roller or vibratory plate compactor.

Structural Analysis

Structural issues pertaining to the shaft seal system have been evaluated. Mechanical, thermal, physical, and hydrological features of the system are included in a broad suite of structural calculations. Conventional structural mechanics applications would normally calculate load on system elements and compare the loads to failure criteria. Several such conventional calculations have been performed and show that the seal elements exist in a favorable, compressive stress state that is low in comparison to the strength of the seal materials. Thermal analyses have been performed to examine the effects of concrete heat of hydration and heat transfer for asphalt elements. Coupling between damaged rock and fluid flow and between the density and permeability of the consolidating salt column is evaluated within the scope of structural calculations. The appendices provide descriptions of various structural calculations.
conducted as part of the design study. The purpose of each calculation varies; however, the calculations generally address one or more of the following concerns: (1) stability of the component, (2) influences of the component on hydrological properties of the seal and surrounding rock, or (3) construction methods. Stability calculations address:

- potential for thermal cracking of concrete;
- structural loads on seal components resulting from salt creep, gravity, swelling clay, dynamic compaction, or possible repository-generated gas pressures.

Structural calculations defining input conditions to hydrological calculations include:

- spatial extent of the DRZ within the Salado Formation salt beds as a function of depth, time, and seal material;
- fracturing and DRZ development within Salado Formation interbeds;
- shaft-closure induced consolidation of compacted salt columns; and
- impact of pore pressures on salt consolidation.

Construction analyses examine:

- placement and structural performance of asphalt waterstops, and
- potential subsidence reduction through backfilling the shaft station areas.

Structural calculations model shaft features including representation of the host rock and its damaged zone as well as the seal materials themselves. Two important structural calculations discussed below are unique to shaft seal applications.

DRZ Behavior. The development and subsequent healing of a DRZ that forms in the rock mass surrounding the WIPP shafts is a significant concern in the seal design. It is well known that a DRZ will develop in rock salt adjacent to the shaft upon excavation. Placement of rigid components in the shaft promotes healing within the salt DRZ as seal elements restrain inward creep and reduce the stress difference. Two computer models to calculate development and extent of the salt DRZ are used. The first model uses a ratio of stress invariants to predict fracture; the second approach uses a damage stress criterion. The temporal and spatial extent of the DRZ along the entire shaft length is evaluated. Several analyses are performed to examine DRZ behavior of the rock salt surrounding the shaft. The time-dependent DRZ development and subsequent healing in the Salado salt surrounding each of the four seal materials are considered. All seal materials below a depth of about 300 m provide sufficient rigidity to heal the DRZ, a phenomenon that occurs quickly around rigid components near the shaft bottom. An extensive calculation is made of construction effects on the DRZ during placement of the asphalt-concrete waterstops. The time-dependent development of the DRZ within anhydrite and polyhalite interbeds of the Salado Formation is calculated. For all interbeds, the factor of safety against shear or tensile fracturing increases with depth into the rock surrounding the shaft wall. These results indicate that a continuous DRZ will not develop in nonsalt Salado rocks. Rock mechanics analysis also determines which of the near surface
lithologies fracture in the proximity of the shaft. Results from these rock mechanics analyses are
used as input conditions for the fluid-flow analyses.

Compacted Salt Behavior. Unique application of crushed salt as a seal component required
development of a constitutive model for salt reconsolidation. The model developed includes a
nonlinear elastic component and a creep consolidation component. The nonlinear elastic
modulus is density-dependent, based on laboratory test data performed on WIPP crushed salt.
Creep consolidation behavior of crushed salt is based on three candidate models whose
parameters are obtained from model fitting to hydrostatic and shear consolidation test data
gathered for WIPP crushed salt. The model for consolidating crushed salt is used to predict
permeability of the salt column. The seal system prevents fluid transport to the consolidating salt
column to ensure that pore pressure does not unacceptably inhibit the reconsolidation process.
Calculations made to estimate fractional density of the crushed salt seal as a function of time,
depth, and pore pressure show consolidation time increases as pore pressure increases, as
expected. At a constant pore pressure of one atmosphere, compacted salt will increase from its
initial fractional density of 90% to 96% within 40, 80, and 120 years after placement at the
bottom, middle, and top of the salt component, respectively. At a fractional density of 96%, the
permeability of reconsolidating salt is approximately 10^{-18} m2. A pore pressure of 2 MPa
increases times required to achieve a fractional density of 96% to 92 years, 205 years, and 560
years at the bottom, middle, and top of the crushed salt column, respectively. A pore pressure of
4 MPa would effectively prevent reconsolidation of the crushed salt within 1,000 years. Fluid
flow calculations show only minimal transport of fluids to the salt column, so pore pressure
equilibrium in the consolidating salt does not occur before low permeabilities ($\sim10^{-18}$ m2) are
achieved.

Hydrologic Evaluations

The ability of the shaft seal system to satisfy design guidance is determined by the performance
of the actual seal components within the physical setting in which they are constructed.
Important elements of the physical setting are hydraulic gradients of the region, properties of the
lithologic units surrounding a given seal component, and potential gas generation within the
repository. Hydrologic evaluations focus on processes that could result in fluid flow through the
shaft seal system and the ability of the seal system to limit any such flow. Transport of
radiological or hazardous constituents will be limited if the carrier fluids are similarly limited.
Physical processes that could impact seal system performance have been incorporated into four
models. These models evaluate: (1) downward migration of groundwater from the Rustler
Formation, (2) gas migration and reconsolidation of the crushed salt seal component, (3)
upward migration of brines from the repository, and (4) flow between water-bearing zones in the
Rustler Formation.

Downward Migration of Rustler Groundwater. The shaft seal system is designed to limit
groundwater flowing into and through the shaft sealing system. The principal source of
groundwater to the seal system is the Culebra Member of the Rustler Formation. No significant
sources of groundwater exist within the Salado Formation; however, brine seepage has been
noted at a number of the marker beds and is included in the models. Downward migration of
Rustler groundwater is limited to ensure that liquid saturation of the compacted salt column
does not impact the consolidation process and to limit quantities of brine reaching the repository
horizon. Consolidation of the compacted salt column will be most rapid immediately following
seal construction. Simulations conducted for the 200-year period following closure demonstrate
that, during this initial period, downward migration of Rustler groundwater is insufficient to
impact the consolidation process. Rock mechanics analyses show that this period encompasses
the reconsolidation process. Lateral migration of brine through the marker beds is quantified in
the analysis and shown to be inconsequential. At steady-state, the flow rate is most dependent
on permeability of the system. Potential flow paths within the seal system consist of the seal
material, an interface with the surrounding rock, and the host rock DRZ. Low permeability is
specified for the engineered materials, and construction methods ensure a tight interface. Thus
the flow path most likely to impact performance is the DRZ. Effects of the DRZ and sensitivity of
the seal system performance to both engineered and host rock barriers show that the DRZ is
successfully mitigated by the proposed design.

Gas Migration and Salt Column Consolidation. A multi-phase flow model of the lower seal
system evaluates the performance of components extending from the middle concrete-asphalt
waterstop located at the top of the salt column to the repository horizon for 200 years following
closure. During this time period, the principal fluid sources to the model consist of potential gas
generated by the waste and lateral brine migration within the Salado Formation. The predicted
downward migration of a small quantity of Rustler groundwater (discussed above) is included in
this analysis. Effects of gas generation are evaluated for three different repository
repressurization scenarios, which simulate pressures as high as 14 MPa. Model results predict
that high repository pressures do not produce appreciable differences in the volume of gas
migration over the 200-year simulation period. Relatively low gas flow is a result of the low
permeability and rapid healing of the DRZ around the lower concrete-asphalt waterstop.

Upward Migration of Brine. The Salado Formation is overpressurized with respect to the
measured heads in the Rustler, and upward migration of contaminated brines could occur
through an inadequately sealed shaft. Results from the model discussed above demonstrate
that the crushed salt seal will reconsolidate to a very low permeability within 100 years following
repository closure. Structural results show that the DRZ surrounding the long-term clay and
crushed salt seal components will completely heal within the first several decades. Model
calculations predict that very little brine flows from the repository to the Rustler/Salado contact.

Intra-Rustler Flow. Based on head differences between the various members of the Rustler
Formation, nonhydrostatic conditions exist within the Rustler Formation. Therefore, the potential
exists for vertical flow within water-bearing strata within the Rustler. The two units with the
greatest transmissivity within the Rustler are the Culebra and the Magenta dolomites, which
have the greatest potential for interflow. The relatively low undisturbed permeabilities of the
mudstone and anhydrite units separating the Culebra and the Magenta naturally limit crossflow.
However, the construction and subsequent closure of the shaft provide a potentially permeable
vertical conduit connecting water-bearing units. The primary motivation for limiting formation
crossflow within the Rustler is to prevent mixing of formation waters within the Rustler, as
required by State of New Mexico statute. Commonly, such an undertaking would limit migration
of higher dissolved solids (high-density) groundwater into lower dissolved solids groundwater. In
the vicinity of the WIPP site, the Culebra has a higher density groundwater than the Magenta,
and the potential for fluid migration between the two most transmissive units is from the unit with
the lower total dissolved solids to the unit with the higher dissolved solids. This calculation
shows that potential flow rates between the Culebra and the Magenta are insignificant. Under
expected conditions, intra-Rustler flow is expected to be of such a limited quantity that (1) it will
not affect either the hydraulic or chemical regime within the Culebra or the Magenta and (2) it
will not be detrimental to the seal system itself.
Concluding Remarks

The principal conclusion is that an effective, implementable shaft seal system has been designed for the WIPP. Design guidance is addressed by limiting any transport of fluids within the shaft, thereby limiting transport of hazardous material to regulatory boundaries. The application or adaptation of existing technologies for placement of seal components combined with the use of available, common materials provide confidence that the design can be constructed. The structural setting for seal elements is compressive, with shear stresses well below the strength of seal materials. Because of the favorable hydrologic regime coupled with the low intrinsic permeability of seal materials, long-term stability of the shaft seal system is expected. Credibility of these conclusions is bolstered by the basic design approach of using multiple components to perform each sealing function and by using extensive lengths within the shafts to effect a sealing system. The shaft seal system adequately meets design requirements and can be constructed.

1. Introduction

1.1 Purpose of Compliance Submittal Design Report

This report documents the detailed design of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP). The design documented in this report builds on the concepts and preliminary evaluations presented in the Sealing System Design Report issued in 1995 (DOE, 1995). The report contains a detailed description of the design and associated construction procedures, material specifications, analyses of structural and fluid flow performance, and design drawings. The design documented in this report forms the basis for the shaft sealing system which will be constructed under the authority of the hazardous waste facility Permit issued by NMED and as required by 20.4.1.500 NMAC (incorporating 40 CFR §§264.111(b) and 264.601(a)).

1.2 WIPP Description

The WIPP is designed as a full-scale, mined geological repository for the safe management, storage, and disposal of transuranic (TRU) radioactive wastes and TRU mixed wastes generated by US government defense programs. The facility is located near Carlsbad, New Mexico, in the southeastern portion of the state. The underground facility (Figure G2-1) consists of a series of shafts, drifts, panels, and disposal rooms. Four shafts, ranging in diameter from 3.5 to 6.1 m, connect the disposal horizon to the surface. Sealing of these four shafts is the focus of this report.

The disposal horizon is at a depth of approximately 655 m in bedded halite within the Salado Formation. The Salado is a sequence of bedded evaporites approximately 600 m thick that were deposited during the Permian Period, which ended about 225 million years ago. Salado salt has been identified as a good geologic medium to host a nuclear waste repository because of several favorable characteristics. The characteristics present at the WIPP site include very low permeability, vertical and lateral stratigraphic extent, tectonic stability, and the ability of salt to creep and ultimately entomb material placed in excavated openings. Creep closure also plays an important role in the shaft sealing strategy.

The WIPP facility must be determined to be in compliance with applicable regulations prior to the disposal of waste. After the facility meets the regulatory requirements, disposal rooms will be filled with containers holding TRU wastes of various forms. Wastes placed in the drifts and
disposal rooms will be at least 150 m from the shafts. Regulatory requirements include use of both engineered and natural barriers to limit migration of hazardous constituents from the repository to the accessible environment. The shaft seals are part of the engineered barriers.

1.3 Performance Objective for WIPP Shaft Seal System

Each of the four shafts from the surface to the underground repository must be sealed to limit hazardous material release to the accessible environment and to limit groundwater flow into the repository. Although the seals will be permanent, the regulatory period applicable to the repository system analyses is 10,000 years.

1.4 Sealing System Design Development Process

This report presents a conservative approach to shaft sealing system design. Shaft sealing system performance plays a crucial role in meeting regulatory radionuclide and hazardous constituents release requirements. Although all engineering materials have uncertainties in properties, a combination of available, low-permeability materials can provide an effective sealing system. To reduce the impact of system uncertainties and to provide a high level of assurance of compliance, numerous components are used in this sealing system. Components in this design include long columns of clay, densely compacted crushed salt, a waterstop of asphaltic material sandwiched between massive low-permeability concrete plugs, a column of asphalt, and a column of earthen fill. Different materials perform identical functions within the design, thereby adding confidence in the system performance through redundancy.

The design is based on common materials and construction methods that utilize available technologies. When choosing materials, emphasis was given to permeability characteristics and mechanical properties of seal materials. However, the system is also chemically and physically compatible with the host formations, enhancing long-term performance.

Recent laboratory experiments, construction demonstrations, and field test results have been added to the broad and credible database and have supported advances in modeling capability. Results from a series of multi-year, in situ, small-scale seal performance tests show that bentonite and concrete seals maintain very low permeabilities and show no deleterious effects in the WIPP environment. A large-scale dynamic compaction demonstration established that crushed salt can be successfully compacted. Laboratory tests show that compacted crushed salt consolidates through creep closure of the shaft from initial conditions achieved in dynamic compaction to a dense salt mass with regions where permeability approaches that of in situ salt. These technological advances have allowed more credible analysis of the shaft sealing system.

The design was developed through an interactive process involving a design team consisting of technical specialists in the design and construction of underground facilities, materials behavior, rock mechanics analysis, and fluid flow analysis. The design team included specialists drawn from the staff of Sandia National Laboratories, Parsons Brinckerhoff Quade and Douglas, Inc. (contract number AG-4909), INTERA, Inc. (contract number AG-4910), and RE/SPEC Inc. (contract number AG-4911), with management by Sandia National Laboratories. The contractors developed a quality assurance program consistent with the Sandia National Laboratories Quality Assurance Program Description for the WIPP project. All three contractors received quality assurance support visits and were audited through the Sandia National Laboratories audit and assessment program. Quality assurance (QA) documentation is maintained in the Sandia National Laboratories WIPP Central Files. Access to project files for
Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

1.5 Organization of Document

This report contains an Executive Summary, 10 sections, and 5 appendices. The body of the report does not generally contain detailed backup information; this information is incorporated by reference or in the appendices.

The Executive Summary is a synopsis of the design and the supporting discussions related to seal materials, construction procedures, structural analyses, and fluid flow analyses. Introductory material in Section 1 sets the stage for and provides a “road map” to the remainder of the report.

Site characteristics that detail the setting into which the seals would be placed are documented in Section 2. These characteristics include the WIPP geology and stratigraphy for both the region and the shafts as well as a brief discussion of rock mechanics considerations of the site that impact the sealing system. Regional and local characteristics of the hydrologic and geochemical settings are also briefly discussed.

Section 3 presents the design guidance used for development of the shaft sealing system design. Seal-related guidance from applicable regulations is briefly described. The design guidance is then provided along with the design approach used to implement the guidance. The guidance forms the basis both for the design and for evaluations of the sealing system presented in other sections.

The shaft sealing system is documented in Section 4; detailed drawings for the design are provided in Appendix G2-E. The seal components, their design, and their functions are discussed for the Salado, the Rustler, and the overlying formations.

The sealing materials are described briefly in Section 5, with more detail provided in the materials specifications (Appendix G2-A). The materials used in the various seal components are discussed along with the reasons they are expected to function as intended. Material properties including permeability, strength, and mechanical constitutive response are given for each material. Brief discussions of expected compatibility, performance, construction techniques, and other characteristics relevant to the WIPP setting are also given.
Section 6 contains a brief description of the construction techniques proposed for use. General site and sealing preparation activities are discussed, including construction of a multi-deck stage for use throughout the placement of the components. Construction procedures to be used for the various types of components are then summarized based on the more detailed discussions provided in Appendix G2-B.

Section 7 summarizes structural analyses performed to assess the ability of the shaft sealing system to function in accordance with the design guidance provided in Section 3 and to provide input to hydrological calculations. The methods and computer programs, the models used to simulate the behavior of the seal materials and surrounding salt, and the results of the analyses are discussed. Particular emphasis is placed on the evaluations of the behavior of the disturbed rock zone. Details of the structural analyses are presented in Appendix D of Waste Isolation Pilot Plant Shaft Sealing System Compliance Submittal Design Report (“Compliance Submittal Design Report”) (Sandia, 1996). Section 8 summarizes fluid flow analyses performed to assess the ability of the shaft sealing system to function in accordance with the design guidance provided in Section 3. Hydrologic evaluations are focused on processes that could result in fluid flow through the shaft seal system and the ability of the seal system to limit such flow. Processes evaluated are downward migration of groundwater from the overlying formation, gas migration and reconsolidation of the crushed salt component, upward migration of brines from the repository, and flow between water-bearing zones in the overlying formation. Hydrologic models are described and the results are discussed as they relate to satisfying the design guidance, with extensive reference to Appendix C of the Compliance Submittal Design Report (Sandia, 1996) that documents details of the flow analyses. Conclusions drawn about the performance of the WIPP shaft sealing system are described in Section 9. The principal conclusion that an effective, implementable design has been presented is based on the presentations in the previous sections. A reference list that documents principal references used in developing this design is then provided.

The three appendices that follow provide details related to the following subjects:

Appendix G2-A — Material Specification
Appendix G2-B — Shaft Sealing Construction Procedures
Appendix G2-E — Design Drawings (separate volume)

1.6 Systems of Measurement

Two systems of measurement are used in this document and its appendices. Both the System International d’Unites (SI) and English Gravitational (fps units) system are used. This usage corresponds to common practice in the United States, where SI units are used for scientific studies and fps units are used for facility design, construction materials, codes, and standards. Dual dimensioning is used in the design description and other areas where this use will aid the reader.
2. Site Geologic, Hydrologic, and Geochemical Setting

The site characteristics relevant to the sealing system are discussed in this section. The location and geologic setting of the WIPP are discussed first to provide background. The geology and stratigraphy, which affect the shafts, are then discussed. The hydrologic and geochemical settings, which influence the seals, are described last.

2.1 Introduction

The WIPP site is located in an area of semiarid rangeland in southeastern New Mexico. The nearest major population center is Carlsbad, 42 km west of the WIPP. Two smaller communities, Loving and Malaga, are about 33 km to the southwest. Population density close to the WIPP is very low: fewer than 30 permanent residents live within a 16-km radius.

2.2 Site Geologic Setting

Geologically the WIPP is located in the Delaware Basin, an elongated depression that extends from just north of Carlsbad southward into Texas. The Delaware Basin is bounded by the Capitan Reef (see Figure G2-2). The basin covers over 33,000 km² and is filled with sedimentary rocks to depths of 7,300 m (Hills, 1984). Rock units of the Delaware Basin (representing the Permian System through the Quaternary System) are listed in Figure G2-3. Minimal tectonic activity has occurred in the region since the Permian Period (Powers et al., 1978). Faulting during the late Tertiary Period formed the Guadalupe and Delaware Mountains along the western edge of the basin. The most recent igneous activity in the area occurred during the mid-Tertiary Period about 35 million years ago and is evidenced by a dike in the subsurface 16 km northwest of the WIPP. Major volcanic activity last occurred more than 1 billion years ago during Precambrian time (Powers et al., 1978). None of these processes affected the Salado Formation at the WIPP. Therefore, seismic-related design criteria are not included in the current seal systems design guidelines.

2.2.1 Regional WIPP Geology and Stratigraphy

The Delaware Basin began forming with crustal subsidence during the Pennsylvanian Period approximately 300 million years ago. Relatively rapid subsidence over a period of about 14 million years resulted in the deposition of a sequence of deep-water sandstones, shales, and limestones rimmed by shallow-water limestone reefs such as the Capitan Reef (see Figure G2-2). Subsidence slowed during the late Permian Period. Evaporite deposits of the Castle Formation and the Salado Formation (which hosts the WIPP underground workings) filled the basin and extended over the reef margins. The evaporites, carbonates, and clastic rocks of the Rustler Formation and the Dewey Lake Redbeds were deposited above the Salado Formation near the end of the Permian Period. The Santa Rosa and Gatuna Formations were deposited after the close of the Permian Period.

From the surface downward to the repository horizon the stratigraphic units are the Quaternary surface sand sediments, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation. Three principal stratigraphic units (the Dewey Lake Redbeds, the Rustler Formation, and the Salado Formation) comprise all but the upper 15 to 30 m (50 to 100 ft) of the geologic section above the WIPP facility.
The Dewey Lake Redbeds consist of alternating layers of reddish-brown, fine-grained sandstone and siltstone cemented with calcite and gypsum (Vine, 1963). The Rustler Formation lies below the Dewey Lake Redbeds; this formation, the youngest of the Late Permian evaporite sequence, includes units that provide potential pathways for radionuclide migration from the WIPP. The five units of the Rustler, from youngest to oldest, are: (1) the Forty-niner Member, (2) the Magenta Dolomite Member, (3) the Tamarisk Member, (4) the Culebra Dolomite Member, and (5) an unnamed lower member.

The 250-million-year-old Salado Formation lies below the Rustler Formation. This unit is about 600 m thick and consists of three informal members. From youngest to oldest, they are: (1) an upper member (unnamed) composed of reddish-orange to brown halite interbedded with polyhalite, anhydrite, and sandstone, (2) a middle member (the McNutt Potash Zone) composed of reddish-orange and brown halite with deposits of sylvite and langbeinite; and (3) a lower member (unnamed) composed of mostly halite with lesser amounts of anhydrite, polyhalite, and glauberite, with some layers of fine clastic material. These lithologic layers are nearly horizontal at the WIPP, with a regional dip of less than one degree. The WIPP repository is located in the unnamed lower member of the Salado Formation, approximately 655 m (2150 ft) below the ground surface.

2.2.2 Local WIPP Stratigraphy

The generalized stratigraphy of the WIPP site, with the location of the repository, is shown in Figure G2-4. To establish the geologic framework required for the design of the WIPP facility shaft sealing system, an evaluation was performed to assess the geologic conditions existing in and between the shafts, where the individual shaft sealing systems will eventually be emplaced (DOE, 1995: Appendix G2-A). The study evaluated shaft stratigraphy, regional groundwater occurrence, brine occurrence in the exposed Salado Formation section, and the consistency between recorded data and actual field data.

Four shafts connect the WIPP underground workings to the surface, the (1) Air Intake Shaft (AIS), (2) Exhaust Shaft, (3) Salt Handling Shaft, and (4) Waste Shaft. Stratigraphic correlation and evaluation of the unit contacts show that lithologic units occur at approximately the same levels in all four shaft locations. Some stratigraphic contact elevations vary because of regional structure and stratigraphic thinning and thickening of units. However, the majority of the stratigraphic contacts used to date are suitable for engineering design reference because they intersect all four shafts.

2.2.3 Rock Mechanics Setting

The WIPP stratigraphy includes rock types that exhibit both brittle and ductile behaviors. The majority of the stratigraphy intercepted by the shafts consists of the Salado Formation, which is predominantly halite. The primary mechanical behavior of halitic rocks is creep. Except near free surfaces (such as the shaft wall), the salt rocks will remain tight and undisturbed despite the long-term creep deformation they sustain. The other rock types within the Salado Formation are anhydrites and polyhalites. These two rock types are typically brittle, stiff, and exhibit high strength in laboratory tests. The structural strength of particular anhydritic rock layers, however, depends on the thickness of the layers, which range from thin (<1 m) to fairly thick (10 m or more). Brittle failure of these noncreeping rocks can occur as they restrain, or attempt to restrain, the creep of the salt above and below the stiff layer. Although thick layers can resist the
induced stresses, thin layers are fractured in tension by the salt creep. Because the deformation in the bounding salt is time dependent, the damage in the brittle rock is also time dependent.

Above the Salado Formation, the Rustler Formation stratigraphy consists of relatively strong limestones and siltstones. The shaft excavation is the only significant disturbance to these rocks. Any subsurface subsidence (deformation) or loading induced by the presence of the repository are negligible in a rock mechanics sense.

Regardless of rock type, the shafts create a disturbed zone in the surrounding rock. Microfracturing will occur in the rock adjacent to the shaft wall, where confining stresses are low or nonexistent. The extent of the zone depends on the rock strength and the prevailing stress state, which is depth dependent. In the salt rocks, microfracturing occurs to form the disturbed zone both at the time of excavation and later as dilatant creep deformations occur. In the brittle rocks, the disturbance occurs at the time of excavation and does not worsen with time. The extent of disturbed zones in the salt and brittle rocks can be calculated, as will be described in Section 7 and Appendix D in the Compliance Submittal Design Report (Sandia, 1996).

Preventing the salt surrounding the shafts from creeping causes reintroduction of stresses that reverse the damage process and cause healing (Van Sambeek et al., 1993). The seal system design relies on this principle for sealing the disturbed zone in salt. In the brittle rocks, grouting of the damage is a viable means of reducing the interconnected fractures that increase the permeability of the rock.

2.3 Site Hydrologic Setting

The WIPP shafts penetrate approximately 655 m (2150 ft) of sediments and rocks. From a hydrogeologic perspective, relevant information includes the permeability of the water-bearing units, the thickness of the water-bearing units, and the observed vertical pressure (head) gradients expected to exist after shaft construction and ambient pressure recovery. This section will discuss these three aspects of the site hydrogeology. The geochemistry of the pore fluids adjacent to the shaft system is also important hydrogeologic information and will be provided in Section 2.4.

2.3.1 Hydrostratigraphy

The WIPP shafts penetrate Quaternary surface sediments, the Gatuña Formation, the Santa Rosa Formation, the Dewey Lake Redbeds, the Rustler Formation, and the Salado Formation. The Rustler Formation contains the only laterally-persistent water-bearing units in the WIPP vicinity. As a result, flow-field characterization, regional flow-modeling, and performance assessment off-site release scenarios focus on the Rustler Formation. The hydrogeology of the stratigraphic units in contact with the upper portion of the AIS sealing system is fairly well known from detailed hydraulic testing of the Rustler Formation at well H-16 located 17 m from the AIS (Beauheim, 1987). The H-16 borehole was drilled in July and August 1987 to monitor the hydraulic responses of the Rustler members to the drilling and construction of the AIS. During the drilling of H-16, each member of the Rustler Formation was cored. In addition, detailed drill-stem, pulse, and slug hydraulic tests were performed in H-16 on the members of the Rustler. Through the detailed testing program at H-16, the permeability of each of the Rustler members was estimated. Detailed mapping of the AIS by Holt and Powers (1990) and other investigators provided information on the location of wet zones and weeps within the Salado Formation. This
information will be summarized below. The reader, unless particularly interested in this subject, should proceed to Section 2.3.2.

Water-bearing zones have been observed in units above the Rustler Formation in the WIPP site vicinity. However, drilling in the Dewey Lake Redbeds has not identified any continuous saturated units at the WIPP site. Water-bearing units within stratigraphic intervals above the Rustler are typically perched saturated zones of very low yield. Thin perched groundwater intervals have been encountered in WIPP wells H-1, H-2, and H-3 (Mercer and Orr, 1979). The only Dewey Lake Redbed wells that have sufficient yields for watering livestock are the James Ranch wells, the Pocket well, and the Fairfield well (Brinster, 1991). These wells are located to the south of the WIPP and are not in the immediate vicinity of the WIPP shafts.

The Dewey Lake Redbeds overlie the Rustler Formation. The Rustler is composed of five members defined by lithology. These are, in ascending order, the unnamed lower member, the Culebra dolomite, the Tamarisk, the Magenta dolomite, and the Forty-niner (see Figure G2-4). Of these five members, the unnamed lower member, the Culebra, and the Magenta are the most transmissive units in the Rustler. The Tamarisk and the Forty-niner are aquitards within the Rustler and have very low permeabilities relative to the three members listed above.

To the east of the shafts in Nash Draw, the Rustler/Salado contact has been observed to be permeable and water-bearing. This contact unit has been referred to as the “brine aquifer” (Mercer, 1983). The brine aquifer is not reported to exist in the vicinity of the shafts. The hydraulic conductivity of the Rustler/Salado contact in the vicinity of the shafts is reported to be approximately 4×10^{-11} m/s, which is equivalent to a permeability of 6×10^{-18} m2 using reference brine fluid properties (Brinster, 1991). The unnamed lower member was hydraulic tested at well H-16 in close proximity to the AIS. The maximum permeability of the unnamed lower member was interpreted to be 2.2×10^{-18} m2 and was attributed to the unnamed lower member claystone by Beauheim (1987), which correlates to the transition and bioturbated clastic zones of Holt and Powers (1990).

The Culebra Dolomite Member is the most transmissive member of the Rustler Formation in the vicinity of the WIPP site and is the most transmissive saturated unit in contact with the shaft sealing system. The Culebra is an argillaceous dolomicrite which contains secondary porosity in the form of abundant vugs and fractures. The permeability of the Culebra varies greatly in the vicinity of the WIPP and is controlled by the condition of the secondary porosity (fractures). The permeability of the Culebra in the vicinity of the shafts is approximately 2.1×10^{-14} m2.

The Tamarisk Member is composed primarily of massive, lithified anhydrite, including anhydrite 2, mudstone 3, and anhydrite 3. Testing of the Tamarisk at H-16 was unsuccessful. The estimated transmissivity of the Tamarisk at H-16 is one to two orders of magnitude lower than the least-transmissive unit successfully tested at H-16, which results in a permeability range from 4.6×10^{-20} to 4.6×10^{-19} m2. Anhydrites in the Rustler have an approximate permeability of 1×10^{-19} m2. The permeability of mudstone 3 is 1.5×10^{-19} m2 (Brinster, 1991).

The Magenta is a dolomite that is typically less permeable than the Culebra. The Magenta Dolomite Member overlies the Tamarisk Member. The Magenta is an indurated, gypsiferous, arenaceous, dolomite that Holt and Powers (1990) classify as a dolarenite. The dolomite grains are primarily composed of silt to fine sand-sized clasts. Wavy to lenticular bedding and ripple cross laminae are prevalent through most of the Magenta. Holt and Powers (1990) estimate that
inflow to the shaft from the Magenta during shaft mapping was less than 1 gal/min. The Magenta has a permeability of approximately 1.5×10^{-15} m2 (Saulnier and Avis, 1988).

The Forty-niner Member is divided into three informal lithologic units. The lowest unit is anhydrite 4, a laminated anhydrite having a gradational contact with the underlying Magenta. Mudstone 4 overlies anhydrite 4 and is composed of multiple units containing mudstones, siltstones, and very fine sandstones. Anhydrite 5 is the uppermost informal lithologic unit of the Forty-niner Member. The permeability of mudstone 4, determined from the pressure responses in the Forty-niner interval of H-16 to the drilling of the AIS, is 3.9×10^{-16} m2 (referred to as the Forty-niner claystone by Avis and Saulnier, 1990).

The Salado Formation is a very low permeability formation that is composed of bedded halite, polyhalite, anhydrite, and mudstones. Inflows in the shafts have been observed over select intervals during shaft mapping, but flows are below the threshold of quantification. In some cases these weeps are individual, lithologically distinct marker beds, and in some cases they are not. Directly observable brine flow from the Salado Formation into excavated openings is a short-lived process. Table G2-1 lists the brine seepage intervals identified by Holt and Powers (1990) during their detailed mapping of the AIS. Seepage could be indicated by a wet rockface or by the presence of precipitate from brine evaporation on the shaft rockface. The zones listed in Table G2-1 make up less than 10% of the Salado section that is intersected by the WIPP shafts.

Table G2-1
Salado Brine Seepage Intervals$^{(1)}$

<table>
<thead>
<tr>
<th>Stratigraphic Unit</th>
<th>Lithology</th>
<th>Thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker Bed 103</td>
<td>Anhydrite</td>
<td>5.0</td>
</tr>
<tr>
<td>Marker Bed 109</td>
<td>Anhydrite</td>
<td>7.7</td>
</tr>
<tr>
<td>Vaca Triste</td>
<td>Mudstone</td>
<td>2.4</td>
</tr>
<tr>
<td>Zone A</td>
<td>Halite</td>
<td>2.9</td>
</tr>
<tr>
<td>Marker Bed 121</td>
<td>Polyhalite</td>
<td>0.5</td>
</tr>
<tr>
<td>Union Anhydrite</td>
<td>Anhydrite</td>
<td>2.3</td>
</tr>
<tr>
<td>Marker Bed 124</td>
<td>Anhydrite</td>
<td>2.7</td>
</tr>
<tr>
<td>Zone B</td>
<td>Halite</td>
<td>0.9</td>
</tr>
<tr>
<td>Zone C</td>
<td>Halite</td>
<td>2.7</td>
</tr>
<tr>
<td>Zone D</td>
<td>Halite</td>
<td>3.2</td>
</tr>
<tr>
<td>Zone E</td>
<td>Halite</td>
<td>0.6</td>
</tr>
<tr>
<td>Zone F</td>
<td>Halite</td>
<td>0.9</td>
</tr>
<tr>
<td>Zone G</td>
<td>Halite</td>
<td>0.6</td>
</tr>
<tr>
<td>Zone H</td>
<td>Halite</td>
<td>1.8</td>
</tr>
<tr>
<td>Marker Bed 129</td>
<td>Polyhalite</td>
<td>0.5</td>
</tr>
<tr>
<td>Zone I</td>
<td>Halite</td>
<td>1.7</td>
</tr>
<tr>
<td>Zone J</td>
<td>Halite</td>
<td>1.2</td>
</tr>
</tbody>
</table>

$^{(1)}$ After US DOE, 1995.
To gain perspective into the important stratigraphic units from a hydrogeologic view, the permeability and thickness of the units adjacent to the shafts can be compared. Table G2-2 lists the lithologic units in the Rustler and the Salado Formations with their best estimate permeabilities and their thickness as determined from the AIS mapping. The stratigraphy of the units overlying the Rustler is not considered in Table G2-2 because these units are typically not saturated in the vicinity of the WIPP shafts. The overlying sediments account for approximately 25% of the stratigraphy column adjacent to the shafts.

Because permeability varies over several orders of magnitude, the log of the permeability is also listed to simplify comparison between units. Table G2-2 shows that by far the two most transmissive zones occur in the Rustler Formation; these are the Culebra and Magenta dolomites. These units are relatively thin when compared to the combined Rustler and Salado thickness adjacent to the shafts (3% of Rustler and Salado combined thickness). The Magenta and the Culebra are the only two units that are known to possess permeabilities higher than 1×10^{-18} m2.

Table G2-2
Permeability and Thickness of Hydrostratigraphic Units in Contact with Seals

<table>
<thead>
<tr>
<th>Formation</th>
<th>Member/Lithology</th>
<th>Undisturbed Permeability (m2)</th>
<th>Thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rustler</td>
<td>Anhydrite$^{(1)}$</td>
<td>1.0×10^{-19}</td>
<td>46.7</td>
</tr>
<tr>
<td>Rustler</td>
<td>Mudstone 4</td>
<td>3.9×10^{-16}</td>
<td>4.4</td>
</tr>
<tr>
<td>Rustler</td>
<td>Magenta</td>
<td>1.5×10^{-15}</td>
<td>7.8</td>
</tr>
<tr>
<td>Rustler</td>
<td>Mudstone 3</td>
<td>1.5×10^{-19}</td>
<td>2.9</td>
</tr>
<tr>
<td>Rustler</td>
<td>Culebra</td>
<td>2.1×10^{-14}</td>
<td>8.9</td>
</tr>
<tr>
<td>Rustler</td>
<td>Transition/ Bioturbated Clastics</td>
<td>2.2×10^{-18}</td>
<td>18.7</td>
</tr>
<tr>
<td>Salado</td>
<td>Halite</td>
<td>1.0×10^{-21}</td>
<td>356.6</td>
</tr>
<tr>
<td>Salado</td>
<td>Polyhalite</td>
<td>3.0×10^{-21}</td>
<td>10.9</td>
</tr>
<tr>
<td>Salado</td>
<td>Anhydrite</td>
<td>1.0×10^{-19}</td>
<td>28.2</td>
</tr>
</tbody>
</table>

$^{(1)}$ Anhydrite 5, Anhydrite 4, Anhydrite 3, and Anhydrite 2

The vast majority (97%) of the rocks adjacent to the shaft in the Rustler and the Salado Formations are low permeability ($<1 \times 10^{-18}$ m2). The conclusion that can be drawn from reviewing Table G2-2 is that the shafts are located hydrogeologically in a low permeability, low groundwater flow regime. Inflow measurements have historically been made at the shafts, and observable flow is attributed to leakage from the Rustler Formation.

Flow modeling of the Culebra has demonstrated that depressurization has occurred as a result of the sinking of the shafts at the site. Maximum estimated head drawdown in the Culebra at the centroid of the shafts was estimated by Haug et al. (1987) to be 33 m in the mid-1980s. This drawdown in the permeable units intersected by the shafts is expected because the shafts act as long-term constant pressure (atmospheric) sinks. Measurements of fluid flow into the WIPP shafts when they were unlined show a range from a maximum of 0.11 L/s (3,469 m3/yr) measured in the Salt Handling Shaft on September 13, 1981 to a minimum of 0.008 L/s (252 m3/yr) measured at the Waste Handling Shaft on August 6, 1987 (LaVenue et al., 1990).
The following summary of shaft inflow rates from the Rustler is based on a review of LaVenue et al. (1990) and Cauffman et al. (1990). Shortly after excavation and prior to grouting and liner installation, the inflow into the Salt Handling Shaft was 0.11 L/s (3,469 m³/yr). The average flow rate measured after shaft lining for the period from mid-1982 through October 1992 was 0.027 L/s (851 m³/yr). The average flow rate into the Waste Handling Shaft during the time when the shaft was open and unlined was about 0.027 L/s (851 m³/yr). Between the first and second grouting events (July 1984 to November 1987) the average inflow rate was 0.016 L/s (505 m³/yr). No estimates were found after the second grouting. Inflow to the pilot holes for the Exhaust Shaft averaged 0.028 L/s (883 m³/yr). In December 1984 a liner plate was grouted across the Culebra. After this time, a single measurement of inflow from the Culebra was 0.022 L/s (694 m³/yr). After liner plate installation, three separate grouting events occurred at the Culebra. No measurable flow was reported after the third grouting event in the summer of 1987. Flow into the AIS when it was unlined and draining averaged 0.044 L/s (1,388 m³/yr). Since the Rustler has been lined, flow into the AIS has been negligible.

The majority of the flow represented by these shaft measurements originates from the Rustler. This is clearly evident by the fact that lining of the WIPP shafts was found to be unnecessary in the Salado Formation below the Rustler/Salado contact. When the liners were installed, flow rates diminished greatly. Under sealed conditions, hydraulic gradients in rocks adjacent to the shaft will diminish as the far-field pressures approach ambient conditions. The low-permeability materials sealing the shaft combined with the reduction in lateral hydraulic gradients will likely result in flow rates into the shaft that are several orders of magnitude less than observed under open shaft or lined shaft conditions.

2.3.2 Observed Vertical Gradients

Hydraulic heads within the Rustler and between the Rustler and Salado Formations are not in hydrostatic equilibrium. Mercer (1983) recognized that heads at the Rustler Salado transition (referred to as the brine aquifer and not present in the vicinity of the WIPP shafts) indicate an upward hydraulic gradient from that zone to the Culebra. Later, with the availability of more head measurements within the Salado and Rustler members, Beauheim (1987) provided additional insight into the potential direction of vertical fluid movement within the Rustler. He reported that the hydraulic data indicate an upward gradient from the Salado to the Rustler.

Formation pressures in the Salado Formation have been decreased in the near vicinity of the WIPP underground facility. The highest, and thought to be least disturbed, estimated formation fluid pressure from hydraulic testing is 12.55 MPa estimated from interpretation of testing within borehole SCP01 in Marker Bed 139 (MB139) just below the underground facility horizon (Beauheim et al., 1993). The fresh-water head within MB139, based on the estimated static formation pressure of 12.55 MPa, is 1,663.6 m (5,458 ft) above mean sea level (msl).

Hydraulic heads in the Rustler have also been impacted by the presence of the WIPP shafts. Impacts in the Culebra were significant in the 1980s with a large drawdown cone extending away from the shafts in the Culebra (Haug et al., 1987). The undisturbed head of the Rustler Salado contact in the vicinity of the AIS is estimated to be about 936.0 m (3,071 ft) msl (Brinster, 1991). The undisturbed head in the Culebra is estimated to be approximately 926.9 m (3,041 ft) msl in the vicinity of the AIS (LaVenue et al., 1990). The undisturbed head in the Magenta is estimated to be approximately 960.1 m (3,150 ft) msl (Brinster, 1991).
The disturbed and undisturbed heads in the Rustler are summarized in Table G2-3. Also included is the freshwater head of MB139 based on hydraulic testing in the WIPP underground. Consistent with the vertical flow directions proposed by previous investigators, estimated vertical gradients in the vicinity of the AIS before the shafts were drilled indicate a hydraulic gradient from the Magenta to the Culebra and from the Rustler/Salado contact to the Culebra. There is also the potential for flow from the Salado Formation to the Rustler Formation.

Table G2-3
Freshwater Head Estimates in the Vicinity of the Air Intake Shaft

<table>
<thead>
<tr>
<th>Hydrologic Unit</th>
<th>Freshwater Head (m asl)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undisturbed</td>
<td>Disturbed</td>
</tr>
<tr>
<td>Magenta Member</td>
<td>960.1<sup>1</sup> 948.8<sup>2</sup> (H-16)</td>
<td>Brinster (1991) Beauheim (1987)</td>
</tr>
<tr>
<td>Culebra Member</td>
<td>926.9<sup>1</sup> 915.0<sup>2</sup> (H-16)</td>
<td>LaVenue et al. (1990) Beauheim (1987)</td>
</tr>
<tr>
<td>Lower Unnamed Member</td>
<td>— 953.4<sup>2</sup> (H-16)</td>
<td>Beauheim (1987)</td>
</tr>
<tr>
<td>Rustler/Salado Contact</td>
<td>936.0 - 940.0<sup>1</sup> —</td>
<td>Brinster (1991)</td>
</tr>
<tr>
<td>Salado MB139</td>
<td>1,663.6<sup>2</sup> —</td>
<td>Beauheim et al. (1993)</td>
</tr>
</tbody>
</table>

¹ Estimated from a contoured head surface plot based principally on well data collected prior to shaft construction.
² Measured through hydraulic testing and/or long-term monitoring.

2.4 Site Geochemical Setting

2.4.1 Regional and Local Geochemistry in Rustler Formation and Shallower Units

The Rustler Formation, overlying the Salado Formation, consists of interbedded anhydrite/gypsum, mudstone/siltstone, halite east of the WIPP site, and two layers of dolomite. Principal occurrences of NaCl/MgSO₄ brackish to briny groundwater in the Rustler at the WIPP site and to the north, west, and south are found (1) at the lower member near its contact with the underlying Salado and (2) in the two dolomite members having a variable fracture-induced secondary porosity. The mineralogy of the Rustler Formation is summarized in Table G2-4.

The five members of the Rustler Formation are described as follows: (1) The Forty-niner Member is similar in lithology to the other non-dolomitic units but contains halite east of the WIPP site. (2) The Magenta Member is another variably fractured dolomite/sulfate unit containing sporadic occurrences of groundwater near and west of the WIPP site. (3) The Tamarisk Member is dominantly anhydrite (locally altered to gypsum) with subordinate fine-grained clastics, containing halite to the east of the WIPP site. (4) The Culebra Dolomite Member is dominantly dolomite with subordinate anhydrite and/or gypsum, having a variable fracture-induced secondary porosity containing regionally continuous occurrences of groundwater at the WIPP site and to the north, west, and south. (5) An unnamed lower member consists of sandstone, siltstone, mudstone, claystone, and anhydrite locally altered to gypsum, and containing halite under most of the WIPP site and occurrences of brine at its base, mostly west of the WIPP site.
Table G2-4

Chemical Formulas, Distributions, and Relative Abundance of Minerals in the Rustler and Salado Formations (after Lambert, 1992)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Formula</th>
<th>Occurrence/Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amesite</td>
<td>(Mg₄Al₂)(Si₂Al₂)O₁₀(OH)₈</td>
<td>S, R</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>CaSO₄</td>
<td>SSS, RRR</td>
</tr>
<tr>
<td>Calcite</td>
<td>CaCO₃</td>
<td>S, RR</td>
</tr>
<tr>
<td>Carnallite</td>
<td>KMgCl₃•6H₂O</td>
<td>SS†</td>
</tr>
<tr>
<td>Chlorite</td>
<td>(Mg₄Al₃Fe)₂(Si₄Al₆)O₂₀(OH)₁₆</td>
<td>S†, R‡</td>
</tr>
<tr>
<td>Corrensite</td>
<td>Mixed-layer chlorite/smectite</td>
<td>S‡, R‡</td>
</tr>
<tr>
<td>Dolomite</td>
<td>CaMg(CO₃)₂</td>
<td>RR</td>
</tr>
<tr>
<td>Feldspar</td>
<td>(K,Na,Ca)(Si₄Al₆O₁₆)</td>
<td>S‡, R‡</td>
</tr>
<tr>
<td>Glauberite</td>
<td>Na₂Ca(SO₄)₂</td>
<td>S</td>
</tr>
<tr>
<td>Gypsum</td>
<td>CaSO₄•2H₂O</td>
<td>S, RRR</td>
</tr>
<tr>
<td>Halite</td>
<td>NaCl</td>
<td>SSS, RRR</td>
</tr>
<tr>
<td>Illite</td>
<td>K₁₋₁.₅Al₄(Si₆₋₅Al₁₋₁.₅O₂₀)(OH)₄</td>
<td>S‡, R‡</td>
</tr>
<tr>
<td>Kainite</td>
<td>KMgCl₂•3H₂O</td>
<td>SS†</td>
</tr>
<tr>
<td>Kieserite</td>
<td>MgSO₄•H₂O</td>
<td>SS†</td>
</tr>
<tr>
<td>Langbeinite</td>
<td>K₂Mg₂(SO₄)₃</td>
<td>S*</td>
</tr>
<tr>
<td>Magnesite</td>
<td>MgCO₃</td>
<td>S, R</td>
</tr>
<tr>
<td>Polyhalite</td>
<td>K₂Ca₂Mg(SO₄)₃•2H₂O</td>
<td>SS, R</td>
</tr>
<tr>
<td>Pyrite</td>
<td>FeS₂</td>
<td>S, R</td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO₂</td>
<td>S‡, R‡</td>
</tr>
<tr>
<td>Serpentine</td>
<td>Mg₃Si₂O₅(OH)₄</td>
<td>S‡, R‡</td>
</tr>
<tr>
<td>Smectite</td>
<td>(Ca₁₋₂Na)₇(Al,Mg,Fe)₄(Si₆Al₁₀O₂₅(OH)₆)nH₂O</td>
<td>S‡, R‡</td>
</tr>
<tr>
<td>Sylvite</td>
<td>KCl</td>
<td>SS*</td>
</tr>
</tbody>
</table>

Key to Occurrence/Abundance notations:

- S = Salado Formation; R = Rustler Formation; 3× = abundant, 2× = common, 1× = rare or accessory; * = potash-ore mineral (never near surface); † = potash-zone non-ore mineral; ‡ = in claystone interbeds.

The Dewey Lake Redbeds, overlying the Rustler Formation, are the uppermost Permian unit; they consist of siltstones and claystones locally transected by concordant and discordant fractures that may contain gypsum. The Dewey Lake Redbeds contain sporadic occurrences of groundwater that may be locally perched, mostly in the area south of the WIPP site. The Triassic Dockum Group (undivided) rests on the Dewey Lake Redbeds in the eastern half of the WIPP site and thickens eastward; it is a locally important source of groundwater for agricultural and domestic use.

The Gatuña Formation, overlying the Dewey Lake Redbeds, occurs locally as channel and alluvial pond deposits (sands, gravels, and boulder conglomerates). The pedogenic Mescalero caliche is commonly developed on top of the Gatuña Formation and on many other erosionally
truncated rock types. Surficial dune sand, which may be intermittently damp, covers virtually all
outcrops at and near the WIPP site. Siliceous alluvial deposits southwest of the WIPP site also
contain potable water. The geochemistry of groundwater found in the Rustler Formation and
Dewey Lake Redbeds is summarized in Table G2-5.

<table>
<thead>
<tr>
<th>Well</th>
<th>Date</th>
<th>Zone</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>SO₄</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIPP-30</td>
<td>July 1980</td>
<td>R/S</td>
<td>955</td>
<td>2770</td>
<td>121,000</td>
<td>2180</td>
<td>7390</td>
<td>192,000</td>
</tr>
<tr>
<td>WIPP-29</td>
<td>July 1980</td>
<td>R/S</td>
<td>1080</td>
<td>2320</td>
<td>36,100</td>
<td>1480</td>
<td>12,000</td>
<td>58,000</td>
</tr>
<tr>
<td>H-5B</td>
<td>June 1981</td>
<td>Cul</td>
<td>1710</td>
<td>2140</td>
<td>52,400</td>
<td>1290</td>
<td>7360</td>
<td>89,500</td>
</tr>
<tr>
<td>H-9B</td>
<td>November 1985</td>
<td>Cul</td>
<td>590</td>
<td>37</td>
<td>146</td>
<td>7</td>
<td>1900</td>
<td>194</td>
</tr>
<tr>
<td>H-2A</td>
<td>April 1986</td>
<td>Cul</td>
<td>743</td>
<td>167</td>
<td>3570</td>
<td>94</td>
<td>2980</td>
<td>5310</td>
</tr>
<tr>
<td>P-17</td>
<td>March 1986</td>
<td>Cul</td>
<td>1620</td>
<td>1460</td>
<td>28,300</td>
<td>782</td>
<td>6020</td>
<td>48,200</td>
</tr>
<tr>
<td>WIPP-29</td>
<td>December 1985</td>
<td>Cul</td>
<td>413</td>
<td>6500</td>
<td>94,900</td>
<td>23,300</td>
<td>20,000</td>
<td>179,000</td>
</tr>
<tr>
<td>H-3B1</td>
<td>July 1985</td>
<td>Mag</td>
<td>1000</td>
<td>292</td>
<td>1520</td>
<td>35</td>
<td>2310</td>
<td>3360</td>
</tr>
<tr>
<td>H-4C</td>
<td>November 1986</td>
<td>Mag</td>
<td>651</td>
<td>411</td>
<td>7110</td>
<td>85</td>
<td>7100</td>
<td>8460</td>
</tr>
<tr>
<td>Ranch</td>
<td>June 1986</td>
<td>DL</td>
<td>420</td>
<td>202</td>
<td>200</td>
<td>4</td>
<td>1100</td>
<td>418</td>
</tr>
</tbody>
</table>

Key to Zone:
R/S = “basal brine aquifer” near the contact between the Rustler and Salado Formations; Cul = Culebra Member,
Rustler Formation; Mag = Magenta Member, Rustler Formation; DL = Dewey Lake Redbeds.

2.4.2 Regional and Local Geochemistry in the Salado Formation
The Salado Formation consists dominantly of halite, interrupted at intervals of meters to tens of
meters by beds of anhydrite, polyhalite, mudstone, and local potash mineralization (sylvite or
langbeinite, with or without accessory carnallite, kieserite, kainite and glauberite, all in a halite
matrix). Some uniquely identifiable non-halite units, 0.1 to 10 m thick, have been numbered from
the top down (100 to 144) for convenience as marker beds to facilitate cross-basinal
stratigraphic correlation. The WIPP facility was excavated just above Marker Bed 139 in the
Salado Formation at a depth of about 655 m.
Although the most common Delaware Basin evaporite mineral is halite, the presence of less
soluble interbeds (dominantly anhydrite, polyhalite, and claystone) and more soluble admixtures
(e.g. sylvite, glauberite, kainite) has resulted in chemical and physical properties significantly
different from those of pure NaCl. Under differential stress produced near excavations, brittle
interbeds (anhydrite, polyhalite, magnesite, dolomite) may fracture, whereas under a similar
stress regime pure NaCl would undergo plastic deformation. Fracturing of these interbeds has
locally enhanced the permeability, allowing otherwise nonporous rock to carry groundwater
(e.g., the fractured polyhalitic anhydrite of Marker Bed 139 under the floor of the WIPP
excavations).
Groundwater in evaporites represents the exposure of chemical precipitates to fluids that may
be agents (as in the case of dissolution) or consequences of postdepositional alteration of the
evaporites (as in the cases of dehydration of gypsum and diagenetic dewatering of other minerals). Early in the geological studies of the WIPP site, groundwater occurrences that could be hydrologically characterized were identified.

Since the beginning of conventional mining in the Delaware Basin, relatively short-lived seeps (pools on the floor, efflorescences on the walls, and stalactitic deposits on the ceiling) have been known to occur in the Salado Formation where excavations have penetrated. These brine occurrences are commonly associated with the non-halitic interbeds whose porosity is governed either by fracturing (as in brittle beds) or mineralogical discontinuities (as in “clay” seams).

The geochemistry of brines encountered in the Salado Formation is summarized in Table G2-6. The relative abundance of minerals was summarized in Table G2-4.
Variations in Major Solutes in Brines from the Salado Formation, in mg/L (after Lambert, 1992)

<table>
<thead>
<tr>
<th>Source of Brine</th>
<th>Date</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>Cl</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room G Seep</td>
<td>Sep-87</td>
<td>278</td>
<td>14800</td>
<td>15800</td>
<td>99000</td>
<td>188000</td>
<td>29500</td>
</tr>
<tr>
<td></td>
<td>Nov-87</td>
<td>300</td>
<td>18700</td>
<td>15400</td>
<td>97100</td>
<td>190000</td>
<td>32000</td>
</tr>
<tr>
<td></td>
<td>Feb-88</td>
<td>260</td>
<td>18200</td>
<td>17100</td>
<td>94100</td>
<td>186000</td>
<td>36200</td>
</tr>
<tr>
<td></td>
<td>Mar-88</td>
<td>280</td>
<td>17000</td>
<td>16200</td>
<td>92100</td>
<td>187000</td>
<td>34800</td>
</tr>
<tr>
<td></td>
<td>Jul-88</td>
<td>292</td>
<td>13000</td>
<td>14800</td>
<td>96600</td>
<td>188000</td>
<td>29300</td>
</tr>
<tr>
<td></td>
<td>Sep-88</td>
<td>273</td>
<td>14700</td>
<td>13700</td>
<td>86500</td>
<td>185000</td>
<td>28000</td>
</tr>
<tr>
<td></td>
<td>Apr-91</td>
<td>240</td>
<td>14400</td>
<td>12900</td>
<td>95000</td>
<td>189000</td>
<td>28000</td>
</tr>
<tr>
<td></td>
<td>Jul-91</td>
<td>239</td>
<td>14100</td>
<td>13100</td>
<td>93000</td>
<td>190000</td>
<td>27700</td>
</tr>
<tr>
<td></td>
<td>Oct-91</td>
<td>252</td>
<td>14700</td>
<td>14100</td>
<td>95000</td>
<td>189000</td>
<td>27100</td>
</tr>
<tr>
<td>Marker Bed 139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(under repository)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>18900</td>
<td>14800</td>
<td>67700</td>
<td>155900</td>
<td>14700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>17100</td>
<td>15600</td>
<td>72700</td>
<td>158900</td>
<td>13400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>17600</td>
<td>15800</td>
<td>71600</td>
<td>182200</td>
<td>14700</td>
<td></td>
</tr>
<tr>
<td>Room J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>17700</td>
<td>13500</td>
<td>63600</td>
<td>167000</td>
<td>15100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>27400</td>
<td>22400</td>
<td>56400</td>
<td>168000</td>
<td>19600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>17900</td>
<td>15600</td>
<td>73400</td>
<td>165000</td>
<td>9300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>22200</td>
<td>18300</td>
<td>63000</td>
<td>165000</td>
<td>31100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>31000</td>
<td>19900</td>
<td>46800</td>
<td>170000</td>
<td>24600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>35400</td>
<td>27800</td>
<td>40200</td>
<td>173000</td>
<td>30000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>18900</td>
<td>14500</td>
<td>59900</td>
<td>166000</td>
<td>16200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>20200</td>
<td>17000</td>
<td>70400</td>
<td>165000</td>
<td>10600</td>
<td></td>
</tr>
<tr>
<td>Room Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>279</td>
<td>31500</td>
<td>22600</td>
<td>68000</td>
<td>205000</td>
<td>19400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>288</td>
<td>31100</td>
<td>24100</td>
<td>68000</td>
<td>203000</td>
<td>19200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>257</td>
<td>34000</td>
<td>26300</td>
<td>63000</td>
<td>205000</td>
<td>23500</td>
<td></td>
</tr>
<tr>
<td>AIS Sump (accumulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in bottom of sump)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul-88</td>
<td>960</td>
<td>1040</td>
<td>1720</td>
<td>118000</td>
<td>187000</td>
<td>6170</td>
</tr>
<tr>
<td></td>
<td>May-89</td>
<td>900</td>
<td>500</td>
<td>600</td>
<td>83100</td>
<td>122700</td>
<td>7700</td>
</tr>
<tr>
<td></td>
<td>May-89</td>
<td>1000</td>
<td>800</td>
<td>1100</td>
<td>82400</td>
<td>114200</td>
<td>8800</td>
</tr>
<tr>
<td>McNutt Potash Zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duval mine</td>
<td>640</td>
<td>55400</td>
<td>30000</td>
<td>27500</td>
<td>236500</td>
<td>3650</td>
<td></td>
</tr>
<tr>
<td>Miss. Chem. mine</td>
<td>200</td>
<td>44200</td>
<td>45800</td>
<td>43600</td>
<td>226200</td>
<td>12050</td>
<td></td>
</tr>
</tbody>
</table>
3. **Design Guidance**

3.1 **Introduction**

The WIPP is subject to regulatory requirements contained in applicable portions of the New Mexico Hazardous Waste Act, specifically 20.4.1.500 NMAC and .900 (incorporating 40 CFR §264 and §270), and requirements contained in 40 CFR §191 and 40 CFR §194. The use of both engineered and natural barriers to isolate wastes from the accessible environment is required by 20.4.1.500 NMAC (incorporating 40 CFR §§264.111 and 264.601) and 40 CFR §191.14(d). The use of engineered barriers to prevent or substantially delay the movement of water, hazardous constituents, or radionuclides toward the accessible environment is required by 20.4.1.500 NMAC (incorporating 40 CFR §§264.111 and 264.601) and 40 CFR §194.44. Hazardous constituent release performance standards are specified in Permit Part 5 and 20.4.1.500 NMAC (incorporating 40 CFR §§264.111(b), 264.601(a), and 264 Subpart F). Quantitative requirements for potential releases of radioactive materials from the repository system are specified in 40 CFR §191. The regulations impose quantitative release requirements on the total repository system, not on individual subsystems of the repository system, for example, the shaft sealing subsystem.

3.2 **Design Guidance and Design Approach**

The guidance described for the design of the shaft sealing system addresses the need for the WIPP to comply with system requirements and to follow accepted engineering practices using demonstrated technology. The design guidance addresses the need to limit:

1. radiological or other hazardous constituents reaching the regulatory boundaries,
2. groundwater flow into and through the sealing system,
3. chemical and mechanical incompatibility,
4. structural failure of system components,
5. subsidence and accidental entry, and
6. development of new construction technologies and/or materials.

For each element of design guidance, a design approach has been developed. Table G2-7 contains qualitative design guidance and the design approach used to implement it.
Table G2-7
Shaft Sealing System Design Guidance

<table>
<thead>
<tr>
<th>Qualitative Design Guidance</th>
<th>Design Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>The shaft sealing system shall limit:</td>
<td>The shaft sealing system shall be designed to meet the qualitative design guidance in the following ways:</td>
</tr>
<tr>
<td>1. the migration of radiological or other hazardous constituents from the repository horizon to the regulatory boundary during the 10,000-year regulatory period following closure;</td>
<td>1. In the absence of human intrusion, brine migrating from the repository horizon to the Rustler Formation must pass through a low permeability sealing system.</td>
</tr>
<tr>
<td>2. groundwater flowing into and through the shaft sealing system;</td>
<td>2. In the absence of human intrusion, groundwater migrating from the Rustler Formation to the repository horizon must pass through a low permeability sealing system.</td>
</tr>
<tr>
<td>3. chemical and mechanical incompatibility of seal materials with the seal environment;</td>
<td>3. Brine contact with seal elements is limited and materials possess acceptable mechanical properties.</td>
</tr>
<tr>
<td>4. the possibility for structural failure of individual components of the sealing system;</td>
<td>4. State of stress from forces expected from rock creep and other mechanical loads is favorable for seal materials.</td>
</tr>
<tr>
<td>5. subsidence of the ground surface in the vicinity of the shafts and the possibility of accidental entry after sealing;</td>
<td>5. The shaft is completely filled with low-porosity materials, and construction equipment would be needed to gain entry.</td>
</tr>
<tr>
<td>6. the need to develop new technologies or materials for construction of the shaft sealing system.</td>
<td>6. Construction of the shaft sealing system is feasible using available technologies and materials.</td>
</tr>
</tbody>
</table>
4. Design Description

4.1 Introduction

The design presented in this section was developed based on (1) the design guidance outlined in Section 3.0, (2) past design experience, and (3) a desire to reduce uncertainties associated with the performance of the WIPP sealing system. The WIPP shaft sealing system design has evolved over the past decade from the initial concepts presented by Stormont (1984) to the design concepts presented in this document. The past designs are:

- the plugging and sealing program for the WIPP (Stormont, 1984),
- the initial reference seal system design (Nowak et al., 1990),
- the seal design alternative study (Van Sambeek et al., 1993),
- the WIPP sealing system design (DOE, 1995).

The present design changes were implemented to take advantage of knowledge gained from small-scale seals tests conducted at the WIPP (Knowles and Howard, 1996), advances in the ability to predict the time-dependent mechanical behavior of compacted salt rock (Callahan et al., 1996), large-scale dynamic salt compaction tests and associated laboratory determination of the permeability of compacted salt samples (Hansen and Ahrens, 1996; Brodsky et al., 1996), field tests to measure the permeability of the DRZ surrounding the WIPP AIS (Dale and Hurtado, 1996), and around seals (Knowles et al., 1996). A summary paper (Hansen et al., 1996) describing the design has been prepared.

The shaft sealing system is composed of seals within the Salado Formation, the Rustler Formation, and the Dewey Lake Redbeds and overlying units. All components of the sealing system are designed to meet Items 3, 4, and 6 of the Design Guidance (Table G2-7.); that is, all sealing system components are designed to be chemically and mechanically compatible with the seal environment, structurally adequate, and constructable using currently available technology and materials. The seals in the Salado Formation are also designed to meet Items 1 and 2 of the Design Guidance. These seals will limit fluid migration upward from the repository to the Rustler Formation and downward from the Rustler Formation to the repository. Migration of brine upward and downward is discussed in Sections 8.5 and 8.4 respectively. The seals in the Rustler Formation are designed to meet Item 2 in addition to Items 3, 4, and 6 of the Design Guidance. The seals in the Rustler Formation limit migration of Rustler brines into the shaft cross-section and also limit cross-flow between the Culebra and Magenta members. The principal function of the seals in the Dewey Lake Redbeds and overlying units is to meet Item 5 of the Design Guidance, that is, to limit subsidence of the ground surface in the vicinity of the shafts and to prevent accidental entry after repository closure. Entry of water (surface water and any groundwater that might be present in the Dewey Lake Redbeds and overlying units) into the sealing system is limited by restraining subsidence and by placing high density fill in the shafts.

4.2 Existing Shafts

The WIPP underground facilities are accessed by four shafts commonly referred to as the Waste, Air Intake, Exhaust, and Salt Handling Shafts. These shafts were constructed between 1981 and 1988. All four shafts are lined from the surface to just below the contact of the Rustler and Salado Formations. The lined portion of the shafts terminates in a substantial concrete structure called the “key,” which is located in the uppermost portion of the Salado Formation.
Drawings showing the configuration of the existing shafts are included in Appendix G2-E and listed below in Table G2-8. Table G2-9 contains a summary of information describing the existing shafts.

The upper portions of the WIPP shafts are lined. The Waste, Air Intake, and Exhaust shafts have concrete linings; the Salt Handling Shaft has a steel lining with grout backing. In addition, during shaft construction, steel liner plates, wire mesh, and pressure grouting were used to stabilize portions of the shaft walls in the Rustler Formation and overlying units. Seepage of groundwater into the lined portions of the shafts has been observed. This seepage was expected; in fact, the shaft keys (massive concrete structures located at the base of each shaft liner) were designed to collect the seepage and transport it through a piping system to collection points at the repository horizon. In general, the seepage originates in the Magenta and Culebra members of the Rustler Formation and in the interface zone between the Rustler and Salado formations. It flows along the interface between the shaft liner and the shaft wall and through the DRZ immediately adjacent to the shaft wall. In those cases where seepage through the liner occurred, it happened where the liner offered lower resistance to flow than the interface and DRZ, for example, at construction joints. Maintenance grouting, in selected areas of the WIPP shafts, has been utilized to reduce seepage.

<table>
<thead>
<tr>
<th>Shaft</th>
<th>Drawing Title</th>
<th>Sheet Number of Drawing SNL-007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste</td>
<td>Near-Surface/Rustler Formation Waste Shaft Stratigraphy & As-Built Elements</td>
<td>2 of 28</td>
</tr>
<tr>
<td>Waste</td>
<td>Salado Formation Waste Shaft Stratigraphy & As-Built Elements</td>
<td>3 of 28</td>
</tr>
<tr>
<td>AIS</td>
<td>Near-Surface/Rustler Formation Air Intake Shaft Stratigraphy & As-Built Elements</td>
<td>7 of 28</td>
</tr>
<tr>
<td>AIS</td>
<td>Salado Formation Air Intake Shaft Stratigraphy & As-Built Elements</td>
<td>8 of 28</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Near-Surface/Rustler Formation Exhaust Shaft Stratigraphy & As-Built Elements</td>
<td>12 of 28</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Salado Formation Exhaust Shaft Stratigraphy & As-Built Elements</td>
<td>13 of 28</td>
</tr>
<tr>
<td>Salt Handling</td>
<td>Near-Surface/Rustler Formation Salt Handling Shaft Stratigraphy & As-Built Elements</td>
<td>17 of 28</td>
</tr>
<tr>
<td>Salt Handling</td>
<td>Salado Formation Salt Handling Shaft Stratigraphy & As-Built Elements</td>
<td>18 of 28</td>
</tr>
</tbody>
</table>
Table G2-9
Summary of Information Describing Existing WIPP Shafts

<table>
<thead>
<tr>
<th>A. Construction Method</th>
<th>Salt Handling</th>
<th>Waste</th>
<th>Air Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Sinking method</td>
<td>Blind bored</td>
<td>Initial 6’ pilot hole slashed by drill & blast (smooth wall blasting)</td>
<td>Raise bored</td>
<td>Initial 6’ pilot hole slashed by drill & blast (smooth wall blasting)</td>
</tr>
<tr>
<td>iv. Sump construction</td>
<td>Drill & blast</td>
<td>Drill & blast</td>
<td>No sump</td>
<td>No sump</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Upper Portion of Shaft *</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Type of liner</td>
<td>Steel</td>
<td>Concrete</td>
<td>Concrete</td>
<td>Concrete</td>
</tr>
<tr>
<td>ii. Lining diameter (ID)</td>
<td>10’-0”</td>
<td>19’-0”</td>
<td>18’-0”/16’-7”</td>
<td>14’-0”</td>
</tr>
<tr>
<td>iii. Excavated diameter</td>
<td>11’-10”</td>
<td>20’-8” to 22’-4”</td>
<td>20’-3”</td>
<td>15’-8” to 16’-8”</td>
</tr>
<tr>
<td>iv. Installed depth of liner</td>
<td>838.5’</td>
<td>812’</td>
<td>816’</td>
<td>846’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. Key Portion of Shaft *</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Construction material</td>
<td>Reinf. conc. w/chem. seals</td>
<td>Reinf. concrete w/chem. seals</td>
<td>Reinf. concrete w/chem. seals</td>
<td>Reinf. concrete w/chem. seals</td>
</tr>
<tr>
<td>ii. Liner diameter (ID)</td>
<td>10’-0”</td>
<td>19’-0”</td>
<td>16’-7”</td>
<td>14’-0”</td>
</tr>
<tr>
<td>iii. Excavated diameter</td>
<td>15’-0” to 18’-0”</td>
<td>27’-6” to 31’-0”</td>
<td>29’-3” to 35’-3”</td>
<td>21’-0” to 26’-0”</td>
</tr>
<tr>
<td>iv. Depth-top of Key</td>
<td>844’</td>
<td>836’</td>
<td>834’</td>
<td>846’</td>
</tr>
<tr>
<td>v. Depth-bottom of Key</td>
<td>883’</td>
<td>900’</td>
<td>897’</td>
<td>910’</td>
</tr>
<tr>
<td>vi. Dow Seal #1 depth</td>
<td>846’ to 848’</td>
<td>846’ to 849’</td>
<td>839’ to 842’</td>
<td>853’ to 856’</td>
</tr>
<tr>
<td>vii. Dow Seal #2 depth</td>
<td>853’ to 856’</td>
<td>856’ to 859’</td>
<td>854’ to 857’</td>
<td>867’ to 870’</td>
</tr>
<tr>
<td>viii. Dow Seal #3 depth</td>
<td>868 to 891’</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ix. Top of salt (Rustler/Salado contact)</td>
<td>851’</td>
<td>843’</td>
<td>841’</td>
<td>853’</td>
</tr>
</tbody>
</table>
Shafts

<table>
<thead>
<tr>
<th></th>
<th>Salt Handling</th>
<th>Waste</th>
<th>Air Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>**D. Lower Shaft (Unlined) ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Type of support</td>
<td>Unlined</td>
<td>Chain link mesh</td>
<td>Unlined</td>
<td>Chain link mesh</td>
</tr>
<tr>
<td>ii. Excavated diameter</td>
<td>11'-10"</td>
<td>20'-0"</td>
<td>20'-3"</td>
<td>15'-0"</td>
</tr>
<tr>
<td>iii. Depth-top of "unlined"</td>
<td>882'</td>
<td>900'</td>
<td>904'</td>
<td>913'</td>
</tr>
<tr>
<td>iv. Depth-bottom of "unlined"</td>
<td>2144'</td>
<td>2142'</td>
<td>2128'</td>
<td>2148'</td>
</tr>
<tr>
<td>**E. Station ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Type of support</td>
<td>Wire mesh</td>
<td></td>
<td>Wire mesh</td>
<td>Wire mesh</td>
</tr>
<tr>
<td>ii. Principal dimensions</td>
<td>21H × 31W</td>
<td>12H × 30W</td>
<td>25H × 36W</td>
<td>12H × 23W</td>
</tr>
<tr>
<td>iii. Depth-top of station</td>
<td>2144'</td>
<td>2142'</td>
<td>2128'</td>
<td>2148'</td>
</tr>
<tr>
<td>iv. Depth-floor of station</td>
<td>2162'</td>
<td>2160'</td>
<td>2150'</td>
<td>2160'</td>
</tr>
<tr>
<td>**F. Sump ***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth-top of sump</td>
<td>2162'</td>
<td>2160'</td>
<td>No sump</td>
<td>No sump</td>
</tr>
<tr>
<td>Depth-bottom of sump</td>
<td>2272'</td>
<td>2286'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Shaft Duty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction hoisting of excavated salt; personnel hoisting; for intake (fresh) air; ventilation shaft for intake (fresh) air; personnel hoisting until waste receipt</td>
<td>Hoisting shaft for lowering waste containers; personnel hoisting until waste receipt</td>
<td>Ventilation shaft for intake (fresh) air; personnel hoisting</td>
<td>Exhaust air ventilation shaft</td>
<td></td>
</tr>
</tbody>
</table>

*This information is from the MOC drawings identified on Sheets 2, 3, 7, 8, 12, 13, 17, and 18 of Drawing SNL-007 (see Appendix G2-E).
4.3 Sealing System Design Description

This section describes the shaft sealing system design, components, and functions. The shaft sealing system consists of three essentially independent parts:

1. The seals in the Salado Formation provide the primary regulatory barrier. They will limit fluid flow into and out of the repository throughout the 10,000-year regulatory period.

2. The seals in the Rustler Formation will limit flow from the water-bearing members of the Rustler Formation and limit commingling of Magenta and Culebra groundwaters.

3. The seals in the Dewey Lake Redbeds and the near-surface units will limit infiltration of surface water and preclude accidental entry through the shaft openings.

The same sealing system is used in all four shafts. Therefore an understanding of the sealing system for one shaft is sufficient to understand the sealing system in all shafts. Only minor differences exist in the lengths of the components, and the component diameters differ to accommodate the existing shaft diameters.

The shaft liner will be removed in four locations in each shaft. All of these locations are within the Rustler Formation. Additionally, the upper portion of each shaft key will be eliminated. The portion of the shaft key that will be eliminated spans the Rustler/Salado interface and extends into the Salado Formation. The shaft liner removal locations are

1. from 10 ft above the Magenta Member to the base of the Magenta (removal distances vary from 34–39 ft because of different member thickness at shaft locations),

2. for a distance of 10 ft in the anhydrite of the Tamarisk Member,

3. through the full height of the Culebra (17–24 ft), and

4. from the top anhydrite unit in the unnamed lower member to the top of the key (67–85 ft).

Additionally, the concrete will be removed from the top of the key to the bottom of the key's lower chemical seal ring (23 to 29 ft). Drawing SNL-007, Sheets 4, 9, 14, and 19 in Appendix G2-E show shaft liner removal plans, and Sheet 23 shows key removal plans.

The decision to abandon portions of the shaft lining and key in place is based on two factors. First, no improvements in the performance of the sealing system associated with removal of these isolated sections of concrete have been identified. Second, because the keys are thick and heavily reinforced, their removal would be costly and time consuming. No technical problems are associated with the removal of this concrete; thus, if necessary, its removal can be incorporated in any future design.

The DRZ will be pressure grouted throughout the liner and key removal areas and for a distance of 10 ft above and below all liner removal areas. The pressure grouting will stabilize the DRZ during liner removal and shaft sealing operations. The grouting will also control groundwater seepage during and after liner removal. The pressure grouting of the DRZ has not been
assigned a sealing function beyond the construction period. It is likely that this grout will seal the DRZ for an extended period of time. However, past experience with grout in the mining and tunneling industries demonstrates that groundwater eventually opens alternative pathways through the media and reestablishes seepage patterns (maintenance grouting is common in both mines and tunnels). Therefore, post-closure sealing of the DRZ in the Rustler Formation has not been assumed in the design.

The compacted clay sealing material (bentonite) will seal the shaft cross-section in the Rustler Formation. In those areas where the shaft liner has been removed, the compacted clay will confine the vertical movement of groundwater in the Rustler to the DRZ. Sealing the shaft DRZ is accomplished in the Salado Formation. It is achieved initially through the interruption of the halite DRZ by concrete-asphalt waterstops and on a long-term basis through the natural process of healing the halite DRZ. The properties of the compacted clay are discussed in Section 5.3.2. The concrete-asphalt waterstops and DRZ healing in the Salado are discussed in Sections 7.6.1 and 7.5.2 respectively.

Reduction of the uncertainty associated with long-term performance is addressed by replacing the upper and lower Salado Formation salt columns used in some of the earlier designs with compacted clay columns and by adding asphalt sealing components in the Salado Formation. Use of disparate materials for sealing components reduces the uncertainty associated with a common-mode failure.

The compacted salt column provides a seal with an initial permeability several orders of magnitude higher than the clay or asphalt columns; however, its long-term properties will approach those of the host rock. The permeability of the compacted salt, after consolidation, will be several orders of magnitude lower than that of the clay and comparable to that of the asphalt. The clay provides seals of known low permeability at emplacement, and asphalt provides an independent low permeability seal of the shaft cross-section and the shaft wall interface at the time of installation. Sealing of the DRZ in the Rustler Formation during the construction period is accomplished by grouting, and initial sealing of the DRZ in the Salado Formation is accomplished by three concrete-asphalt waterstops.

In the following sections, each component of each of the three shaft segments is identified by name and component number (see Figure G2-5 for nomenclature). Associated drawings in Appendix G2-E are also identified. Drawings showing the overall system configurations for each shaft are listed in Table G2-10.

4.3.1 Salado Seals

The seals placed in the Salado Formation are composed of (1) consolidated salt, clay, and asphalt components that will function for very long periods, exceeding the 10,000-year regulatory period; and (2) salt saturated concrete components that will function for extended periods. The specific components that comprise the Salado seals are described below.

4.3.1.1 Compacted Salt Column

The compacted salt column (Component 10 in Figure G2-5, and shown in Drawing SNL-007, Sheet 25) will be constructed of crushed salt taken from the Salado Formation. The length of the salt column varies from 170 to 172 m (556 to 564 ft) in the four shafts. The compacted salt column is sized to allow the column and concrete-asphalt waterstops at either end to be placed
between the Vaca Triste Unit and Marker Bed 136. The salt will be placed and compacted to a density approaching 90% of the average density of intact Salado salt. The effects of creep closure will cause this density to increase with time, further reducing permeability.

The salt column will offer limited resistance to fluid migration immediately after emplacement, but it will become less permeable as creep closure further compacts the salt. Salt creep increases rapidly with depth; therefore, at any time, creep closure of the shaft will be greater at greater depth. The location and initial compaction density of the compacted salt column were chosen to assure consolidation of the compacted salt column in the 100 years following repository closure. The state of salt consolidation, results of analyses predicting the creep closure of the shaft, consolidation and healing of the compacted salt, and healing of the DRZ surrounding the compacted salt column are presented in Sections 7.5 and 8.4 of this document. These results indicate that the salt column will become an effective long-term barrier within 100 years.

Table G2-10

Drawings Showing the Sealing System for Each Shaft (Drawings are in Appendix G2-E)

<table>
<thead>
<tr>
<th>Shaft</th>
<th>Drawing Title</th>
<th>Sheet Number of Drawing SNL 007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste</td>
<td>Near-Surface/Rustler Formation Waste Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>4 of 28</td>
</tr>
<tr>
<td>Waste</td>
<td>Salado Formation Waste Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>5 of 28</td>
</tr>
<tr>
<td>AIS</td>
<td>Near-Surface/Rustler Formation Air Intake Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>9 of 28</td>
</tr>
<tr>
<td>AIS</td>
<td>Salado Formation Air Intake Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>10 of 28</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Near-Surface/Rustler Formation Exhaust Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>14 of 28</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Salado Formation Exhaust Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>15 of 28</td>
</tr>
<tr>
<td>Salt Handling</td>
<td>Near-Surface/Rustler Formation Salt Handling Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>19 of 28</td>
</tr>
<tr>
<td>Salt Handling</td>
<td>Salado Formation Salt Handling Shaft Stratigraphy & Sealing Subsystem Profile</td>
<td>20 of 28</td>
</tr>
</tbody>
</table>

4.3.1.2 Upper and Lower Salado Compacted Clay Columns

The upper and lower Salado compacted clay columns (Components 8 and 12 respectively in Figure G2-5) are shown in detail on Drawing SNL-007, Sheet 24. A commercial well-sealing grade sodium bentonite will be used to construct the upper and lower Salado clay columns. These clay columns will effectively limit fluid movement from the time they are placed and will provide an effective barrier to fluid migration throughout the 10,000-year regulatory period and thereafter. The upper clay column ranges in length from 102 to 107 m (335 to 351 ft), and the lower clay column ranges in length from 29 to 33 m (94 to 107 ft) in the four shafts. The locations for the upper and lower clay columns were selected based on the need to limit fluid migration into the compacting salt column. The lower clay column stiffness is sufficient to
promote early healing of the DRZ, thus removing the DRZ as a potential pathway for fluids (Appendix D in the Compliance Submittal Design Report (Sandia, 1996), Section 5.2.1).

4.3.1.3 Upper, Middle, and Lower Concrete-Asphalt Waterstops

The upper, middle, and lower concrete-asphalt waterstops (Components 7, 9, and 11 respectively in Figure G2-5) are identical and are composed of three elements: an upper concrete plug, a central asphalt waterstop, and a lower concrete plug. These components are also shown on Drawing SNL-007, Sheet 22. The concrete specified is a specially developed salt-saturated concrete called Salado Mass Concrete (SMC). In all cases the component's overall design length is 15 m (50 ft).

The upper and lower concrete plugs of the concrete-asphalt waterstop are identical. They fill the shaft cross-section and have a design length of 7 m (23 ft). The plugs are keyed into the shaft wall to provide positive support for the plug and overlying sealing materials. The interface between the concrete plugs and the surrounding formation will be pressure grouted. The upper plug in each component will support dynamic compaction of the overlying sealing material if compaction is specified. Dynamic compaction of the salt column is discussed in Section 6.

The asphalt waterstop is located between the upper and lower concrete plugs. In all cases a kerf extending one shaft radius beyond the shaft wall is cut in the surrounding salt to contain the waterstop. The kerf is 0.3 m (1 ft) high at its edge and 0.6 m (2 ft) high at the shaft wall. The kerf, which cuts through the existing shaft DRZ, will result in the formation of a new DRZ along its perimeter. This new DRZ will heal shortly after construction of the waterstop, and thereafter the waterstop will provide a very low permeability barrier to fluid migration through the DRZ. The formation and healing of the DRZ around the waterstop are addressed in Section 7.6.1. The asphalt fill for the waterstop extends two feet above the top of the kerf to assure complete filling of the kerf. The construction procedure used assures that shrinkage of the asphalt from cooling will not result in the creation of voids within the kerf and will minimize the size of any void below the upper plug.

Concrete-asphalt waterstops are placed at the top of the upper clay column, the top of the compacted salt column, and the top of the lower clay column. The concrete-asphalt waterstops provide independent seals of the shaft cross-section and the DRZ. The SMC plugs (and grout) will fill irregularities in the shaft wall, bond to the shaft wall, and seal the interface. Salt creep against the rigid concrete components will place a compressive load on the salt and promote early healing of the salt DRZ surrounding the SMC plugs. The asphalt waterstop will seal the shaft cross-section and the DRZ.

The position of the concrete components was first determined by the location of the salt and clay columns. The components were then moved upward or downward from their initial design location to assure the components were located in regions where halite was predominant. This positioning, coupled with variations in stratigraphy, is responsible for the variations in the lengths of the salt and clay columns.

4.3.1.4 Asphalt Column

An asphalt-aggregate mixture is specified for the asphalt column (Component 6 in Figure G2-5). This column is 42 to 44 m (138 to 143 ft) in length in the four shafts, as shown in Drawing SNL-007, Sheet 23. The asphalt column is located above the upper concrete-asphalt waterstop; it
extends approximately 5 m (16 ft) above the Rustler/Salado interface. A 6-m (20-ft) long concrete plug (part of the Rustler seals) is located just above the asphalt column.

The existing shaft linings will be removed from a point well above the top of the asphalt column to the top of the shaft keys. The concrete shaft keys will be removed to a point just below the lowest chemical seal ring in each key. The asphalt column is located at the top of the Salado Formation and provides an essentially impermeable seal for the shaft cross section and along the shaft wall interface. The length of the asphalt column will decrease slightly as the column cools. The procedure for placing the flowable asphalt-aggregate mixture is described in Section 6.

4.3.1.5 Shaft Station Monolith

A shaft station monolith (Component 13) is located at the base of each shaft. Because the configurations of each shaft differ, drawings of the shaft station monoliths for each shaft were prepared. These drawings are identified in Table G2-11. The shaft station monoliths will be constructed with SMC. The monoliths function to support the shaft wall and adjacent drift roof, thus preventing damage to the seal system as the access drift closes from natural processes.

<table>
<thead>
<tr>
<th>Shaft</th>
<th>Drawing Title</th>
<th>Sheet Number of Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Shaft</td>
<td>Shaft Station Monolith</td>
<td>SNL-007 6</td>
</tr>
<tr>
<td>Air Intake</td>
<td>Shaft Station Monolith</td>
<td>SNL-2007 11</td>
</tr>
<tr>
<td>Exhaust</td>
<td>Shaft Station Monolith</td>
<td>SNL-2007 16</td>
</tr>
<tr>
<td>Salt Handling</td>
<td>Shaft Station Monolith</td>
<td>SNL-2007 21</td>
</tr>
</tbody>
</table>

4.3.2 Rustler Seals

The seals in the Rustler Formation are composed of the Rustler compacted clay column and a concrete plug. The concrete plug rests on top of the asphalt column of the Salado seals. The clay column extends from the concrete plug through most of the Rustler Formation and terminates above the Rustler’s highest water-bearing zone in the Forty-niner Member.

4.3.2.1 Rustler Compacted Clay Column

The Rustler compacted clay column (Component 4 in Figure G2-5) is shown on Drawing SNL-007, Sheet 27 for each of the four shafts. A commercial well-sealing-grade sodium bentonite will be used to construct the Rustler clay column, which will effectively limit fluid movement from the time of placement and provide an effective barrier to fluid migration throughout the 10,000-year regulatory period and thereafter. Design length of the Rustler clay column is about 71 m (234 to 235 ft) in the four shafts.

The location for the Rustler clay columns was selected to limit fluid migration into the shaft cross-section and along the shaft wall interface and to limit mixing of Culebra and Magenta waters. The clay column extends from above the Magenta Member to below the Culebra
Member of the Rustler Formation. The Magenta and Culebra are the water-bearing units of the Rustler. The members above the Magenta (the Forty-niner), between the Magenta and Culebra (the Tamarisk), and below the Culebra (the unnamed lower member) are aquitards in the vicinity of the WIPP shafts.

4.3.2.2 Rustler Concrete Plug

The Rustler concrete plug (Component 5 in Figure G2-5) is constructed of SMC. The plugs for the four shafts are shown on Drawing SNL-007, Sheet 26. The plug is 6 m (20 ft) long and will fill the shaft cross-section. The plug is placed directly on top of the asphalt column of the Salado seals. The plug will be keyed into the surrounding rock and grouted. The plug permits work to begin on the overlying clay column before the asphalt has completely cooled. The option of constructing the overlying clay columns using dynamic compaction (present planning calls for construction using compressed clay blocks) is also maintained by keying the plug into the surrounding rock.

4.3.3 Near-Surface Seals

The near-surface region is composed of dune sand, the Mescalero caliche, the Gatuña Formation, the Santa Rosa Formation, and the Dewey Lake Redbeds. This region extends from the ground surface to the top of the Rustler Formation—a distance of about 160 m (525 ft). All but about 15 m (50 ft) of this distance is composed of the Dewey Lake Redbeds Formation. The near-surface seals are composed of two earthen fill columns and a concrete plug. The upper earthen fill column (Component 1) extends from the shaft collar through the surficial deposits downward to the top of the Dewey Lake Redbeds. The concrete plug (Component 2) is placed in the top portion of the Dewey Lake Redbeds, and the lower earthen fill column (Component 3) extends from the concrete plug into the Rustler Formation. These components are shown on Drawing SNL-007, Sheet 28.

This seal will limit the amount of surface water entering the shafts and will limit the potential for any future groundwater migration into the shafts. The near surface seals will also completely close the shafts and prevent accidental entry and excessive subsidence in the vicinity of the shafts. As discussed in Section 4.3.2, the existing shaft linings will be abandoned in place throughout the near-surface region.

4.3.3.1 Near-Surface Upper Compacted Earthen Fill

This component (Component 1 in Figure G2-5) will be constructed using locally available fill. The fill will be compacted to a density near that of the surrounding material to inhibit the migration of surface waters into the shaft cross-section. The length of this column varies from 17 to 28 m (56 to 92 ft) in the four shafts. In all cases, this portion of the WIPP sealing system may be modified as required to facilitate decommissioning of the WIPP surface facilities.

4.3.3.2 Near-Surface Concrete Plug

Current plans call for an SMC plug (Component 2 in Figure G2-5). However, freshwater concrete may be used if found to be desirable at a future time, and if approved by NMED through the Permit modification process specified in 20.4.1.900 NMAC (incorporating 40 CFR §270.42). The plug extends 12 m (40 ft) downward from the top of the Dewey Lake Redbeds. It is placed inside the existing shaft lining, and the interface is grouted.
4.3.3.3 Near-Surface Lower Compacted Earthen Fill

This component (Component 3 in Figure G2-5) will be constructed using locally available fill, which will be placed using dynamic compaction (the same method used to construct the salt column). The fill will be compacted to a density equal to or greater than the surrounding materials to inhibit the migration of surface waters into the shaft cross-section. The length of this column varies from 136 to 148 m (447 to 486 ft) in the four shafts.
5. Material Specification

Appendix G2-A provides a body of technical information for each of the WIPP shaft seal materials. The materials specification characterizes each seal material, establishes the adequacy of its function, states briefly the method of component placement, and quantifies expected characteristics (particularly permeability) pertinent to a WIPP-specific shaft seal design. The goal of the materials specifications is to substantiate why materials used in this seal system design will limit fluid flow within the shafts and thereby limit releases of hazardous constituents from the WIPP site at the regulatory boundary.

This section summarizes materials characteristics for shaft seal system components designed for the WIPP. The shaft seal system will not be constructed for decades; however, if it were to be constructed in the near term, materials specified could be placed in the shaft and meet performance specifications using current materials and construction techniques. Construction methods are described in Appendix G2-B. Materials specifications and construction specifications are not to be construed as the only materials or methods that would suffice to seal the shafts effectively. Undoubtedly, the design will be modified, perhaps simplified, and construction alternatives may prove to be advantageous during the years before seal construction proceeds. Nonetheless, a materials specification is necessary to establish a frame of reference for shaft seal design and analysis, to guide construction specifications, and to provide a basis for seal material parameters.

Design detail and other characteristics of the geologic, hydrologic, and chemical setting are provided in the text, appendices, and references. The four shafts will be entirely filled with dense materials possessing low permeability and other desirable engineering and economic attributes. Seal materials include concrete, clay, asphalt, and compacted salt. Other construction and fill materials include cementitious grout and earthen fill. Concrete, clay, and asphalt are common construction materials used extensively in sealing applications. Their descriptions, drawn from literature and site-specific references, are given in Appendix G2-A. Compaction and natural reconsolidation of crushed salt are uniquely applied here. Therefore, crushed salt specification includes discussion of constitutive behavior and sealing performance, specific to WIPP applications. Cementitious grout is also specified in some detail. Only rudimentary discussion of earthen fill is given here and in Appendices A and B. Specifications for each material are discussed in the following order:

- functions,
- material characteristics,
- construction,
- performance requirements,
- verification methods.

Seal system components are materials possessing high durability and compatibility with the host rock. The system contains functional redundancy and uses differing materials to reduce uncertainty in performance. All materials used in the shaft seal system are expected to maintain their integrity for very long periods. Some sealing components reduce fluid flow soon after placement while other components are designed to function well beyond the regulatory period.
5.1 Longevity

A major environmental advantage of the WIPP locale is an overall lack of groundwater to seal against. Even though very little regional water is present in the geologic setting, the seal system reflects great concern for groundwater's potential influence on the shaft seal system. If the hydrologic system sustained considerable fluid flow, brine geochemistry could impact engineered materials. Brine would not chemically change the compacted salt column, but mechanical effects of pore pressure are of concern to reconsolidation. The geochemical setting, as further discussed in Section 2.4, will have little influence on concrete, asphalt, and clay shaft seal materials. Each material is durable because the potential for degradation or alteration is very low.

Materials used to form the shaft seals are the same as those identified in the scientific and engineering literature as appropriate for sealing deep geologic repositories for radioactive wastes. Durability or longevity of seal components is a primary concern for any long-term isolation system. Issues of possible degradation have been studied throughout the international community and within waste isolation programs in the USA. Specific degradation studies are not detailed in this document because longevity is one of the over-riding attributes of the materials selected and degradation is not perceived to be likely. However, it is acknowledged here that microbial degradation, seal material interaction, mineral transformation, such as silicification of bentonite, and effects of a thermal pulse from asphalt or hydrating concrete are areas of continuing investigations.

Among longevity concerns, degradation of concrete is the most recognized. At this stage of the design, it is established that only small volumes of brine ever reach the concrete elements (see Section C4 of the Compliance Submittal Design Report (Sandia, 1996)). Further analysis concerned with borehole plugging using cementitious materials shows that at least 100 pore volumes of brine in an open system would be needed to begin degradation processes. In a closed system, such as the hydrologic setting in the WIPP shafts, phase transformations create a degradation product of increased volume. Net volume increase owing to phase transformation in the absence of mass transport would decrease rather than increase permeability of concrete seal elements.

Asphalt has existed for thousands of years as natural seeps. Longevity studies specific to DOE’s Hanford site have utilized asphalt artifacts buried in ancient ceremonies to assess long-term stability (Wing and Gee, 1994). Asphalt used as a seal component deep in the shaft will inhabit a benign environment, devoid of ultraviolet light or an oxidizing atmosphere. Additional assurance against possible microbial degradation in asphalt elements is provided with addition of lime. For these reasons, it is believed that asphalt components will possess their design characteristics well beyond the regulatory period.

Natural bentonite is a stable material that generally will not change significantly over a period of ten thousand years. Bentonitic clays have been widely used in field and laboratory experiments concerned with radioactive waste disposal. As noted by Gray (1993), three internal mechanisms, illitization, silicification and charge change, could affect sealing properties of bentonite. Illitization and silicification are thermally driven processes and, following discussion by Gray (1993), are not possible in the environment or time-frame of concern at the WIPP. The naturally occurring Wyoming bentonite which is the specified material for the WIPP shaft seal is well over a million years old. It is, therefore, highly unlikely that the metamorphism of bentonite enters as a design concern.
5.2 Materials

5.2.1 Mass Concrete

Concrete has low permeability and is widely used for hydraulic applications. The specification for mass concrete presents a special design mixture of a salt-saturated concrete called Salado Mass Concrete (SMC). Performance of SMC and similar salt-saturated mixtures has been established through analogous industrial applications and in laboratory and field testing. The documentation substantiates adequacy of SMC for concrete applications within the WIPP shafts.

The function of the concrete is to provide durable components with small void volume, adequate structural compressive strength, and low permeability. SMC is used as massive plugs, a monolith at the base of each shaft, and in tandem with asphalt waterstops. Concrete is a rigid material that will support overlying seal components while promoting natural healing processes within the salt DRZ. Concrete is one of the redundant components that protects the reconsolidating salt column. The salt column will achieve low permeabilities in fewer than 100 years, and concrete will no longer be needed at that time. However, concrete will continue to provide good sealing characteristics for a very long time.

Salt-saturated concrete contains sufficient salt as an aggregate to saturate hydration water with respect to NaCl. Salt-saturated concrete is required for all uses within the Salado Formation because fresh water concrete would dissolve part of the host rock. The concrete specified for the shaft seal system has been tailored for the service environment and includes all the engineering properties of high quality concrete, as described in Appendix G2-A. Among these are low heat of hydration, high compressive strength, and low permeability. Because SMC provides material characteristics of high-performance concrete, it will likely be the concrete of choice for all seal applications at the WIPP.

Construction involves surface preparation and slickline placement. A batching and mixing operation on the surface will produce a wet mixture having low initial temperatures. Placement uses a tremie line, where the fresh concrete exits the slickline below the surface level of the concrete being placed. Placed in this manner, the SMC will have low porosity (about 5%) with or without vibration. Tremie line placement is a standard construction method in mining operations.

Specifications of concrete properties include mixture proportions and characteristics before and after hydration. SMC strength is much greater than required for shaft seal elements, and the state of stress within the shafts is compressional with little shear stress developing. Volume stability of the SMC is also excellent; this, combined with salt-saturation, assures a good bond with the salt. Permeability of SMC is very low, consistent with most concrete (Pfeifle et al., 1996). Because of a favorable state of stress and isothermal conditions, the SMC will remain intact. Because little brine is available to alter concrete elements, minimal degradation is possible. These favorable attributes combine to assure concrete elements within the Salado will remain structurally sound and possess very low permeability (between 2×10^{-21} and 1×10^{-17} m2) for exceedingly long periods. A permeability distribution function and associated discussion are given in Appendix G2-A.

Standard ASTM specifications are made for the green and hydrated concrete properties. Quality control and a history of successful use in both civil construction and mining applications assure proper placement and performance.
5.2.2 Compacted Clay

Compacted clays are commonly proposed as primary sealing materials for nuclear waste repositories and have been extensively investigated against rigorous performance requirements. Advantages of clays for sealing purposes include low permeability, demonstrated longevity in many types of natural environments, deformability, sorptive capacity, and demonstrated successful utilization in practice for a variety of sealing purposes.

Compacted clay as a shaft sealing component functions as a barrier to brine flow and possibly to gas flow (see alternative construction methods in Appendix G2-B). Compacted bentonitic clay can generate swelling pressure and clays have sufficient rigidity to promote healing of any DRZ in the salt. Wetted swelling clay will seal fractures as it expands into available space and will ensure tightness between the clay seal component and the shaft walls.

The Rustler and Salado compacted clay columns are specified to be constructed of dense sodium bentonite blocks. An extensive experimental data base exists for the permeability of sodium bentonites under a variety of conditions. Many other properties of sodium bentonite, such as strength, stiffness, and chemical stability, are established. Bentonitic clays heal when fractured and can penetrate small fractures or irregularities in the host rock. Further, bentonite is stable in the seal environment. These properties, noted by international waste isolation programs, make bentonite a widely accepted seal material.

From the bottom clay component to the top earthen fill, different methods will be used to place clay materials in the shaft. Seal performance within the Salado Formation is far more important to regulatory compliance of the seal system than is performance of clay and earthen fill in the overlying formations. Therefore, more time and effort will be expended on placement of Salado clay components. Three potential construction methods could be used to place clay in the shaft, as discussed in Appendix G2-B: compacted blocks, vibratory roller, and dynamic compaction. Construction of Salado clay components specifies block assembly.

Required sealing performance of compacted clay elements varies with location. For example, Component 4 provides separation of water-bearing zones, while the lowest clay column (Component 12) limits fluid flow to the reconsolidating salt column. If liquid saturation in the clay column of 85% can be achieved, it would serve as a gas barrier. In addition, compacted clay seal components promote healing of the salt DRZ. To achieve low permeabilities, the dry density of the emplaced bentonite should be about 1.8 g/cm³. A permeability distribution function for performance assessment and the logic for its selection are given in Appendix G2-A.

Verification of specified properties such as density, moisture content, permeability, or strength of compacted clay seals can be determined by direct measurement during construction. However, indirect methods are preferred because certain measurements, such as permeability, are likely to be time consuming and invasive. Methods used to verify the quality of emplaced seals will include quality of block production and field measurements of density.

5.2.3 Asphalt

Asphalt is used to prevent water migration down the shaft in two ways: as an asphalt column near the Rustler/Salado contact and as a “waterstop” sandwiched between concrete plugs at three locations within the Salado Formation. Asphalt components of the WIPP seal design add assurance that minimal transport of brine down the sealed shaft will occur.
Asphalt is a widely used construction material because of its many desirable engineering properties. Asphalt is a strong cement, readily adhesive, highly waterproof, and durable. Furthermore, it is a plastic substance that is readily mixed with mineral aggregates. A range of viscosity is achievable for asphalt mixtures. It is highly resistant to most acids, salts, and alkalis. These properties are well suited to the requirements of the WIPP shaft seal system.

Construction of the seal components containing asphalt can be accomplished using a slickline process where low-viscosity heated material is effectively pumped into the shaft. The technology to apply the asphalt in this manner is available as described in the construction procedures in Appendix G2-B.

The asphalt components are required to endure for about 100 years and limit brine flow down the shaft to the compacted salt component. Since asphalt will not be subjected to ultraviolet light or an oxidizing environment, it is expected to provide an effective seal for centuries. Air voids less than 2% ensure low permeability. The permeability of the massive asphalt column is expected to have an upper limit 1×10^{-18} m2.

Sufficient construction practice and laboratory testing information is available to assure performance of the asphalt component. Laboratory validation tests to optimize viscosity may be desirable before final installation specifications are prepared. In general, verification tests would add quantitative documentation to expected performance values and have direct application to WIPP.

5.2.4 Compacted Salt Column

A reconsolidated column of natural WIPP salt will seal the shafts permanently. If salt reconsolidation is unimpeded by fluid pore pressures, the material will eventually achieve extremely low permeabilities approaching those of the native Salado Formation. Recent developments in support of the WIPP shaft seal system have produced confirming experimental results, constitutive material models, and construction methods that substantiate use of a salt column to create a low permeability seal component. Reuse of salt excavated in the process of creating the underground openings has been advocated since its initial proposal in the 1950s. Replacing the natural material in its original setting ensures physical, chemical, and mechanical compatibility with the host formation.

The function of the compacted and reconsolidated salt column is to limit transmission of fluids into or out of the repository for the statutory period of 10,000 years. The functional period starts within a hundred years and lasts essentially forever. After a period of consolidation, the salt column will almost completely retard gas or brine migration within the former shaft opening. A completely consolidated salt column will achieve flow properties indistinguishable from natural Salado salt.

The salt component is composed of crushed Salado salt with additional small amounts of water. The total water content of the crushed salt will be adjusted to 1.5 wt% before it is tamped into place. Field and laboratory tests have verified that natural salt can be compacted to significant fractional density ($\rho \geq 0.9$) with addition of these moderate amounts of water.

Dynamic compaction is the specified construction procedure to tamp crushed salt in the shaft. Deep dynamic compaction provides great energy to the crushed salt, is easy to apply, and has an effective depth of compactive influence greater than lift thickness. Dynamic compaction is
relatively straightforward and requires a minimal work force in the shaft. Compaction itself will follow procedures developed in a large-scale compaction demonstration, as outlined in Appendix G2-B.

Numerical models of the shaft provide density of the compacted salt column as a function of depth and time. Many calculations comparing models for consolidation of crushed salt were performed to quantify performance of the salt column, as discussed in Appendix D of the Compliance Submittal Design Report (Sandia, 1996) and the references (Callahan et al., 1996; Brodsky et al., 1996). From the density-permeability relationship of reconsolidating crushed salt, permeability of the compacted salt seal component is calculated. In general, results show that the bottom of the salt column consolidates rapidly, achieving permeability of 1×10^{-19} m2 in about 50 years. By 100 years, the middle of the salt column reaches similar permeability.

Results of the large-scale dynamic compaction demonstration suggest that deep dynamic compaction will produce a sufficiently dense starting material. As with other seal components, testing of the material in situ will be difficult and probably not optimal to ensure quality of the seal element. This is particularly apparent for the compacted salt component because the compactive effort produces a finely powdered layer on the top of each lift. It was demonstrated (Hansen and Ahrens, 1996) that the fine powder is very densely compacted upon tamping the superincumbent lifts. The best means to ensure that the crushed salt element is placed properly is to establish performance through verification of quality assurance/quality control procedures. If crushed salt is placed with a reasonable uniformity of water and compacted with sufficient energy, long-term performance can be assured.

5.2.5 Cementitious Grout

Cementitious grouting is specified for all concrete members. Grouting is also used in advance of liner removal to stabilize the ground and to limit water inflow during shaft seal construction. Cementitious grout is specified because of its proven performance, nontoxicity, and previous use at the WIPP.

The function of grout is to stabilize the surrounding rock before existing concrete liners are removed. Grout will fill fractures within adjacent lithologies, thereby adding strength and reducing permeability and, hence, water inflow during shaft seal construction. Grout around concrete members of the concrete asphalt waterstop will be employed in an attempt to tighten the interface and fill microcracks in the DRZ. Efficacy of grouting will be determined during construction.

An ultrafine cementitious grout has been specifically developed for use at the WIPP (Ahrens and Onofrei, 1996). This grout consists of Type 5 portland cement, pumice as a pozzolanic material, and superplasticizer. The average particle size is approximately 2 microns. The ultrafine grout is mixed in a colloidal grout mixer, with a water to components ratio ($W:C$) of 0.6:1.

Drilling and grouting sequences provided in Appendix G2-B follow standard procedures. Grout will be mixed on the surface and transported by slickline to the middle deck on the multi-deck stage (galloway). Grout pressures are specified below lithostatic to prevent hydrofracturing.
Performance of grout is not a consideration for compliance issues. Grouting of concrete elements is an added assurance to tighten interfaces. Grouting is used to facilitate construction by stabilizing any loose rock behind the concrete liner.

No verification of the effectiveness of grouting is currently specified. If injection around concrete plugs is possible, an evaluation of quantities and significance of grouting will be made during construction. Procedural specifications will include measurements of fineness and determination of rheology in keeping with processes established during the WIPP demonstration grouting (Ahrens et al., 1996).

5.2.6 Earthen Fill

A brief description of the earthen fill is provided in Appendix G2-A, and construction is summarized in Appendix G2-B. Compacted fill can be obtained from local borrow pits, or material excavated during shaft construction can be returned to the shaft. There are minimal design requirements for earthen fill and none that are related to WIPP regulatory performance.

5.3 Concluding Remarks

Materials specifications in Appendix G2-A provide descriptions of seal materials along with reasoning on their expected reliability in the WIPP setting. The specification follows a framework that states the function of the seal component, a description of the material, and a summary of construction techniques. The performance requirements for each material are detailed. Materials chosen for use in the shaft seal system have several common desirable attributes: low permeability, high density, compatibility, longevity, low cost, constructability, availability, and supporting documentation.
6. Construction Techniques

Construction of the shaft sealing system is feasible. The described procedures utilize currently available technology, equipment, and materials to satisfy shaft sealing system design guidance. Although alternative methods are possible, those described satisfy the design guidance requirements listed in Table G2-7 and detailed in the appendices. Construction feasibility is established by reference to comparable equipment and activities in the mining, petroleum, and food industries and test results obtained at the WIPP. Equipment and procedures for emplacement of sealing materials are described below.

6.1 Multi-Deck Stage

A multi-deck stage (Figures G2-6 and G2-7) consisting of three vertically connected decks will be the conveyance utilized during the shaft sealing operation. Detailed sketches of the multi-deck stage appear in Appendix G2-E. The stage facilitates installation and removal of utilities and provides a working platform for the various sealing operations. A polar crane attached to the lower deck provides the mechanism required for dynamic compaction and excavation of the shaft walls. Additionally, the header at the bottom of the slickline is supported by a reinforced steel shelf, which is securely bolted to the shaft wall during emplacement of sealing materials. The multi-deck stage can be securely locked in place in the shaft whenever desired (e.g., during dynamic compaction, excavation of the salt walls of the shaft, grouting, liner removal, etc.). The multi-deck stage is equipped with floodlights, remotely aimed closed-circuit television, fold-out floor extensions, a jib crane, and range-finding devices. Similar stages are commonly employed in shaft sinking operations.

The polar crane can be configured for dynamic compaction (Figure G2-6) or for excavation of salt (Figure G2-7); a man cage or bucket can be lowered through the stage to the working surface below. Controlled manually or by computer, the crane and its trolley utilize a geared track drive. The crane can swiftly position the tamper (required for dynamic compaction) in the drop positions required (Figure G2-8) or accommodate the undercutter required for excavation of the shaft walls. The crane incorporates a hoist on the trolley and an electromagnet, enabling it to position, hoist, and drop the tamper. A production rate of one drop every two minutes during dynamic compaction is possible.

6.2 Salado Mass Concrete (Shaft Station Monolith and Shaft Plugs)

Salado Mass Concrete, described in Appendix G2-A, will be mixed on surface at 20°C and transferred to emplacement depth through a slickline (i.e., a steel pipe fastened to the shaft wall and used for the transfer of sealing materials from surface to the fill horizon) minimizing air entrainment and ensuring negligible segregation. Existing sumps will be filled to the elevation of the floor of the repository horizon, and emplacement of the shaft station monolith is designed to eliminate voids at the top (back) of the workings.

When excavating salt for waterstops or plugs in the Salado Formation, an undercutter attached to the trolley of the polar crane will be forced into the shaft wall by a combination of geared trolley and undercutter drives. Full circumferential cuts will be accomplished utilizing the torque developed by the geared polar crane drive.
6.3 Compacted Clay Columns (Salado and Rustler Formations)

Cubic blocks of sodium bentonite, 20.8 cm on the edge and weighing approximately 18 kg, will be precompacted on surface to a density between 1.8 and 2.0 gm/cm³ and emplaced manually. The blocks will be transferred from surface on the man cage. Block surfaces will be moistened with a fine spray of potable water, and the blocks will be manually placed so that all surfaces are in contact. Peripheral blocks will be trimmed to fit irregularities in the shaft wall, and remaining voids will be filled with a thick mortar of sodium bentonite and potable water. Such blocks have been produced at the WIPP and used in the construction of 0.9-m-diameter seals, where they performed effectively (Knowles and Howard, 1996). Alternatives, which may be considered in future design evaluations, are discussed in Appendix G2-B.

6.4 Asphalt Waterstops and Asphalitic Mix Columns

Neat asphalt is selected for the asphalt waterstops, and an asphalitic mastic mix (AMM) consisting of neat asphalt, fine silica sand, and hydrated lime will be the sealing material for the columns. Both will be fluid at emplacement temperature and remotely emplaced. Neat asphalt (or AMM, prepared in a pug mill near the shaft collar) will be heated to 180°C and transferred to emplacement depth via an impedance-heated, insulated tremie line (steel pipe) suspended from slips (pipe holding device) at the collar of the shaft.

This method of line heating is common practice in the mining and petroleum industries. This method lowers the viscosity of the asphalt so that it can be pumped easily. Remote emplacement by tremie line eliminates safety hazards associated with the high temperature and gas produced by the hot asphalt. Fluidity ensures that the material will flow readily and completely fill the excavations and shaft. Slight vertical shrinkage will result from cooling (calculations in Appendix D of the Compliance Submittal Design Report (Sandia, 1996)), but the material will maintain contact with the shaft walls and the excavation for the waterstop. Vertical shrinkage will be counteracted by the emplacement of additional material.

6.5 Compacted WIPP Salt

Dynamic compaction of mine-run WIPP salt has been demonstrated (Ahrens and Hansen, 1995). The surface demonstration produced salt compacted to 90% of in-place rock salt density, with a statistically averaged permeability of 1.65×10^{-15} m². Additional laboratory consolidation of this material at 5 MPa confining pressure (simulating creep closure of the salt) resulted in increased compaction and lower permeability (Brodsky, 1994). Dynamic compaction was
selected because it is simple, robust, proven, has excellent depth of compaction, and is applicable to the vertical WIPP shafts.

The compactive effect expanded laterally and downward in the demonstration, and observation during excavation of the compacted salt revealed that the lateral compactive effect will fill irregularities in the shaft walls. Additionally, the depth of compaction, which was greater than that of the three lifts of salt compacted, resulted in the bottom lift being additionally compacted during compaction of the two overlying lifts. This cumulative effect will occur in the shafts.

Construction of the salt column will proceed in the following manner:

- Crushed and screened salt will be transferred to the fill elevation via slickline. Use of slicklines is common in the mining industry, where they are used to transfer backfill materials or concrete to depths far greater than those required at the WIPP. Potable water will be added via a fine spray during emplacement at the fill surface to adjust the moisture content to 1.5 ±0.3 wt%, accomplished by electronically coordinating the weight of the water with that of the salt exiting the hose.

- Dynamic compaction will then be used to compact the salt by dropping the tamper in specific, pre-selected positions such as those shown in Figure G2-8.

6.6 Grouting of Shaft Walls and Removal of Liners

The procedure listed below is a common mining practice which will be followed at each elevation where liner removal is specified. If a steel liner is present, it will be cut into manageable pieces and hoisted to the surface for disposal, prior to initiation of grouting.

Upward opening cones of diamond drill holes will be drilled into the shaft walls in a spin pattern (Figure G2-10) to a depth ensuring complete penetration of the Disturbed Rock Zone (DRZ) surrounding the shaft. For safety reasons, no major work will be done from the top deck; all sealing activities will be conducted from the bottom deck. The ends of the holes will be 3 m apart, and the fans will be 3 m apart vertically, covering the interval from 3 m below to 3 m above the interval of liner removal. Tests at the WIPP demonstrated that the ultrafine cementitious grout penetrated more than 2 m from the injection holes (Ahrens et al., 1996).

Injection holes will be drilled and grouted one at a time, as is the practice in stage grouting. Primary holes are grouted first, followed by the grouting of secondary holes on either side of primaries that accepted grout. Ultrafine grout will be injected below lithostatic pressure to avoid hydrofracturing the rock, proceeding from the bottom fan upward. Grout will be mixed on surface and transferred to depth via the slickline.

Radial, horizontal holes will then be drilled on a 0.3-m grid, covering the interval to be removed. These will be drilled to a depth sufficient to just penetrate the concrete liner. A chipping hammer will be used to break a hole through the liner at the bottom of the interval. This hole, approximately 0.3 m in diameter, will serve as “free face,” to which the liner can be broken. Hydraulically-actuated steel wedges will then be used in the pre-drilled holes to break out the liner in manageable pieces, beginning adjacent to the hole and proceeding upward. Broken concrete will be allowed to fall to the fill surface, where it will be gathered and hoisted to the surface for disposal. Chemical seal rings will be removed as encountered.
6.7 Earthen Fill

Local soil, screened to produce a maximum particle dimension of approximately 15 mm, will be the seal material. This material will be transferred to the fill surface via the slickline and emplaced in the same manner as the salt. After adjusting the moisture content of the earthen fill below the concrete plug in the Dewey Lake Redbeds to achieve maximum compaction, the fill will be dynamically compacted, achieving a permeability as low as that of the enclosing formation.

The portion of the earthen fill above the plug will be compacted with a vibratory-impact sheepsfoot roller, a vibratory sheepsfoot roller, or a walk-behind vibratory plate compactor, because of insufficient height for dynamic compaction.

6.8 Schedule

For discussion purposes, it has been assumed that the shafts will be sealed two at a time. This results in the four shafts being sealed in approximately six and a half years. The schedules presented in Appendix G2-B are based on this logic. Sealing the shafts sequentially would require approximately eleven and a half years.
7. Structural Analyses of Shaft Seals

7.1 Introduction

The shaft seal system was designed in accordance with design guidance described in Section 3.2. To be successful, seal system components must exhibit desired structural behavior. The desired structural behavior can be as simple as providing sufficient strength to resist imposed loads. In other cases, structural behavior is critical to achieving desired hydrological properties. For example, permeability of compacted salt depends on the consolidation induced by shaft closure resulting from salt creep. In this example, results from structural analyses feed directly into fluid-flow calculations, which are described in Section 8, because structural behavior affects both time-dependent permeabilities of the compacted salt and pore pressures within the compacted salt. In other structural considerations, thermal effects are analyzed as they affect the constructability and schedule for the seal system. Thus a series of analyses, loosely termed structural analyses, were performed to accomplish three purposes:

1. to determine loads imposed on components and to assess both structural stability based on the strength of the component and mechanical interaction between components;
2. to estimate the influence of structural behavior of seal materials and surrounding rock on hydrological properties; and
3. to provide structural and thermal related information on construction issues.

For the most part, structural analyses rely on information and design details presented in the Design Description (Section 4), the Design Drawings (Appendix G2-E), and Material Specification (Section 5 and Appendix G2-A). Some analyses are generic, and calculation input and subsequent results are general in nature.

7.2 Analysis Methods

Finite-element modeling was the primary numerical modeling technique used to evaluate structural performance of the shaft seals and surrounding rock mass. Well documented finite-element computer programs, SPECTROM-32 and SPECTROM-41, were used in structural and thermal modeling, respectively. The computer program SALT_SUBSID was used in the subsidence modeling over the backfilled shaft-pillar area. Specific details of these computer programs as they relate to structural calculations are listed in Appendix D of the Compliance Submittal Design Report (Sandia, 1996), Section D2.

7.3 Models of Shaft Seals Features

Structural calculations require material models to characterize the behavior of (1) each seal material (concrete, crushed salt, compacted clay, and asphalt); (2) the intact rock lithologies in the near-surface, Rustler, and Salado formations; and (3) any DRZ within the surrounding rock. A general description of the material models used in characterizing each of these materials and features is given below. Details of the models and specific values of model parameters are given in Appendix D in the Compliance Submittal Design Report (Sandia, 1996), Section D3.
7.3.1 Seal Material Models

The SMC thermal properties required for the structural analyses (thermal conductivity, density, specific heat, and volumetric heat generation rate) were obtained from SMC test data. Concrete was assumed to behave as a viscoelastic material, based on experimental data, and the elastic modulus of SMC was modeled as age-dependent. Strength properties of SMC were specified in the design (see Appendix G2-A).

For crushed salt, the deformational model included a nonlinear elastic component and a creep consolidation component. The nonlinear elastic modulus was assumed to be density-dependent, based on laboratory test data performed on WIPP crushed salt. Creep consolidation behavior of crushed salt was based on three candidate models whose parameters were obtained from model fitting to hydrostatic and shear consolidation test data performed on WIPP crushed salt. Creep consolidation models include functional dependencies on density, mean stress, stress difference, temperature, grain size, and moisture content.

Compacted clay was assumed to behave according to a nonlinear elastic model in which shear stiffness is negligible, and asphalt was assumed to behave as a weak elastic material. Thermal properties of asphalt were taken from literature.

7.3.2 Intact Rock Lithologies

Salado salt was assumed to be argillaceous salt that is governed by the Multimechanism Deformation Coupled Fracture (MDCF) model, which is an extension of the Munson-Dawson (M-D) creep model. A temperature-dependent thermal conductivity was necessary.

Salado interbeds were assumed to behave elastically. Their material strength was assumed to be described by a Drucker-Prager yield function, consistent with values used in previous WIPP analyses.

Deformational behavior of the near-surface and Rustler Formation rock types was assumed to be time-invariant, and their strength was assumed to be described by a Coulomb criterion, consistent with literature values.

7.3.3 Disturbed Rock Zone Models

Two different models were used to evaluate the development and extent of the DRZ within intact salt. The first approach used ratios of time-dependent stress invariants to quantify the potential for damage or healing to occur. The second approach used the damage stress criterion according to the MDCF model for WIPP salt.

7.4 Structural Analyses of Shaft Seal Components

7.4.1 Salado Mass Concrete Seals

Five analyses related to structural performance of SMC seals were performed, including (1) a thermal analysis, (2) a structural analysis, (3) a thermal stress analysis, (4) a dynamic compaction analysis, and (5) an analysis of the effects of clay swelling pressure. This section presents these analyses and evaluates the results in terms of the performance of the SMC seal.
Details of these calculations are given in Appendix D in the Compliance Submittal Design Report (Sandia, 1996), Section D4.

7.4.1.1 Thermal Analysis of Concrete Seals

The objective of this calculation was to determine expected temperatures within (and surrounding) an SMC emplacement resulting from its heat of hydration. Results indicate that the concrete component temperature increases from ambient (27°C) to a maximum of 53°C at 0.02 year after emplacement. The maximum temperature in the surrounding salt is 38°C at approximately the same time. The thermal gradient within the concrete is approximately 1.5°C/m. Most of the higher temperatures are contained within the concrete. At a radial distance of 2 m into the surrounding salt, the temperature rise is less than 1°C. These conditions are favorable for proper performance of the SMC components. A 26°C temperature rise and a 1.5°C/m temperature gradient are not large enough to cause thermal cracking as the concrete cools (Andersen et al., 1992).

7.4.1.2 Structural Analysis of Concrete Seals

The objectives of this calculation were to determine (1) expected stresses within the concrete components caused by restrained creep of the surrounding salt and (2) expected stresses in the concrete component from weight of overlying seal material.

In the upper concrete-asphalt waterstop, radial stresses increase (compression is positive) from zero at time of emplacement \(t = 0\) to 2.5 MPa at \(t = 50\) years. Similarly, radial stresses in the middle concrete component range from 3.5 to 4.5 MPa at 50 years after emplacement. In the lower concrete-asphalt waterstop, radial stresses range from 4.5 to 5.5 MPa at \(t = 50\) years. All the calculated stresses are well below the unconfined compressive strength of the concrete (30 MPa).

The upper, middle, and lower concrete-asphalt waterstops are located at depths of 300, 420, and 610 m, respectively. When performing these calculations, it was assumed that each concrete component must support the weight of the overlying materials between it and the next concrete component above it. Using an average overburden density of 0.02 MPa/m, stresses induced by the overlying material are significantly less than the strength of the concrete. The structural integrity of concrete components will not be compromised by either induced radial stress or imposed vertical stress.

7.4.1.3 Thermal Stress Analysis of Concrete Seals

The objectives of this calculation were (1) to determine thermal stresses in concrete components from the heat of hydration and (2) to determine thermal impact on the creep of the surrounding salt.

Thermoelastic stresses in the concrete were calculated based on a maximum temperature increase of 26°C and assuming a fully confined condition. Results of this calculation indicate that short-term compressive thermal stresses in the concrete will be less than 9.2 MPa. The temperature rise in the surrounding salt is insignificant in terms of producing either detrimental or beneficial effects. Based on these results, the structural integrity of concrete components will not be compromised by thermoelastic stresses caused by heat of hydration.
7.4.1.4 Effect of Dynamic Compaction on Concrete Seals

The objective of this calculation was to determine a required thickness of seal layers above concrete components to reduce the impact of dynamic compaction. Compaction depths for crushed salt and clay layers are 2.8 m and 2.2 m, respectively. Layers 3.7-m thick for crushed salt and 3-m thick for clay are to be emplaced before compaction begins, thus providing a layer about 30% thicker than the calculated compaction depths.

7.4.1.5 Effect of Clay Swelling Pressures on Concrete Seals

The objective of this calculation was to determine the increased stresses within concrete components as a result of clay swelling pressures. Test measurements on confined bentonite at an emplaced density of 1.8 g/cm³ indicate that anticipated swelling pressures are on the order of 3.5 MPa. In order to fracture the salt surrounding the clay, the swelling pressures must exceed the lithostatic rock stress in the salt, which ranges from nominally 8.3 MPa at the upper clay seal to 14.4 MPa at the lower clay seal. The design strength of the concrete (31.0 MPa) is significantly greater than the swelling pressure of 3.5 MPa. Even in the unlikely event that the clay swelled to lithostatic pressures, the resulting state of stress in the concrete seal would lie well below any failure surface. Furthermore, the compressive tangential stress in the salt along the shaft wall, even after stress relaxation from creep, is always larger than lithostatic. Hence, radial fracturing from clay swelling pressure is not expected.

7.4.2 Crushed Salt Seals

Two analyses related to structural performance of crushed salt seals were performed, including (1) a structural analysis and (2) an analysis to determine effects of pore pressure on consolidation of crushed salt seals. This section presents the results of these analyses and evaluates the results in terms of performance of crushed salt seals. Details of these analyses are given in Appendix D in the Compliance Submittal Design Report (Sandia, 1996), Section D4.

7.4.2.1 Structural Analysis of Compacted Salt Seal

The objectives of this calculation were (1) to determine the fractional density of the crushed salt seal as a function of time and depth and, using these results, (2) to determine permeability of the crushed salt as a function of time and depth.

Results indicate that compacted salt will increase from its emplaced fractional density of 90% to a density of 95% approximately 40, 80, and 120 years after emplacement at the bottom, middle, and top of the shaft seal, respectively. Using the modified Sjaardema-Krieg creep consolidation model, the times required to fully reconsolidate the crushed salt to 100% fractional density are 70 years, 140 years, and 325 years at the bottom, middle, and top of the salt column, respectively. Based on these results, the desired fractional densities (hence, permeability) can be achieved over a substantial length of the compacted salt seal in the range of 50 to 100 years.

7.4.2.2 Pore Pressure Effects on Reconsolidation of Crushed Salt Seals

The objective of this calculation was to determine the effect of pore pressure on the reconsolidation of the crushed salt seal. Fractional densities of the crushed salt seal were calculated using the modified Sjaardema-Krieg consolidation model for a range of pore
pressures (0, 2, and 4 MPa). Results indicate that times required to consolidate the crushed salt
increase as the pore pressure increases, as expected. For example, for a pore pressure of 2
MPa, the times required to achieve a fractional density of 96% are about 90 years, 205 years,
and 560 years at the bottom, middle, and top of the crushed salt column, respectively. A pore
pressure of 4 MPa would effectively prevent reconsolidation of the crushed salt within a
reasonable period (<1,000 years). The results of this calculation were used in the fluid flow
calculations, and the impact of these pore pressures on the permeability of the crushed salt seal
is described in Section 8 and Appendix C of the Compliance Submittal Design Report (Sandia,
1996).

7.4.3 Compacted Clay Seals

One analysis was performed to determine the structural response of compacted clay seals. The
objective of this calculation was to determine stresses in the upper Salado compacted clay
component and the lower Salado compacted clay component as a result of creep of the
surrounding salt. Details of this calculation are given in Appendix D in the Compliance Submittal
Design Report (Sandia, 1996), Section D4. Results of this calculation indicate that after 50
years the compressive stresses in the upper Salado compacted clay component are about 0.7
MPa, not including the effects of swelling pressures. Similarly, after 50 years the stresses in the
lower Salado compacted clay component are approximately 2.6 MPa. Based on these results,
the compacted clay component will provide some restraint to the creep of salt and induce a
back (radial) stress in the clay seal, which will promote healing of the DRZ in the surrounding
intact salt (see discussion about DRZ in Section 7.5.1).

7.4.4 Asphalt Seals

Three analyses were performed related to structural performance of the asphalt seals, including
(1) a thermal analysis, (2) a structural analysis, and (3) a shrinkage analysis. This section
presents the results of these analyses and evaluates the results in terms of the performance of
the asphalt seal. Details of these analyses are given in Appendix D of the Compliance Submittal
Design Report (Sandia, 1996), Section D4.

7.4.4.1 Thermal Analysis

The objectives of this calculation were (1) to determine temperature histories within the asphalt
seal and the surrounding salt and (2) to determine effects of the length of the waterstop.

Results indicate that the center of the asphalt column will cool from its emplaced temperature of
180°C to 83°C, 49°C, 31°C, and 26°C at times 0.1 year, 0.2 year, 0.5 year, and 1.0 year,
respectively. Similarly, the asphalt/salt interface temperatures at corresponding times are 47°C,
38°C, 29°C, and 26°C. The time required for a waterstop to cool is significantly less than that
required to cool the asphalt column. Based on these results, about 40 days are required for
asphalt to cool to an acceptable working environment temperature. The thermal impact on
enhanced creep rate of the surrounding salt is considered to be negligible.

7.4.4.2 Structural Analysis

The objective of this analysis was to calculate pressures in asphalt that result from restrained
crump of the surrounding salt and to evaluate stresses induced on the concrete seal component
by such pressurization.
Results indicate that pressures in the waterstops after 100 years are 1.8 MPa, 2.5 MPa, and 3.2 MPa for the upper, middle, and lower waterstops, respectively. Based on these results, the structural integrity of concrete components will not be compromised by imposed pressures, and the rock surrounding the asphalt will not be fractured by the pressure. The pressure from asphalt is enough to initiate healing of the DRZ surrounding the waterstop.

7.4.4.3 Shrinkage Analysis

The objective of this analysis was to calculate shrinkage of the asphalt column as it cools from its emplaced temperature to an acceptable working environment temperature. Results of this analysis indicate that the 42-m asphalt column will shrink 0.9 m in height as the asphalt cools from its emplaced temperature of 180°C to 38°C.

7.5 Disturbed Rock Zone Considerations

7.5.1 General Discussion of DRZ

Microfracturing leading to a DRZ occurs within salt whenever excavations are made. Laboratory and field measurements show that a DRZ has enhanced permeability. The body of evidence strongly suggests that induced fracturing is reversible and healed when deviatoric stress states created by the opening are reduced. Rigid seal components in the shaft provide a restraint to salt creep closure, thereby inducing healing stress states in the salt. A more detailed discussion of the DRZ is included in Appendix D in the Compliance Submittal Design Report (Sandia, 1996).

7.5.2 Structural Analyses

Three analyses were performed to determine the behavior of the DRZ in the rock mass surrounding the shaft. The first analysis considered time-dependent DRZ development and subsequent healing of intact Salado salt surrounding each of the four seal materials. The second analysis considered time-dependent development of the DRZ within anhydrite and polyhalite interbeds within the Salado Formation. The last analysis considered time-independent DRZ development within the near-surface and Rustler formations. These analyses are discussed below and given in more detail in Appendix D of the Compliance Submittal Design Report (Sandia, 1996), Section D5. Results from these analyses were used as input conditions for the fluid flow analysis presented in Section 8 and Appendix C of the Compliance Submittal Design Report (Sandia, 1996).

7.5.2.1 Salado Salt

The objective of this calculation was to determine time-dependent extent of the DRZ in salt, assuming no pore pressure effects, for each of the four shaft seal materials (i.e., concrete, crushed salt, compacted clay, and asphalt. The seal materials below a depth of about 300 m provide sufficient rigidity to heal the DRZ within 100 years. Asphalt, modeled as a weak elastic material, will not create a stress state capable of healing the DRZ because it is located high in the Salado.
7.5.2.2 Salado Anhydrite Beds

The objective of this calculation was to determine the extent of the DRZ within the Salado anhydrite and polyhalite interbeds as a result of creep of surrounding salt.

For all interbeds, the factor of safety against failure (shear or tensile fracturing) increases with depth into the rock surrounding the shaft wall. These results indicate that, with the exception of Marker Bed 117 (MB117), the factor of safety is greater than 1 (no DRZ will develop) for all interbeds. For MB117, the potential for fracturing is localized to within 1 m of the shaft wall.

7.5.2.3 Near-Surface and Rustler Formations

The objective of this calculation was to determine the extent of the DRZ surrounding the shafts in the near-surface and Rustler formations.

Rock types in near-surface and Rustler formations are anhydrite, dolomite, and mudstone. These rock types exhibit time-independent behavior. Results indicate that no DRZ will develop in anhydrite and dolomite (depths between 165 and 213 m). For mudstone layers, the radial extent of the DRZ increases with depth, reaching a maximum of 2.6 shaft radii at a depth of 223 m.

7.6 Other Analyses

This section discusses two structural analyses performed in support of design concerns, namely (1) the asphalt waterstops constructability and (2) benefits from shaft station backfilling. Analyses performed in support of these efforts are discussed below and given in more detail in Appendix D of the Compliance Submittal Design Report (Sandia, 1996), Section D6.

7.6.1 Asphalt Waterstops

The DRZ is a major contributor to fluid flows through a low permeability shaft seal system, regardless of the materials emplaced within the shaft. Therefore, to increase the confidence in the overall shaft seal, low permeability layers (termed radial waterstops) were included to intersect the DRZ surrounding the shaft. These waterstops are emplaced to alter the flow direction either inward toward the shaft seal or outward toward intact salt. Asphalt-filled waterstops will be effective soon after emplacement. The objectives of these structural calculations were to evaluate performance of the waterstops in terms of (1) intersecting the DRZ around the shaft, (2) inducing a new DRZ because of special excavation, and (3) promoting healing of the DRZ.

Results indicate that the DRZ from the shaft extends to a radial distance of less than one shaft radius (3.04 m). Waterstop excavation extends the DRZ radially to about 1.4 shaft radii (4.3 m). However, this extension is localized within the span of the concrete component and extends minimally past the waterstop edge. The DRZ extent reduced rapidly after the concrete and asphalt restrained creep of the surrounding salt. After 20 years, the spatial extent of the DRZ is localized near the asphalt-concrete interface, extending spatially into the salt at a distance of less than 2 m. Based on these results, construction of waterstops is possible without substantially increasing the DRZ. Furthermore, the waterstop extends well beyond the maximum extent of the DRZ surrounding the shaft and effectively blocks this flow path (within 2 years after emplacement), albeit over only a short length of the flow path.
7.6.2 Shaft Pillar Backfilling

The objective of this calculation was to assess potential benefits from backfilling a portion of the shaft pillar to reduce subsurface subsidence and thereby decrease the potential for inducing fractures along the shaft wall. The calculated subsidence without backfilling is less than one foot, due to the relatively low extraction ratio at the WIPP. Based on the results of this analysis, backfilling portions of the shaft pillar would result in only 10% to 20% reduction in surface subsidence. This reduction in subsidence from backfilling is not considered enough to warrant backfilling the shaft pillar area. The shaft seals within the Salado are outside the angle-of-draw for any horizontal displacements caused by the subsidence over the waste panels. Moreover, horizontal strains caused by subsidence induced by closures within the shaft pillar are compressive in nature and insignificant in magnitude to induce fracturing along the shaft wall.
8. Hydrologic Evaluation of the Shaft Seal System

8.1 Introduction

The design guidance in Section 3 presented the rationale for sealing the shaft seal system with low permeability materials, but it did not provide specific performance measures for the seal system. This section compares the hydrologic behavior of the system to several performance measures that are directly related to the ability of the seal system to limit liquid and gas flows through the seal system. The hydrologic evaluation is focused on the processes that could result in fluid flow through the shaft seal system and the ability of the seal system to limit any such flow. Transport of radiological or hazardous constituents will be limited if the carrier fluids are similarly limited.

The hydrologic performance models are fully described in Appendix C of the Compliance Submittal Design Report (Sandia, 1996). The analyses presented are deterministic. Quantitative values for those parameters that are considered uncertain and that may significantly impact the primary performance measures have been varied, and the results are presented in Appendix C of the Compliance Submittal Design Report (Sandia, 1996). This section summarizes the seal system performance analyses and discusses results within the context of the design guidance of Section 3. The results demonstrate that (1) fluid flows will be limited within the shaft seal system and (2) uncertainty in the conceptual models and parameters for the seal system are mitigated by redundancy in component function and materials.

8.2 Performance Models

The physical processes that could impact seal system performance are presented in detail in Appendix C of the Compliance Submittal Design Report (Sandia, 1996). These processes have been incorporated into four performance models. These models evaluate (1) downward migration of groundwater from the Rustler Formation, (2) gas migration and consolidation of the crushed salt seal component, (3) upward migration of brines from the repository, and (4) flow between water-bearing zones in the Rustler Formation. The first three are analyzed using numerical models of the Air Intake Shaft (AIS) seal system and the finite-difference codes SWIFT II and TOUGH28W. These codes are extensively used and well documented within the scientific community. A complete description of the models is provided in Appendix C of the Compliance Submittal Design Report (Sandia, 1996). The fourth performance model uses a simple, analytical solution for fluid flow. Results from the analyses are summarized in the following sections and evaluated in terms of the design guidance presented in Section 3.

Material properties and conceptual models that may significantly impact seal system performance have been identified, and uncertainty in properties and models have been addressed through variation of model parameters. These parameters include (1) the effective permeability of the DRZ, (2) those describing salt column consolidation and the relationship between compacted salt density and permeability, and (3) repository gas pressure applied at the base of the shaft seal system.

8.3 Downward Migration of Rustler Groundwater

The shaft seal system is designed to limit groundwater flowing into and through the shaft sealing system (see Section 3). The principal source of groundwater to the seal system is the Culebra Member of the Rustler Formation. The Magenta Member of this formation is also considered a
groundwater source, albeit a less significant source than the Culebra. No significant sources of
groundwater exist within the Salado Formation; however, brine seepage has been noted at a
number of the marker beds. The modeling includes the marker beds, as discussed in Appendix
C of the Compliance Submittal Design Report (Sandia, 1996). Downward migration of Rustler
groundwater must be limited so that liquid saturation of the compacted salt column salt column
does not impact the consolidation process and to ensure that significant quantities of brine do
not reach the repository horizon. Because it is clear that limitation of liquid flow into the salt
column necessarily limits liquid flow to the repository, the volumetric flux of liquid into and
through the salt column were selected as performance measures for this model.

Consolidation of the compacted salt column salt column will be most rapid immediately following
seal construction. Simulations were conducted for the 200-year period following closure to
demonstrate that, during this initial period, downward migration of Rustler groundwater will be
insufficient to impact the consolidation process. Lateral migration of brine through the marker
beds is also quantified in the analysis and shown to be nondetrimental to the function of the salt
column.

8.3.1 Analysis Method

Seal materials will not, in general, be fully saturated with liquid at the time of construction. The
host rock surrounding the shafts will also be partially desaturated at the time of seal
construction. The analysis presented in this section assumes a fully saturated system. The
effects of partial saturation of the shaft seal system are favorable in terms of system
performance, as will be discussed in Section 8.3.2.

Seal material and host rock properties used in the analyses are discussed in Appendix C of the
Compliance Submittal Design Report (Sandia, 1996), Section C3. Appendix G2-A contains a
detailed discussion of seal material properties. A simple perspective on the effects of material
and host rock properties may be obtained from Darcy’s Law. At steady-state, the flow rate in a
fully saturated system depends directly on the system permeability. The seal system consists of
the component material and host rock DRZ. Low permeability is specified for the engineered
materials; thus the system component most likely to impact performance is the DRZ. Rock
mechanics calculations presented in Appendix D of the Compliance Submittal Design Report
(Sandia, 1996) predict that the DRZ in the Salado Formation will not be vertically continuous
because of the intermittent layers of stiff anhydrites (marker beds). Asphalt waterstops are
included in the design to minimize DRZ impacts. The effects of the marker beds and the asphalt
waterstops on limiting downward migration are explicitly simulated through variation of the
permeability of the layers of Salado DRZ.

Initial, upper, and lateral boundary conditions for the performance model are consistent with
field measurements for the physical system. At the base of the shaft a constant atmospheric
pressure is assumed.

8.3.2 Summary of Results

The initial pore volumes in the filled repository and the AIS salt column are approximately
460,000 m3 and 250 m3, respectively. The performance model predicts a maximum cumulative
flow of less than 5 m3 through the sealed shafts for the 200 years following closure. If the
marker beds have a disturbed zone immediately surrounding the shaft, the maximum flow is
less than 10 m3 during the same period. Assuming the asphalt waterstops are not effective in
interrupting the vertical DRZ, the volumetric flow increases but is still less than 30 m3 for the 200 years following closure. These volumes are less than 1/100 of 1% of the pore volume in the repository and less than 20% of the initial pore volume of the salt column. Two additional features of the model predictions should also be considered. The first of these is that flow rates fall from less than 1 m3/year in the first five years to negligible values within 10 years of seal construction. Therefore most of the cumulative flow occurs within a few years following closure. The second feature is the model prediction that the system returns to nearly ambient undisturbed pressures within two years. The repressurization occurs quickly within the model due to the assumption of a fully saturated flow regime because of brine incompressibility. As will be discussed in Section 8.4, the pore pressure in the compacted salt column is a critical variable in the analysis. The pressure profiles predicted by the model are an artifact of the assumption of full liquid saturation and do not apply to the pore pressure analysis of the salt column.

The magnitude of brine flow that can reach the repository through a sealed shaft is minimal and will not impact repository performance. The flow that reaches the salt column must be assessed with regard to the probable impacts on the consolidation process. Although the volume of flow to the salt column is a small percentage of the available pore volume, the saturation state and fluid pore pressure of this component are the variables of significance. These issues cannot be addressed by a fully saturated model. Instead it is necessary to include these findings in a multi-phase model that includes the salt column. This is the topic of Section 8.4.

The results of the fully saturated model will over-predict the flow rates through the sealed shaft. This analysis does not take credit for the time required for the system to resaturate, nor does it take credit for the sorptive capabilities of the clay components. The principal source of groundwater to the system is the Rustler Formation. The upper clay component is located below the Rustler and above the salt column and will be emplaced at a liquid saturation state of approximately 80%. Bentonite clays exhibit strong hydrophilic characteristics, and it is expected that the upper clay component will have these same characteristics. As a result, it is possible that a significant amount of the minimal Rustler groundwater that reaches the clay column will be absorbed and retained by this seal component. Although this effect is not directly included in the present analysis, the installation of a partially saturated clay component provides assurance that the flow rates predicted by the model are maximum values.

8.4 Gas Migration and Consolidation of Compacted Salt Column

The seal system is designed to limit the flow of gas from the disposal system through the sealed shafts. Migration of gas could impact performance if this migration substantially increases the fluid pore pressure of the compacted salt column. The initial pore pressure of the salt column will be approximately atmospheric. The sealed system will interact with the adjacent desaturated host rock as well as the far-field formation. Natural pressurization will occur as the system returns to an equilibrium state. This pressurization, coupled with seepage of brine through the marker beds, will also result in increasing fluid pore pressure within the compacted salt column. The analysis presented in this section addresses the issue of fluid pore pressure in the compacted salt column resulting from the effects of gas generation at the repository horizon and natural repressurization from the surrounding formation. A brief discussion on the impedance to gas flow afforded by the lower compacted clay column is also presented.
8.4.1 Analysis Method

A multi-phase flow model of the lower seal system was developed to evaluate the performance of components extending from the middle SMC component to the repository horizon. Rock mechanics calculations presented in Section 7 and Appendix D of the Compliance Submittal Design Report (Sandia, 1996) predict that the compacted salt column will consolidate for a period of approximately 400 years if the fluid-filled pores of the column do not produce a backstress. Within the physical setting of the compacted salt column, three processes have been identified which may result in a significant increase in pore pressure: groundwater flow from the Rustler Formation, gas migration from the repository, and natural fluid flow and repressurization from the Salado Formation. The first two processes were incorporated into the model as initial and boundary conditions, respectively. The third process was captured in all simulations through modeling of the lithologies surrounding the shaft. Simulations were conducted for 200 years following closure to evaluate any effects these processes might have on the salt column during this initial period.

As discussed in Section 8.3.1, the host rock DRZ is an important consideration in seal system performance. A vertically continuous DRZ could exist in both the Rustler and Salado Formations. Concrete-asphalt waterstops are included in the design to add assurance that a DRZ will not adversely impact seal performance. The significance of a continuous DRZ and waterstops will be evaluated based on results of the performance model.

A detailed description of the model grid, assumptions, and parameters is presented in Appendix C of the Compliance Submittal Design Report (Sandia, 1996).

8.4.2 Summary of Results

The consolidation process is a function of both time and depth. The resultant permeability of the compacted salt column will similarly vary. To simplify the evaluation, an effective permeability of the salt component was calculated. This permeability is calculated by analogy to electrical circuit theory. The permeability of each model layer is equated to a resistor in a series of resistors. The equivalent resistance (i.e., permeability) of a homogeneous column of identical length is derived in this manner. Figure G2-11 illustrates this process.

Results of the performance model simulations are summarized in Table G2-12. The effective permeabilities were calculated by the model assuming that, as the salt consolidated, permeability was reduced pursuant to the best-fit line through the experimental data (Appendix G2-A, Figure G2A-7). From Table G2-12 it is clear that, for all simulated conditions, the salt column consolidates to very low values in 200 years. Differences in the effective permeability because of increased repository gas pressure and a vertically continuous DRZ were negligible. The DRZ around concrete components is predicted to heal (Appendix D of the Compliance Submittal Design Report (Sandia, 1996)) within 25 years. If the asphalt waterstops do not function as intended, the DRZ in this region will still heal in 25 years, as compared to 2 years for effective waterstops. The effective permeability of the compacted salt column increases by about a factor of two for this condition. However, the resultant permeability is sufficiently low that the compacted salt columns will comprise permanent effective seals within the WIPP shafts.
Table G2-12
Summary of Results from Performance Model

<table>
<thead>
<tr>
<th>Repository Pressure</th>
<th>Rustler Flow (m³)</th>
<th>Continuous DRZ (Yes/No)</th>
<th>Concrete-Asphalt Waterstop Healing Time (Years)</th>
<th>Effective Permeability at 200 Years (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 MPa in 100 Years</td>
<td>0</td>
<td>No</td>
<td>2</td>
<td>3.3×10⁻²⁰</td>
</tr>
<tr>
<td>14 MPa in 200 Years</td>
<td>0</td>
<td>No</td>
<td>2</td>
<td>3.3×10⁻²⁰</td>
</tr>
<tr>
<td>7 MPa in 100 Years</td>
<td>2.7</td>
<td>Yes</td>
<td>2</td>
<td>3.4×10⁻²⁰</td>
</tr>
<tr>
<td>7 MPa in 100 Years</td>
<td>17.2</td>
<td>Yes</td>
<td>25</td>
<td>6.0×10⁻²⁰</td>
</tr>
</tbody>
</table>

The relationship between the fractional density (i.e., consolidation state) of the compacted salt column and permeability is uncertain, as discussed in Appendix G2-A. Lines drawn through the experimental data (Figure A-7) provide a means to quantify this uncertainty but do not capture the actual physical process of consolidation. As observed through microscopy, consolidation is dominated by pressure solution and redeposition, a mechanism of mass movement facilitated by the presence of moisture on grain boundaries (Hansen and Ahrens, 1996). As this process continues, the connected porosity and hence permeability of the composite mass will reduce at a rate that has not been characterized by the data collected in WIPP experiments. The results of the multi-phase performance model presented in Table G2-12 used a best-fit line through the data. Additional simulations were conducted using a line that represents a 95% certainty that the permeability is less than or equal to values taken from this line. Model simulations that used the 95% line are not considered representative of the consolidation process. However, these results provide an estimation of the significance that this uncertainty may have on the seal system performance.

Figure G2-12 depicts the effective permeability of the salt column as a function of time using the 95% line. The consolidation process, and hence permeability reduction, essentially stopped at 75 years for this simulation. Although the model predicts that the fractional density at the base of the salt column will reach approximately 97% of the density of intact halite, the permeability remains several orders of magnitude higher than that of the surrounding host rock. As a result, repressurization occurs rapidly throughout the vertical extent of the compacted salt column, and consolidation ceases. Laboratory experiments have shown that permeability to brine should decrease to levels of 10⁻¹⁸ to 10⁻²⁰ m² at the fractional densities predicted by the performance model. The transport of brine within the consolidating salt will reduce the permeability even further (Brodsky et al., 1995). The predicted permeability of 10⁻¹⁶ m² is still sufficiently low that brine migration would be limited (DOE, 1995). However, the results of this analysis are more valuable in terms of demonstrating the coupled nature of the mechanical and hydrological behavior of consolidating crushed salt.

A final consideration within this performance model relates to the lower compacted clay column. This clay column is included in the design to provide a barrier to both gas and brine migration from the repository horizon. The ability of the clay to prevent gas migration will depend upon its liquid saturation state (Section 5 and Appendix G2-A). The lower clay component has an initial liquid saturation of about 80%, and portions of the column achieve brine saturations of nearly 100% during the 200 year simulation period. If the clay component performs as designed, gas migration through this component should be minimal. An examination of the model gas saturations indicates that, for all runs, gas flow occurs primarily through the DRZ prior to
8.5 Upward Migration of Brine

The performance model discussed in Section 8.3 was modified to simulate undisturbed equilibrium pressures. As discussed in Appendix C of the Compliance Submittal Design Report (Sandia, 1996), the Salado Formation is overpressurized with respect to the measured heads in the Rustler, and upward migration of contaminated brines could occur through an inadequately sealed shaft. Sections 8.3 and 8.4 demonstrated that the compacted salt column will consolidate to a low permeability following repository closure. Appendix D of the Compliance Submittal Design Report (Sandia, 1996) and Section 7 show that the DRZ surrounding the long-term clay and crushed salt seal components will completely heal within the first several decades. As a result, upward migration at the base of the Salado salt is predicted to be approximately 1 m³ over the regulatory period. At the Rustler/Salado contact, a total of approximately 20 m³ migrates through the sealed AIS over the regulatory period. The only brine sources between these two depths are the marker beds. It can therefore be concluded that most of the brine flow reaching the Rustler/Salado contact originates in marker beds above the repository horizon. The seal system effectively limits the flow of brine and gas from the repository through the sealed shafts throughout the regulatory period.

8.6 Intra-Rustler Flow

The potential exists for vertical flow within water-bearing strata of the Rustler Formation. Flow rates were estimated using a closed form solution of the steady-state saturated flow equation (Darcy’s Law). The significance of the calculated flow rates can be assessed in terms of the width of the hydraulic disturbance (i.e., plume half-width) generated in the recipient flow field. The plume half-width was calculated to be minimal for all expected conditions (Compliance Submittal Design Report (Sandia, 1996), Section C7). Intra-Rustler flow is therefore concluded to be of such a limited quantity that (1) it will not affect either the hydraulic or chemical regime in the Rustler and (2) it will not be detrimental to the seal system.
9. Conclusions

The principal conclusion drawn from discussions in the previous sections and details provided in the appendices is that an effective, implementable design has been documented for the WIPP shaft sealing system. Specifically, the six elements of the Design Guidance, Table G2-12, are implemented in the design in the following manner:

1. The shaft sealing system shall limit the migration of radiological or other hazardous constituents from the repository horizon to the regulatory boundary during the 10,000-year regulatory period following closure.

 Based on the analysis presented in Section 8.5, it was determined that this shaft sealing system effectively limits the migration of radiological or other hazardous constituents from the repository horizon to the regulatory boundary during the 10,000-year regulatory period following closure.

2. The shaft sealing system shall limit groundwater flowing into and through the shaft sealing system.

 The combination of the seal components in the Salado Formation, the Rustler Formation, and above the Rustler combine to produce a robust system. Based on analysis presented in Section 8.3, it was concluded that the magnitude of brine flow that can reach the repository through the sealed shaft is minimal and will not impact repository performance.

3. The shaft sealing system shall limit chemical and mechanical incompatibility of seal materials with the seal environment.

 The sealing system components are constructed of materials possessing high durability and compatibility with the host rock. Engineered materials including salt-saturated concrete, bentonite, clays, and asphalt are expected to retain their design properties over the regulatory period.

4. The shaft sealing system shall limit the possibility for structural failure of individual components of the sealing system.

 Analysis of components has determined that: (a) the structural integrity of concrete components will not be compromised by induced radial stress, imposed vertical stress, temperature gradients, dynamic compaction of overlying materials, or swelling pressure associated with bentonite (Section 7.4.1); (b) the thermal impact of asphalt on the creep rate of the salt surrounding the asphalt waterstops is negligible (Section 7.4.4); and (c) the pressure from the asphalt element of the concrete-asphalt waterstops is sufficient to initiate healing of the surrounding DRZ within two years of emplacement (Section 7.6.1). The potential for structural failure of sealing components is minimized by the favorable compressive stress state that will exist in the sealed WIPP shafts.

5. The shaft sealing system shall limit subsidence of the ground surface in the vicinity of the shafts and the possibility of accidental entry after sealing.
The use of high density sealing materials that completely fill the shafts eliminates the potential for shaft wall collapse, eliminates the possibility of accidental entry after closure, and assures that local surface depressions will not occur at shaft locations.

6. The shaft sealing system shall limit the need to develop new technologies or materials for construction of the shaft sealing system.

The shaft sealing system utilizes existing construction technologies (identified in Section 6) and materials (identified in Section 5).

The design guidance can be summarized as focusing on two principal questions: Can you build it, and will it work? The use or adaptation of existing technologies for the placement of the seal components combined with the use of available, common materials assure that the design can be constructed. Performance of the sealing system has been demonstrated in the hydrologic analyses that show very limited flows of gas or brine, in structural analyses that assure acceptable stress and deformation conditions, and in the use of low permeability materials that will function well in the environment in which they are placed. Confidence in these conclusions is bolstered by the basic design approach of using multiple components to perform each intended sealing function and by using extensive lengths within the shafts to effect a sealing system. Additional confidence is added by the results of field and lab tests in the WIPP environment that support the data base for the seal materials.
10. References

Daemen and R.A. Schultz. Brookfield, VT: A. A. Balkema. 497-502. (Copy on file in the SWCF as WPO22432.)

Figure G2-1
View of the WIPP Underground Facility
Figure G2-2
Location of the WIPP in the Delaware Basin
<table>
<thead>
<tr>
<th>Erathem</th>
<th>System</th>
<th>Series</th>
<th>Lithostratigraphic Unit</th>
<th>Age Estimate (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td>Holocene</td>
<td>Windblown sand</td>
<td>~500,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pleistocene</td>
<td>Mescalero caliche</td>
<td></td>
<td>~600,000</td>
</tr>
<tr>
<td></td>
<td>Pleistocene</td>
<td>Guadalupe Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cenozoic</td>
<td>Pliocene</td>
<td>Ogallala Formation</td>
<td>5.5 million</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>Miocene</td>
<td>Absent in southeastern New Mexico</td>
<td>24 million</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligocene</td>
<td>Detritus preserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eocene</td>
<td>Absent in southeastern New Mexico</td>
<td>66 million</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paleocene</td>
<td>Dockum Group</td>
<td>144 million</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Absent in southeastern New Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jurassic</td>
<td>Absent in southeastern New Mexico</td>
<td>208 million</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triassic</td>
<td>Absent in southeastern New Mexico</td>
<td>245 million</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper</td>
<td>Dewey Lake Redbeds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>Rustler Formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleozoic</td>
<td>Permian</td>
<td>Guadalupian</td>
<td>Capitan Limestone and Bell Canyon Formation</td>
<td>286 million</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bone Springs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wolfcamp (informal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified from Bachman, 1987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure G2-3
Chart Showing Major Stratigraphic Divisions, Southeastern New Mexico
Figure G2-4
Generalized Stratigraphy of the WIPP Site Showing Repository Level
Figure G2-5
Arrangement of the Air Intake Shaft Sealing System
Figure G2-6
Multi-deck Stage Illustrating Dynamic Compaction
Figure G2-7
Multi-deck Stage Illustrating Excavation for Asphalt Waterstop
Figure G2-8
Drop Pattern for 6-m-Diameter Shaft Using a 1.2-m-Diameter Tamper
Figure G2-9
Plan and Section Views of Downward Spin Pattern of Grout Holes
Figure G2-10
Plan and Section Views of Upward Spin Pattern of Grout Holes
Figure G2-11
Example of Calculation of an Effective Salt Column Permeability from the Depth-Dependent Permeability at a Point in Time
Figure G2-12
Effective Permeability of the Compacted Salt Column using the 95% Certainty Line
ATTACHMENT H1

ACTIVE INSTITUTIONAL CONTROLS DURING POST-CLOSURE
ATTACHMENT H1

ACTIVE INSTITUTIONAL CONTROLS DURING POST-CLOSURE

<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>H1.1 Active Institutional Controls</td>
</tr>
<tr>
<td>H1.1.1 Repository Footprint Fencing</td>
</tr>
<tr>
<td>H1.1.2 Surveillance Monitoring</td>
</tr>
<tr>
<td>H1.1.3 Maintenance and Remedial Actions</td>
</tr>
<tr>
<td>H1.1.4 Control and Clean-up of Releases</td>
</tr>
<tr>
<td>H1.1.5 Groundwater Monitoring</td>
</tr>
<tr>
<td>H1.2 Additional Post-Closure Activities</td>
</tr>
<tr>
<td>H1.3 Quality Assurance</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

1
LIST OF FIGURES

1. Figure H1-1 Spatial View of WIPP Surface and Underground Facilities
2. Figure H1-2 Standard Waste Box and Seven-Pack Configuration
3. Figure H1-3 Typical Shaft Sealing System
4. Figure H1-4 Perimeter Fenceline and Roadway

ACRONYMS

- CH: contact-handled
- CFR: Code of Federal Regulations
- DOE: U.S. Department of Energy
- EPA: U.S. Environmental Protection Agency
- LWA: Land Withdrawal Act
- NMAC: New Mexico Administrative Code
- NMED: New Mexico Environment Department
- SWB: standard waste box
- TRU: transuranic
- WIPP: Waste Isolation Pilot Plant
ATTACHMENT H1

ACTIVE INSTITUTIONAL CONTROLS DURING POST-CLOSURE

Introduction

Under the requirements of 20.4.1.500 New Mexico Administrative Code (NMAC) (incorporating Title 40 of the Code of Federal Regulations (CFR) §264.118(b), the following activities identified as active institutional controls during post-closure are incorporated into the Post-Closure Plan.

The post-closure requirements of this permit include 20.4.1.500 NMAC, incorporating:

- 40 CFR §264.117(a)(1), which requires that
 “Post-closure care for each hazardous waste management unit subject to the requirements of §264.117 through 264.120 must begin after completion of closure of the unit and continue for 30 years after that date…”

- 40 CFR §264.601, which requires that
 “A miscellaneous unit must be…maintained and closed in a manner that will ensure protection of human health and the environment…”

- and 40 CFR §264.603, which requires that
 “A miscellaneous unit that is a disposal unit must be maintained in a manner that complies with §264.601 during the post-closure care period.”

The containment requirements for a disposal system for transuranic (TRU) radioactive wastes are defined in Title 40 CFR §191.13 (U.S. Environmental Protection Agency [EPA] 1993). 40 CFR §191.14 is titled Assurance Requirements. With regard to the active institutional controls aspects of the Assurance Requirements, 40 CFR §191.14 states the following:

“To provide the confidence needed for long-term compliance with the requirements of §191.13, disposal of spent fuel or high-level or transuranic wastes shall be conducted in accordance with the following provisions… (a) Active institutional controls over disposal sites should be maintained for as long a period of time as is practicable after disposal; however, performance assessments that assess isolation of the wastes from the accessible environment shall not consider any contribution from active institutional controls for more than 100 years after disposal…”

40 CFR §191.12 states the following:

“Active institutional controls mean:
1) controlling access to a disposal site by any means other than passive institutional controls,
2) performing maintenance operations or remedial actions at a site,
3) controlling or cleaning up releases from a site, or
4) monitoring parameters related to disposal system performance."

Purpose: This Permit Attachment describes the design of a system that the Permittees will implement for compliance with the requirements of 20.4.1.500 NMAC (incorporating 40 CFR §264.118(b)) and 40 CFR §191.14(a) to control access to the Waste Isolation Pilot Plant (WIPP) disposal site and implement maintenance and remedial actions pertaining to the site access controls. In addition, this Permit Attachment addresses the scheduling process for control of inspection, maintenance, and periodic reporting related to long-term monitoring. Long-term monitoring addresses the monitoring of disposal system performance, as required by 40 CFR §191.14(b), and environmental monitoring, in accordance with the Permit and the Consultation and Cooperation Agreement between the U.S. Department of Energy (DOE) and the state of New Mexico. The scheduling process will also address evaluation of testing activities related to the permanent marker system design contained within the passive institutional controls (not required by this permit). The implementation of active institutional controls at the WIPP site will commence when final facility closure is achieved, as specified in Permit Part 6 and Permit Attachment G. Implementation of active institutional controls marks the transition from the active life of the facility (which ends upon certification of closure) to the post-closure care period, as specified in 20.4.1.500 NMAC (incorporating 40 CFR §Part 264, Subpart G). The Permittees will continue the imposition of active institutional controls under this Permit until the New Mexico Environment Department (NMED) approves the post-closure certification specified in Permit Part 7 and Permit Attachment H.

Decommissioning activities include decontamination and site restoration. The decontamination effort will be completed prior to sealing of the shafts to allow disposal of all-derived waste (radioactive and/or mixed waste derived from TRU/TRU-mixed waste received at the WIPP facility) into the repository. The implementation of active institutional controls upon certification of facility closure will prevent human intrusion into the repository. The Permittees’ restoration efforts will return the land disturbed by the WIPP activities to a stable ecological state that will assimilate with the surrounding undisturbed ecosystem. Necessary exceptions to returning the site to its full pre-WIPP condition include measurements associated with long-term monitoring.

Scope: The active institutional control requirements include a means of controlling access to the site of the repository’s surface footprint (the repository area projected to the surface) and maintenance, including corrective actions, for access control system components. Active control of access to the site will be exercised by the Permittees for the duration of the post-closure care period. Although the Permittees are only required to maintain active institutional controls until approval of the post-closure certification by the NMED, the Permittees will continue active institutional controls for at least 100 years after final facility closure to satisfy other regulatory requirements. Control of access will prevent intrusion into the disposed waste by deep drilling or mining for natural resources. This Permit Attachment also specifies a process for scheduling activities related to the long-term monitoring of the repository. Some of the activities supporting the monitoring programs will be initiated during the active life of the facility to establish databases. These activities are planned to continue beyond closure through the time after removal of the site structures and return of the land disturbed by the WIPP activities to a stable ecological state that will assimilate with the surrounding undisturbed ecosystem. Long-term monitoring requirements will be necessarily integrated with efforts toward returning the land to a stable ecological state.
Background: The WIPP facility was sited and designed as a research and development facility to demonstrate the safe disposal of radioactive wastes. The wastes are derived from DOE defense-related activities. Specifically, the mission of the WIPP project is to conduct research, demonstration, and siting studies relevant to the permanent disposal of TRU wastes. Most of these wastes will be contaminated with hazardous constituents, making them mixed wastes.

The WIPP Land Withdrawal Act (LWA) addresses the disposal phase of the WIPP project, the period following closure of the site, and the removal of the surface facilities. The LWA set aside 10,240 acres (4,144 hectares) located in Eddy County, 26 miles (42 kilometers) east of Carlsbad, New Mexico, as the WIPP site. A 277-acre (112-hectare) portion within the 10,240 acres (4,144 hectares) is bounded by a barbed wire fence. This fenced area contains the surface facilities and the mined salt piles for the WIPP site. Figure M-44H1-1 is a cutaway illustrating the spatial relationship of the surface facilities and the underground repository.

Upon receipt of the necessary certifications and permits from the EPA and the New Mexico Environment Department (NMED), the Permittees will begin disposal of contact-handled (CH) and remote-handled (RH) TRU and TRU mixed waste in the WIPP facility. This waste emplacement and disposal phase will continue until the initiation of final facility closure when the Hazardous Waste Disposal Units (HWDUs) have received the final volume of waste or when the 6.2 million cubic feet ($175,588$ cubic meters) of LWA TRU waste volume has been reached, and as long as the Permittees comply with the requirements of the Permit. At that time, final facility closure will be initiated as described in Renewal Permit Attachment G. For the purposes of this Permit Attachment, this time period is assumed to be 25 years. The waste will be shipped from DOE facilities across the country in specially designed transportation containers certified by the Nuclear Regulatory Commission. The transportation routes from these facilities to the WIPP facility have been predetermined.

The CH and RH TRU mixed waste will be packaged in 55-gallon (208-liter), 85-gallon (322-liter), 100-gallon (379-liter) steel drums, standard waste boxes (SWBs), ten drum overpacks (TDOPs), and/or standard large boxes (SLB2s). An SWB is a steel container having a free volume of 66.3 cubic feet (1.88 cubic meters). Figure H1-2 shows the general arrangement of a seven-pack of drums and an SWB as received in a Contact-Handled Package approved containers as listed in Permit Part 3, Section 3.3.1 and described in Permit Attachment A1. RH TRU mixed waste inside a Remote-Handled Package is contained in one or more of the allowable containers described in Permit Attachment A1. Some RH TRU mixed waste may arrive in shielded containers as described in Permit Attachment A1.

Upon receipt and inspection of the waste containers in the waste handling building, the containers will be moved into the repository 2,150 feet (655 meters) below the surface. The containers will then be transported to a disposal room. (See Figure M-44H1-1 for room and panel arrangement.) The initial seven disposal rooms are in Panel 1. Panel 1 is the first of eight panels planned to be excavated. Special supports and ground control corrective actions have been implemented in Panel 1 to ensure its stability. Upon filling an entire panel, that panel will be closed to isolate it from the rest of the repository and the ventilation system. During the period of time it takes to fill a given panel, an additional panel will be excavated. Sequential excavation of panels through 8 panels will ensure that these individual panels remain stable during the entire time a panel is being filled with waste. Ground
control maintenance and evaluation with appropriate corrective action will be required to ensure that Panels 9 and 10 (ventilation and access drifts in the repository) remain stable.

Decontamination of the WIPP facility will commence with a detailed radiation survey of the entire site. Contaminated areas and equipment will be evaluated and decontaminated in accordance with applicable requirements consistent with radiological control procedures pursuant to 10 CFR Part 835. Hazardous waste decontamination, if needed, will be conducted in accordance with standard 20.4.1.500 NMAC (incorporating 40 CFR Part 264) or as prescribed by the Permit. Where decontamination efforts identify areas that meet clean closure standards for permitted container storage units and are below radiological release criteria pursuant to 10 CFR Part 835, routine dismantling and salvaging practices will determine the disposition of the material or equipment involved. Material and equipment that do not meet these standards and criteria will be emplaced in the access entries final open disposal area (Panels 9 and/or 10). Upon completion of emplacement of the contaminated facility material, the entries will be closed, and the repository shafts will be sealed. Final repository facility closure includes sealing the shafts leading to the repository. Figure M-64H1.3 illustrates the shaft sealing arrangement. Certification of closure will end disposal operations and initiate the post-closure care period for implementation of active institutional controls.

H1.1 Active Institutional Controls

Active institutional controls during post-closure consist of three elements:

- controlling access to a disposal site,
- performing maintenance operations or remedial actions at a site, and
- controlling or cleaning up releases from a site.

The LWA has removed the WIPP site from public use as a site for mining and other types of mineral resource extraction. Since any type of exploration activity would require authorization, the issuance of approval to intrude upon the repository is precluded by the LWA. The existence of the LWA as law permits meeting the requirements of the first element above by implementing low technology barriers. These barriers include a posted fence and active surveillance at a frequency that denies sufficient time for an individual or organization to intrude into the repository undetected using today’s drilling technology. Maintenance and remedial actions at the WIPP site will be conducted by the Permittees at the time of implementing the access controls for the site. The control or cleanup of releases from the site will be conducted as part of the operational program prior to sealing of the shafts. This is necessary to ensure that all derived waste is disposed of within the repository prior to shaft sealing.

The Permittees shall maintain the access controls. This requirement includes the maintenance and corrective actions necessary to ensure that the fence and patrol requirements (surveillance) are met. The active institutional controls to be implemented by the Permittees after final closure are the following:

1. A fence line will be established to control access to the repository footprint area on the surface. A standard four-strand (three barbed and one unbarbed, in accordance with the Bureau of Land Management specifications) wire fence will be erected along the perimeter of the repository surface footprint. To provide access to the repository footprint during construction of the berm (which may be built in multiple sections simultaneously),
the fence will have gates placed approximately midway along each of the four selected legs of the fenced areas. These gates will remain locked with access controlled by the Permittees. The western gates will be 20 feet (6 meters) wide. The remaining three gates will each be 16 feet (4.9 meters) wide, wide enough to accommodate the equipment that will be used to build the berm. Additional fencing will be constructed where appropriate for remote locations that are used for disposal system monitoring. Such fences will meet the same construction specifications as the repository footprint perimeter fence.

2. Unpaved roadways 16 feet (4.9 meters) wide will be established along the perimeter of the barbed wire fence as well as along the WIPP site boundary. These roadways will be constructed so as to provide ready vehicle access to any point around the fenced perimeter and the site boundary. These roadways will facilitate inspection and maintenance of the fenceline and will allow visual observation of the repository footprint and the site boundary to the extent permitted by the lay of the land. These roadways will connect to the paved south access road. Roads to remote sites will also be constructed and maintained where appropriate.

3. The fence line will be posted with signs having, as a minimum, a legend reading “Danger—Unauthorized Personnel Keep Out” (20.4.1.500 NMAC (incorporating 40 CFR §264.14[c])) and warning against entering the area without specific permission of the Permittees. The legend must be written in English and Spanish. The signs must be legible from a distance of at least 25 feet (7.6 meters). The size of the visual warning and the spacing of the warning signs will be sufficiently large and close to ensure that one or more of the signs can be seen from any approach prior to an individual actually making contact with the fence line. In no case will the spacing be greater than 300 feet (91.5 meters).

4. The Permittees will ensure that periodic inspection and expedited corrective maintenance are conducted on the fence line, its associated warning signs, and roadways.

5. The Permittees will provide for routine periodic patrols and surveillance of all areas controlled by or under the authority of the Permittees by personnel trained in security surveillance and investigation.

6. The Permittees will implement the periodic monitoring requirements of the long-term monitoring system.

7. The Permittees will submit a Permit modification request for any proposed modifications to the active institutional controls appropriate for access control, as specified in 20.4.1.900 NMAC (incorporating 40 CFR §270.42).

8. The Permittees will immediately take appropriate action to address abnormal conditions identified during periodic surveillance and inspections. Abnormal conditions include any natural or human-caused conditions which would affect the integrity of the active institutional controls.

9. Reports addressing activities associated with the performance of the active access controls after final closure will be prepared periodically according to applicable
requirements by the Permittees for submittal to the appropriate regulatory and legislative authorities.

H1.1.1 Repository Footprint Fencing

Access to an area The fenced area will be composed of two adjoining rectangular areas (See Figure M-65). One rectangular area will be approximately 2,780 feet by 2,360 feet (875 meters by 720 meters), covering the area over Panels 1-8. The second (adjoining) rectangular area will be approximately 1,040 feet by 1,210 feet (317 meters by 369 meters) covering the area over Panels 11 and 12. The fenced area will be controlled by a four-strand barbed wire fence. A single gate will be included as needed along each side of the fence for access. These gates will remain locked with access controlled by the Permittees. Around the perimeter of the fence, an unpaved roadway 16 feet (4.9 meters) wide will be cut to allow for patrolling of the perimeter. Figure M-65H1-4 is an illustration of the fence line in relation to the repository footprint. Patrolling of the perimeter is based upon the need to ensure that no mining or well drilling activity is initiated that could threaten the integrity of the repository.

Fencing off an area larger than the disposal area footprint would not significantly reduce the risk of intrusion but would interfere with cattle grazing established prior to the LWA. The LWA states that the Secretary of Energy can allow grazing to continue where it was established prior to enactment of the LWA. Based upon current drilling technologies, discussions with local well drilling organizations, and observation of well drilling activities in the WIPP vicinity, it typically requires at least two to three days for a driller to set up a deep drilling rig and commence actual drilling operations. Attaining the 2,150-foot (655-meter) depth that would approach the repository horizon takes at least another week to 10 days. Based upon current drilling practices, patrolling the fenced area two to three times weekly would identify any potential drilling activity well before any breach of the repository could occur. Therefore, the perimeter fence will be patrolled three times weekly after final closure.

Construction of access control systems using higher technology than described is not required. Likewise, continuous surveillance whether human or electronic is not required.

H1.1.2 Surveillance Monitoring

The Permittees will conduct periodic surveillance of the site and the repository footprint during the post-closure period. Unpaved roadways around the WIPP site boundary and around the repository footprint will facilitate such surveillance. Contractual arrangements with a local organization such as the Eddy County Sheriff’s Department may be established which would provide some distinct advantages. Among the advantages are the following:

- deputies are trained in patrol and surveillance activities,
- deputies are authorized to arrest members of the general public who are found to be violating trespassing laws,
- the liability associated with apprehension, attempted apprehension, or circumstances arising from attempts would remain with the Sheriff’s Department, and
- the general area to be patrolled is already a part of the Sheriff’s area of responsibility.
Surveillance will consist of drive-by patrolling around the fenced perimeter a minimum of three
two times per week (weather and road conditions permitting). In the course of the patrol,
particular note will be taken of the fence and sign integrity. In addition, the locked condition of
each gate will be checked to ensure that gate integrity is maintained and there is no evidence of
tampering. Surveillance will also include visual observation of the entire enclosed area for any
signs of human activity. Additionally, surveillance patrols will be conducted around the site
boundary’s perimeter for signs of unauthorized human activities. A routine summary of each
month’s surveillance activity will be prepared documenting the date and time of each patrol and
any unusual circumstances that may have been observed. This surveillance routine will
continue throughout the post-closure care period.

H1.1.3 Maintenance and Remedial Actions

Anticipated maintenance and remedial action issues during the post-closure care period are
minimal and should encompass such issues as

- fence and road maintenance,
- repair of any damage that occurs,
- response to evidence of potential erection of drilling equipment, and
- response to unauthorized entry into prohibited areas.

The Permittees will provide maintenance services within a reasonable time after the need is
identified during routine patrolling activity. Any observed vandalism or unauthorized entry will be
investigated, and action will be taken as the circumstances warrant.

H1.1.4 Control and Clean-up of Releases

The decontamination process and disposal of the derived waste will be completed prior to
sealing the shafts and final facility closure. With the location of the WIPP repository at 2,150 feet
(655 meters) below the surface and with panels closed and shafts sealed, the potential for
releases of radioactive material or hazardous constituents following the sealing of the shafts is
precluded. There will be no credible pathway for releases from the repository other than human
intrusion. Routine patrols in accordance with access control requirements will preclude human
intrusion into the repository during the post-closure period.

H1.1.5 Groundwater Monitoring

Groundwater monitoring is the only monitoring program required by the Permit that will be
conducted throughout the post-closure care period. The post-closure groundwater monitoring
requirements are specified in Permit Part 7 and Permit Attachment L.

H1.2 Additional Post-Closure Activities

With the certification of closure of the WIPP facility and return of the land disturbed by the WIPP
activities to a stable ecological state that will assimilate with the surrounding undisturbed
ecosystem, continuous occupancy of the site for operational and security purposes will cease.
Any additional activities will be imposed through the Post-Closure Care Permit issued by the
NMED after certification of closure.
H1.3 Quality Assurance

The quality assurance and quality control plan will be applied to the procurement of materials for and the erection of the fencelines enclosing the repository footprint. In particular, quality control inspection of the placement and tensioning of the barbed wire and chain link fabric will be applied and utilized to provide reasonable assurance that the fencing structures will function during the post-closure care period with normal maintenance.

Quality assurance and quality control will also be applied to the sampling and analyses supporting the environmental monitoring program. Contractors collecting samples and laboratories conducting analyses for the Permittees shall be qualified in accordance with guidelines prescribed in the most current edition of the Permittees' quality assurance program document at the time that the contracts are awarded.

References

Figure H1-1
Spatial View of WIPP Surface and Underground Facilities
Figure H1-2
Standard Waste Box and Seven-Pack Configuration
Figure H1-3
Typical Shaft Sealing System
Figure H1-4
Perimeter Fenceline and Roadway
ATTACHMENT L

WIPP GROUNDWATER DETECTION MONITORING PROGRAM PLAN
ATTACHMENT L

WIPP GROUNDWATER DETECTION MONITORING PROGRAM PLAN

TABLE OF CONTENTS

L-1 Introduction ... 6
L-1a Geologic and Hydrologic Characteristics ... 7
 L-1a(1) Geology ... 7
 L-1a(2) Ground-water Hydrology ... 8
 L-1a(2)(i) The Castile ... 8
 L-1a(2)(ii) The Salado .. 8
 L-1a(2)(iii) The Rustler .. 9
L-2 General Regulatory Requirements ... 13
L-3 WIPP Groundwater Detection Monitoring Program (DMP)—Overview 13
 L-3a Scope ... 13
 L-3b Current WIPP DMP .. 14
 L-3b(1) Detection Monitoring Well Construction Specification 15
L-4 Monitoring Program Description .. 15
 L-4a Monitoring Frequency .. 15
 L-4b Analytical Parameters and Hazardous Constituents .. 15
 L-4c Groundwater Surface Elevation Measurement, Sample Collection and Laboratory Analysis .. 15
 L-4c(1) Groundwater Surface Elevation Monitoring Methodology 16
 L-4c(1)(i) Field Methods and Data Collection Requirements 17
 L-4c(1)(ii) Groundwater Surface Elevation Records and Document Control 17
 L-4c(2) Groundwater Sampling ... 18
 L-4c(2)(i) Groundwater Pumping and Sampling Systems ... 18
 L-4c(2)(ii) Serial Samples .. 18
 L-4c(2)(iii) Final Samples .. 19
 L-4c(2)(iv) Sample Preservation, Tracking, Packaging, and Transportation 20
 L-4c(2)(v) Sample Documentation and Custody .. 21
 L-4c(3) Laboratory Analysis ... 22
 L-4c(3) Groundwater Surface Elevation Monitoring Equipment Calibration 23
 L-4d Calibration ... 23
 L-4d(1) Sampling and Groundwater Elevation Monitoring Equipment Calibration 23
 L-4d(2) Groundwater Surface Elevation Monitoring Equipment Calibration Requirements ... 23
 L-4e Statistical Analysis of Laboratory Analytical Data .. 23
 L-4e(1) Temporal and Spatial Analysis .. 23
 L-4e(2) Distributions and Descriptive Statistics .. 24
 L-4e(3) Action Levels .. 24
 L-4e(4) Comparisons and Reporting ... 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-5</td>
<td>Reporting</td>
<td>24</td>
</tr>
<tr>
<td>L-5a</td>
<td>Laboratory Data Reports</td>
<td>24</td>
</tr>
<tr>
<td>L-5b</td>
<td>Statistical Analysis and Reporting of Results</td>
<td>25</td>
</tr>
<tr>
<td>L-5c</td>
<td>Annual Cuelbra Groundwater Report</td>
<td>25</td>
</tr>
<tr>
<td>L-6</td>
<td>Records Management</td>
<td>27</td>
</tr>
<tr>
<td>L-7</td>
<td>Quality Assurance Requirements</td>
<td>27</td>
</tr>
<tr>
<td>L-7a</td>
<td>Data Quality Objectives and Quality Assurance Objectives</td>
<td>27</td>
</tr>
<tr>
<td>L-7a(1)</td>
<td>Data Quality Objectives</td>
<td>31</td>
</tr>
<tr>
<td>L-7a(1)(i)</td>
<td>Detection Monitoring Program</td>
<td>31</td>
</tr>
<tr>
<td>L-7a(1)(ii)</td>
<td>Water Level Monitoring Program</td>
<td>31</td>
</tr>
<tr>
<td>L-7a(2)</td>
<td>Quality Assurance Objectives</td>
<td>31</td>
</tr>
<tr>
<td>L-7a(2)(i)</td>
<td>Accuracy</td>
<td>28</td>
</tr>
<tr>
<td>L-7a(2)(ii)</td>
<td>Precision</td>
<td>29</td>
</tr>
<tr>
<td>L-7a(2)(iii)</td>
<td>Contamination</td>
<td>29</td>
</tr>
<tr>
<td>L-7a(2)(iv)</td>
<td>Completeness</td>
<td>29</td>
</tr>
<tr>
<td>L-7a(2)(v)</td>
<td>Representativeness</td>
<td>30</td>
</tr>
<tr>
<td>L-7a(2)(vi)</td>
<td>Comparability</td>
<td>30</td>
</tr>
<tr>
<td>L-7b</td>
<td>Design Control</td>
<td>30</td>
</tr>
<tr>
<td>L-7c</td>
<td>Instructions, Procedures, and Drawings</td>
<td>30</td>
</tr>
<tr>
<td>L-7d</td>
<td>Document Control</td>
<td>31</td>
</tr>
<tr>
<td>L-7e</td>
<td>Inspection and Surveillance</td>
<td>31</td>
</tr>
<tr>
<td>L-7f</td>
<td>Control of Monitoring and Data Collection Equipment</td>
<td>31</td>
</tr>
<tr>
<td>L-7g</td>
<td>Control of Nonconforming Conditions</td>
<td>31</td>
</tr>
<tr>
<td>L-7h</td>
<td>Corrective Action</td>
<td>31</td>
</tr>
<tr>
<td>L-7i</td>
<td>Quality Assurance Records</td>
<td>31</td>
</tr>
<tr>
<td>L-8</td>
<td>References</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1</td>
<td>Hydrological Parameters for Rock Units above the Salado at the WIPP Site</td>
</tr>
<tr>
<td>L-2</td>
<td>WIPP Groundwater Detection Monitoring Program Sample Collection and Groundwater Surface Elevation Measurement Frequency</td>
</tr>
<tr>
<td>L-3</td>
<td>Standard Operating Procedures Applicable to the DMP</td>
</tr>
<tr>
<td>L-4</td>
<td>List of Culebra Wells in the WLMP, Current as of January 2022</td>
</tr>
<tr>
<td>L-5</td>
<td>Details of Construction for the Six Culebra Detection Monitoring Wells</td>
</tr>
<tr>
<td>L-6</td>
<td>Analytical Parameter and Sample Requirements</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1</td>
<td>General Location of the WIPP Facility</td>
</tr>
<tr>
<td>L-2</td>
<td>WIPP Facility Boundaries Showing 16-Square-Mile Land Withdrawal Boundary</td>
</tr>
<tr>
<td>L-3</td>
<td>Site Geologic Column</td>
</tr>
<tr>
<td>L-4</td>
<td>Generalized Stratigraphic Cross Section above Bell Canyon Formation at WIPP Site</td>
</tr>
<tr>
<td>L-5</td>
<td>Culebra Freshwater-Head Potentiometric Surface</td>
</tr>
<tr>
<td>L-6</td>
<td>Detection Monitoring Well Locations</td>
</tr>
<tr>
<td>L-7</td>
<td>As-Built Configuration of Well WQSP-1</td>
</tr>
<tr>
<td>L-8</td>
<td>As-Built Configuration of Well WQSP-2</td>
</tr>
<tr>
<td>L-9</td>
<td>As-Built Configuration of Well WQSP-3</td>
</tr>
<tr>
<td>L-10</td>
<td>As-Built Configuration of Well WQSP-4</td>
</tr>
<tr>
<td>L-11</td>
<td>As-Built Configuration of Well WQSP-5</td>
</tr>
<tr>
<td>L-12</td>
<td>As-Built Configuration of Well WQSP-6</td>
</tr>
<tr>
<td>L-13</td>
<td>Example Chain-of-Custody Record</td>
</tr>
<tr>
<td>L-14</td>
<td>Groundwater Level Surveillance Wells (insert represents the groundwater surveillance wells in WIPP Land Withdrawal Area)</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS/ACRONYMS/UNITS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell Canyon</td>
<td>Bell Canyon Formation</td>
</tr>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>Castile</td>
<td>Castile Formation</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>Culebra</td>
<td>Culebra Member of the Rustler Formation</td>
</tr>
<tr>
<td>CofC/RFA</td>
<td>chain of custody/request for analysis</td>
</tr>
<tr>
<td>°C</td>
<td>degree(s) Celsius</td>
</tr>
<tr>
<td>%C</td>
<td>percent completeness</td>
</tr>
<tr>
<td>Dewey Lake</td>
<td>Dewey Lake Redbeds Formation</td>
</tr>
<tr>
<td>DI</td>
<td>deionized</td>
</tr>
<tr>
<td>DMP</td>
<td>Detection Monitoring Program</td>
</tr>
<tr>
<td>DMW</td>
<td>Detection Monitoring Well</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DQO</td>
<td>data quality objectives</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ft</td>
<td>foot (feet)</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot (square feet)</td>
</tr>
<tr>
<td>ft²/d</td>
<td>square feet per day</td>
</tr>
<tr>
<td>g/cm³</td>
<td>gram(s) per cubic centimeter</td>
</tr>
<tr>
<td>HWDU</td>
<td>hazardous waste disposal unit(s)</td>
</tr>
<tr>
<td>km</td>
<td>kilometer(s)</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometer(s)</td>
</tr>
<tr>
<td>L</td>
<td>liter(s)</td>
</tr>
<tr>
<td>lb/in.²</td>
<td>pound(s) per square inch</td>
</tr>
<tr>
<td>LCS</td>
<td>laboratory control samples</td>
</tr>
<tr>
<td>LCSD</td>
<td>lab control sample duplicate</td>
</tr>
<tr>
<td>Los Medaños</td>
<td>Los Medaños Member of the Rustler Formation</td>
</tr>
<tr>
<td>LWA</td>
<td>Land Withdrawal Act</td>
</tr>
<tr>
<td>m</td>
<td>meter(s)</td>
</tr>
<tr>
<td>M&DC</td>
<td>monitoring and data collection</td>
</tr>
<tr>
<td>m²</td>
<td>square meter(s)</td>
</tr>
<tr>
<td>Magenta</td>
<td>Magenta Member of the Rustler Formation</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram(s) per liter</td>
</tr>
<tr>
<td>mi</td>
<td>mile(s)</td>
</tr>
<tr>
<td>mi²</td>
<td>square mile(s)</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter(s)</td>
</tr>
<tr>
<td>molar</td>
<td>moles per kilogram</td>
</tr>
<tr>
<td>MOC</td>
<td>Management and Operating Contractor</td>
</tr>
<tr>
<td>MPa</td>
<td>megapascal(s)</td>
</tr>
<tr>
<td>m/s</td>
<td>meters per second</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>m²/s</td>
<td>square meters per second</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt(s)</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute for Standards and Technology</td>
</tr>
<tr>
<td>NMAC</td>
<td>New Mexico Administrative Code</td>
</tr>
<tr>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QA/QC</td>
<td>quality assurance/quality control</td>
</tr>
<tr>
<td>QAO</td>
<td>Quality Assurance Objective</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>PABC</td>
<td>Performance Assessment Baseline Calculation</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RPD</td>
<td>relative percent difference</td>
</tr>
<tr>
<td>Rustler</td>
<td>Rustler Formation</td>
</tr>
<tr>
<td>%R</td>
<td>percent recovery</td>
</tr>
<tr>
<td>Salado</td>
<td>Salado Formation</td>
</tr>
<tr>
<td>SAP</td>
<td>Sampling and Analysis Plans</td>
</tr>
<tr>
<td>SC</td>
<td>specific conductance</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure</td>
</tr>
<tr>
<td>TDS</td>
<td>total dissolved solids</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>TSDF</td>
<td>treatment, storage, and disposal facilities</td>
</tr>
<tr>
<td>UTLV</td>
<td>upper tolerance limit value</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WLMP</td>
<td>WIPP Groundwater Level Monitoring Program</td>
</tr>
<tr>
<td>μg/L</td>
<td>microgram(s) per liter</td>
</tr>
<tr>
<td>μm</td>
<td>micrometers</td>
</tr>
</tbody>
</table>
ATTACHMENT L

WIPP GROUNDWATER DETECTION MONITORING PROGRAM PLAN

L-1 Introduction

The Waste Isolation Pilot Plant (WIPP) facility is subject to regulation under Title 20 of the New Mexico Administrative Code (NMAC), Chapter 4, Part 1, Subpart V (20.4.1.500 NMAC). As required by 20.4.1.500 NMAC (incorporating 40 CFR §264.601), the Permittees shall demonstrate that the environmental performance standards for a miscellaneous unit, which are applied to the hazardous waste disposal units (HWDUs) in the underground, will be met.

The WIPP facility is located in Eddy County in southeastern New Mexico (Figure L-1M-57), within the Pecos Valley section of the southern Great Plains physiographic province. The facility is 26 miles (mi) (42 kilometers [km]) east of Carlsbad, New Mexico, in an area known as Los Medaños (the dunes). Los Medaños is a relatively flat, sparsely inhabited plateau with little water and limited land uses.

The WIPP facility (Figure L-2M-66) consists of 16 sections of federal land in Township 22 South, Range 31 East. The 16 sections of federal land were withdrawn from the application of public land laws by the WIPP Land Withdrawal Act (LWA), Public Law 102-579. The WIPP LWA transferred the responsibility for the administration of the 16 sections from the Department of Interior, Bureau of Land Management, to the U.S. Department of Energy (DOE). This law specified that mining and drilling for purposes other than support of the WIPP project are prohibited within this 16-section area with the exception of Section 31. Oil and gas drilling activities are restricted in Section 31 from the surface down to 6,000 feet.

The WIPP facility includes a mined geologic repository for the disposal of transuranic (TRU) mixed waste. The disposal horizon is located 2,150 feet (ft) (655 meters [m]) below the land surface in the bedded salt of the Salado Formation (Salado). At the WIPP facility, water-bearing units occur both above and below the disposal horizon. Groundwater monitoring of the uppermost aquifer below the facility is not required because the water-bearing unit, which is (the Bell Canyon Formation (Bell Canyon)), is not considered a credible pathway for a release from the repository. This is because the repository horizon and water-bearing sandstones of the Bell Canyon are separated by over 2,000 ft (610 m) of very low-permeability evaporite sediments (Amended Renewal Application Addendum L1 (DOE, 2009)). No natural credible pathway has been established for contaminant transport to water-bearing zones below the repository horizon, as there is no hydrologic communication between the repository and underlying water-bearing zones. The U.S. Environmental Protection Agency (EPA) concluded in 1990 that natural vertical communication does not exist based on review of numerous studies (EPA, 1990). Furthermore, drilling boreholes for groundwater monitoring through the Salado and the Castile Formation (Castile) into the Bell Canyon would compromise the isolation properties of the repository medium.

Groundwater monitoring at the WIPP facility focuses on the Culebra Member (Culebra) of the Rustler Formation (Rustler) because it represents the most significant hydrologic contaminant migration pathway to the accessible environment. The Culebra is the most significant transmissive water-bearing unit lying above the repository. Groundwater movement in the
Culebra, using based-on results from the basin-scale groundwater model, is discussed in detail in Amended Renewal Application Addendum L1, Section L1-2a, (DOE, 2009).

This monitoring plan addresses requirements for sample collection, Culebra groundwater surface elevation monitoring, Culebra groundwater flow direction and rate determination, data management, and reporting of Culebra groundwater monitoring data. It also identifies indicator parameters and hazardous constituents selected to assess Culebra groundwater quality for the WIPP Groundwater Detection Monitoring Program (DMP). Because quality assurance is an integral component of the groundwater sampling, analysis, and reporting process, quality assurance/quality control (QA/QC) elements and associated data acceptance criteria are included in this plan.

Procedures are required for each aspect of the Culebra groundwater monitoring and sampling processes, including Culebra groundwater surface elevation measurement, Culebra groundwater flow direction and rate determination, sampling equipment installation and operation, field water-quality measurements, and sample collection. Instructions for performing field activities that will be conducted in conjunction with this DMP are provided in the WIPP Standard Operating Procedures (SOPs) (see Table L-3), which are maintained in facility files and which comply with the applicable requirements of 20.4.1.500 NMAC (incorporating 40 CFR § 264.97 (d)). Procedures are required for each aspect of the Culebra groundwater sampling process, including Culebra groundwater surface elevation measurement, Culebra groundwater flow direction and rate determination, sampling equipment installation and operation, field water-quality measurements, and sample collection. Data required by this plan will be collected by qualified personnel in accordance with SOPs (Table L-3).

L-1a Geologic and Hydrologic Characteristics

L-1a(1) Geology

The WIPP facility is situated within the Delaware Basin bounded to the north and east by the Capitan Reef, which is part of the larger Permian Basin, located in western Texas and southeastern New Mexico, the south central region of North America. Three major evaporite-bearing formations were deposited in the Delaware Basin (see Figures L-3M-67 and L-4M-68 and Amended Renewal Application Addendum L1, Section L1-1 (DOE, 2009) for more detail):

- The Castile, which consists of interbedded anhydrites and halite. Its upper boundary is at a depth of about 2,825 ft (861 m) below ground surface (bgs), and its thickness at the WIPP facility is 1,250 ft (381 m).
- The repository is located in the Salado, which is the host formation of the repository and overlies the Castile and resulted from prolonged desiccation that produced predominantly halite, with some carbonates, anhydrites, and clay seams. Its upper boundary is at a depth of about 850 ft (259 m) bgs, and it is about 2,000 ft (610 m) thick in the repository area.
- The Rustler Formation, which was deposited in a lagoonal environment during a major freshening of the basin and consists of carbonates, anhydrites, and halites. Its beds consist of clay and anhydrite and contain small amounts of brine. The Rustler’s upper boundary is about 500 ft (152 m) bgs, and it ranges up to 350 ft (107 m) in thickness in the repository area.
These evaporite-bearing formations lie between two other formations significant to the geology and hydrology of the WIPP facility. The Dewey Lake Redbeds Formation (Dewey Lake) overlying the Rustler is dominated by nonmarine sediments and consists almost entirely of mudstone, claystone, siltstone, and interbedded sandstone (see Amended Renewal Application Addendum L1, Section L1-1c(6) (DOE, 2009)). This formation forms a 500-ft- (152-m) thick barrier of fine-grained sediments that retard the downward percolation of water into the evaporite units below. The Bell Canyon is the first water-bearing unit below the repository (see Amended Renewal Application Addendum L1, Section L1-1c(2) (DOE, 2009)) and is confined above by the thick evaporite deposits of the Castile. It consists of 1,200 ft (366 m) of interbedded sandstone, shale, and siltstone.

The Salado was selected to host the WIPP repository for several reasons. First, it is regionally extensive, underlying an area of more than 36,000 square mi (93,240 square kilometers [km²]). Second, its permeability is extremely low. Third, salt behaves mechanically in a plastic manner under pressure (the lithostatic pressure at the disposal horizon is approximately 2,200 pounds per square inch [lb/in.²] or 14.9 megapascals [MPa]) and eventually deforms to fill any opening (referred to as creep). Fourth, any fluid remaining in small fractures or openings is saturated with salt, is incapable of further salt dissolution, and has probably remained in place since deposition. Finally, the Salado lies between the Rustler and the Castile (Figure L-4M-68), both of which contain very low-permeability layers that help confine and isolate waste within and keep water outside of the WIPP repository (see Amended Renewal Application Addendum L1, Section L1-1c(5) and L1-1c(3) (DOE, 2009)).

L-1a(2) Groundwater Hydrology

The general hydrogeology of the area surrounding the WIPP facility is described in this section starting with the first geologic unit below the Salado. Addendum L1, Section L1-2a of the Amended Renewal Application (DOE, 2009) provides more detailed discussions of the local and regional hydrogeology. Relevant hydrological parameters for the various rock units above the Salado at the WIPP facility are summarized in Table L-1.

L-1a(2)(i) The Castile

The Castile is a basin-filling evaporite sequence of sediments surrounded by the Capitan Reef. The Castile represents a major regional groundwater aquitard that effectively prevents upward migration of water from the underlying Bell Canyon. Fluid present in the Castile is very restricted because evaporites do not readily maintain pore space, solution channels, or open fractures at depth. Drill-stem tests conducted in the Castile during construction of the WIPP facility determined its permeability to be lower than detection limits; however, the hydraulic conductivity has been conservatively estimated to be less than \(10^{-8} \text{ ft/feet (ft) per day or } (3.5 \times 10^{-14} \text{ meters per second (m/s)})\) per day. A description of the Castile brine reservoirs outside the WIPP facility area is provided in Addendum L1, Section L1-2a(2)(b) of the Amended Renewal Application (DOE, 2009).

L-1a(2)(ii) The Salado

The Salado is an evaporite sequence that filled the remainder of the Delaware Basin and lapped extensively over the Capitan Reef and the back-reef sediments beyond. The Salado consists of approximately 2,000 ft (610 m) of bedded halite, with interbeds or seams of anhydrite, clay, and polyhalite. It acts hydrologically as a regional confining bed. The porosity of the Salado is very...
low and naturally interconnected pores are probably nonexistent in halite at the depth of the disposal horizon. Fluids associated with the Salado occur mainly as very small fluid inclusions in the halite crystals and also occur between crystal boundaries (interstitial fluid) of the massive crystalline salt formation; fluids also occur in clay seams and anhydrite beds. Permeabilities measured from the surface in the area of the WIPP facility range from 0.01 to 25 microdarcys (9.9 x 10^-17 square meters [m^2]). The most reliable value, 0.3 microdarcy (3.0 x 10^-19 m^2), was obtained from well DOE-2. The results of permeability testing at the disposal horizon are within the range of 0.001 to 0.01 microdarcy (9.9 x 10^-22 to 9.9 x 10^-21 m^2).

L-1a(2)(iii) The Rustler

The Rustler has been the subject of extensive characterization activities because it contains the most transmissive hydrologic units overlying the Salado. Within the Rustler, five members have been identified. Of these, the Culebra is the most transmissive and has been the focus of most of the Rustler hydrologic studies.

The Culebra is the first continuous water-bearing zone above the Salado and is up to approximately 30 ft (9 m) thick. Water in the Culebra is usually present in fractures and is confined by overlying gypsum or anhydrite and underlying clay and anhydrite beds. The hydraulic gradient within the Culebra in the area of the WIPP facility is approximately 20 ft per mi (3.8 m per km) and becomes much flatter south and southwest of the site (Figure L-5M-69). Culebra transmissivities in the Nash Draw range up to 1,250 square ft (ft^2) per day (ft^2/d) (1.3 x 10^3 m^2 per second [m^2/s]) 116 square m [m^2]) per day; closer to the WIPP facility, they are as low as 0.007 to 74 ft^2/d (0.000657.5 x 10^-9 to 8.0 x 10^-57.0 m^2/s) per day.

The two primary types of field tests that are being used to characterize the flow and transport characteristics of the Culebra are hydraulic tests and tracer tests.

The hydraulic tests consist of pump, injection, and slug testing of wells across the study area (see Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009)). The most detailed hydraulic test data exist for the WIPP hydropads (e.g., H-19). The hydropads generally comprise a network of three or more wells located within a few tens of meters of each other. Long-term pumping tests have been conducted at hydropads H-3, H-11, and H-19 and at well WIPP-13 (see Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009)). These pumping tests provided transient pressure data both at the hydropad and over a much larger area. Tests often included use of automated data-acquisition systems, providing high-resolution (in both space and time) data sets. In addition to long-term pumping tests, slug tests and short-term pumping tests have been conducted at individual wells to provide pressure data that can be used to interpret the transmissivity at that well (see Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009)). Detailed cross-hole hydraulic testing has been conducted at the H-19 hydropad (see Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009)).

Pressure data were collected during hydraulic tests for estimation of hydrologic characteristics such as transmissivity, permeability, and storativity. The pressure data from long-term pumping tests and the interpreted transmissivity values for individual wells were used to develop the conceptual model for incorporation into calibration of flow models. Some of the hydraulic test data and interpretations are also important for the interpretation of transport...
characteristics. For instance, the permeability values interpreted from the hydraulic tests at a
given hydropad are needed for interpretations of tracer test data at that hydropad.

There is strong evidence that the permeability of the Culebra varies spatially and varies
sufficiently that it cannot be characterized with a uniform value or range over the region of
interest to that affects the WIPP facility. The transmissivity of the Culebra varies spatially over
ten orders of magnitude from east to west in the vicinity of the WIPP facility. Transmissivities
have been calculated at 1×10^{-7} ft2/day (1 $\times 10^{-13}$ m2/second) at well SNL-15 east of the WIPP site to 1×10^3 ft2/day (1 $\times 10^{-3}$ m2/second) at well H-7 in Nash Draw (see Amended Renewal Application
Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009)).

Transmissivity variations in the Culebra are believed to be controlled by the relative abundance
of open fractures (secondary porosity) rather than by primary porosity (i.e. depositional)
features of the unit (Roberts, 2007). Lateral variations in depositional environments were small
within the mapped region, and primary features of the Culebra show little map-scale spatial
variability, according to Holt and Powers, 1988. Direct measurements of the density of open
fractures are not available from core samples because of incomplete recovery and fracturing
during drilling, but observation of the relatively unfractured exposures in the WIPP shafts
suggests that the density of open fractures in the Culebra decreases to the east. Holt and
Powers (1988) examined available Culebra cores at and near the WIPP site and integrated
observations with shaft mapping at the site. These cores were not all complete through the
Culebra. Culebra thickness varies somewhat in the site area. The Culebra varies vertically, but
Holt and Powers (1988) described consistent sedimentary features across the area. The
Culebra did not reveal facies changes over the site and surrounding area that indicate changes
in depositional environments.

Holt (1997) described transport processes through the Culebra, concluding that at the regional
scale the Culebra will behave as a double-porosity unit. Fractures were related to depth and
dissolution of underlying Salado halite by Holt (Holt and Yarbrough, 2002; Powers et al., 2003).
It was also noted by Holt (1997) that halite bounding the Culebra (especially to the east of the
WIPP site) was likely to further decrease the porosity of the Culebra. Culebra core from monitor
well SNL-15 (Powers et al., 2006) provided evidence of halite filling Culebra porosity where
halite beds overlie and underlie the dolomite (Holt and Powers, 2010). Gypsum precipitated in
porosity in some areas of the Culebra may further decrease porosity (Beauheim and Holt,
1990). The Culebra conceptual model was revised based on the relationship of transmissivity to
the three factors of overburden thickness, dissolution of salt from below the Culebra, and the
presence of halite below and above the Culebra (Holt et al., 2005).

Geochemical and radioisotope characteristics of the Culebra have been studied. There is
considerable variation in groundwater geochemistry in the Culebra. The variation has been
described in terms of different hydrogeochemical facies that can be mapped in the Culebra. A
halite-rich hydrogeochemical facies exists in the region of the WIPP site and to the east,
approximately corresponding to the regions in which halite exists in units above and below the
Culebra, and in which a large portion of the Culebra fractures are gypsum filled. An anhydrite-
rich hydrogeochemical facies exists west and south of the WIPP site, where there is relatively
less halite in adjacent strata and where there are fewer gypsum-filled fractures. Radiogenic
isotopic signatures suggest that the age of the groundwater in the Culebra is on the
order of 10,000 years or more (see Amended Renewal Application Addendum L1 (DOE, 2009)).
More recent data indicate Krypton-81 model ages on the order of 130,000 years for high-
transmissivity zones of the Culebra (Sturchio et al., 2014).

The radiogenic ages of the Culebra groundwater and the geochemical differences provide
information potentially relevant to the groundwater flow directions and groundwater interaction
with other units and are important constraints on conceptual models of groundwater flow (see
Renewal Application Addendum L1, Section L1-4b (DOE, 2020).

The Permittees have proposed a conceptualization of groundwater flow that explains observed
geochemical facies and groundwater flow patterns. The conceptualization, referred to as the
basin-scale groundwater model, offers a three-dimensional approach to treatment of
Supra-Salado rock units, and assumes vertical leakage (albeit very slow) between rock units of
the Rustler exists (where a hydraulic head is present).

Flow in the Culebra is considered transient. The model assumes that the groundwater system is
dynamic and is responding to the drying of climate that has persisted since the
late Pleistocene period. The Permittees assumed that recharge rates during the late Pleistocene
period were sufficient to maintain the water table near land surface, but has since dropped
significantly. Therefore, the impact of local topography on groundwater flow was greater during
wetter periods, with discharge from the Rustler in the vicinity of the WIPP facility to the west
toward Nash Draw; flow is currently dominated by more regional topographic effects during drier
times, with flow in the Rustler from the vicinity of the WIPP facility towards the Balmorhea-
Loving Trough to the south.

Using data from 22 wells, Siegel et al., Robinson, and Myers (1991) originally defined four
hydrochemical zones (A, B, C, and D) for Culebra groundwater based primarily on ionic
strength and major constituents. With the data now available from 59 wells, Domski and
Beauheim (2008) defined transitional A/C and B/C facies, as well as a new facies Zone E for
high-moles per kilogram (molal) Na-Mg Cl brines. These hydrochemical zones/facies include the
following:

- **Zone B** - Dilute (ionic strength ≤0.1 molal) CaSO₄-rich groundwater, from southern high-
transmissivity area. Mg/Ca molar ratio 0.32 to 0.52.

- **Zone Facies B/C** - Ionic strength 0.18 to 0.29 molal, Mg/Ca molar ratio 0.4 to 0.6.

- **Zone C** - Variable composition waters, ionic strength 0.3 to 1.0 molal, Mg/Ca molar ratio
0.4 to 1.1.

- **Zone Facies A/C** - Ionic strength 1.1 to 1.6 molal, Mg/Ca molar ratio 0.5 to 1.2.

- **Zone A** - Ionic strength >1.66 molal, up to 5.3 molal, Mg/Ca molar ratio 1.2 to 2.4.

- **Zone D** - Defined based on inferred contamination related to potash refining operations.
 Ionic strength 3 molal, K/Na weight ratios of ~0.2.

- **Zone E** - Wells east of the mudstone-halite margins, ionic strength 6.4 to 8.6 molal,
 Mg/Ca molar ratio 4.1 to 6.6.
The low-ionic-strength (≤0.1 molal) facies Zone B waters contain more sulfate than chloride, and are found southwest and south of the WIPP site within and down the Culebra hydraulic gradient from the southernmost closed catchment basins, mapped by Powers (2006), in the southwest arm of Nash Draw. These waters reflect relatively recent recharge through gypsum karst overlying the Culebra. However, with total dissolved solids (TDS) concentrations in excess of 3,000 mg/L, the facies Zone B waters do not represent modern-day precipitation rapidly reaching the Culebra. They must have residence times in the Rustler sulfate units of thousands of years before reaching the Culebra.

The higher-ionic-strength (0.3-1 molal) facies Zone C brines have differing compositions, representing meteoric waters that have dissolved CaSO₄, overprinted with mixing and localized processes. Facies Zone A brines (ionic strength 1.6 - 5.3 molal) are high in NaCl and are clustered along the extent of halite in the middle of the Tamarisk Member of the Rustler Formation. Facies Zone A represents old waters (long flow paths) that have dissolved halite and/or connate brine, or a mixture of the two from facies Zone E. The facies Zone D brines, as identified by Siegel et al., Robinson, and Myers (1991), are high-ionic-strength solutions found in western Nash Draw with high K/Na ratios representing waters contaminated with effluent from potash refining operations. Similar water is found at shallow depth (<36 ft (11 m)) in the upper Dewey Lake at SNL-1, just south of the Intrepid East tailings pile. The newly defined facies Zone E waters are very high ionic strength (6.4 - 8.6 molal) NaCl brines with high Mg/Ca ratios. The facies Zone E brines are found east of the WIPP site, where Rustler halite is present above and below the Culebra, and halite cements are present in the Culebra. They represent primitive brines present since deposition of the Culebra and immediately overlying strata.

In a previous (earlier) conceptual model, the geochemistry of Culebra groundwater was not correlated with flow direction. It was assumed the Zone Previously, the Permittees and others believed the geochemistry of Culebra groundwater was inconsistent with flow directions. This was based on the premise that facies C water must transform to Zone facies B water (e.g., become “fresher”), which is inconsistent with the observed flow direction. It is now believed that the observed geochemistry and flow directions can be explained with different recharge areas and Culebra travel paths (Amended Renewal Application Addendum L1 (DOE, 2009). and Renewal Application Addendum L1 (DOE, 2020)).

Head distribution in the Culebra (see Amended Renewal Application Addendum L1 (DOE, 2009) and Renewal Application Addendum L1 (DOE, 2020)) is now consistent with basin-scale groundwater basin modeling results indicating that the generalized groundwater flow direction in the Culebra is currently north to south. However, the fractured nature of the Culebra, coupled with variable fluid densities, can cause localized flow patterns to differ from general flow patterns.

Groundwater levels in the Culebra in the region around the WIPP facility have been measured in numerous wells. Water-level rises have been observed and are attributed to causes discussed in the Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009) and Renewal Application Addendum L1, Section L1-4d (DOE, 2020). The extent of changes in water levels rise observed at a particular well depends on several factors, but the proximity of the observation point to the cause of the water-level change appears to be a primary factor. Water level decreases have been observed due to anthropogenic causes, such as pumping water wells by a local rancher and well pumping from the oil and gas industry for hydraulic fracking (Thomas et al., 2017).
Hydrological investigations conducted from 2003 through 2007 provided new information, some of it confirming long-held assumptions and some offering new insight into the hydrological system around the WIPP site. A Culebra monitoring network optimization study was completed by McKenna (2004) and updated by Kuhlman (2010) to identify locations where new Culebra monitoring wells would be of greatest value and to identify wells that could be removed from the network with little loss of information.

As discussed in Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009) and Renewal Application Addendum L1 (DOE, 2020), extensive hydrological testing has been performed in the new wells. This testing has involved both short-term single-well tests, which provide information on local transmissivity and heterogeneity, and long-term (19 to 32 days) pumping tests that have created observable responses in wells up to 5.9 mi (9.5 km) away.

Inferences about vertical flow directions in the Culebra have been made from well data collected by the Permittees. Beauheim (1987) reported flow directions towards the Culebra from both the underlying Los Medaños Member (Los Medaños) of the Rustler and the overlying Magenta Member (Magenta) of the Rustler across the WIPP site, indicating that the Culebra acts as a drain for the units around it. This is consistent with results of basin-scale groundwater modeling.

Use of water from the Culebra in the WIPP facility area is quite limited because of its varying yields and high salinity. The Culebra is not used for water supply in the immediate WIPP facility vicinity. Its nearest use is approximately 7 mi (11 km) southwest of the WIPP facility, where salinity is low enough to allow its use for livestock watering.

L-2 General Regulatory Requirements

Because geologic repositories such as the WIPP facility are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities and as miscellaneous units, the groundwater monitoring requirements of 20.4.1.500 NMAC (incorporating 40 CFR §§264.600 through 264.603) shall be addressed. The requirements of 20.4.1.500 NMAC (incorporating 40 CFR §§264.90 through 264.101) apply to miscellaneous unit treatment, storage, and disposal facilities (TSDF) only if groundwater monitoring is needed to satisfy 20.4.1.500 NMAC (incorporating 40 CFR §§264.601 through 264.603) environmental performance standards.

The New Mexico Environment Department (NMED) has concluded that groundwater monitoring in accordance with 20.4.1.500 NMAC (incorporating 40 CFR Part 264, Subpart F) at the WIPP facility is necessary to meet the requirements of 20.4.1.500 NMAC (incorporating 40 CFR §§264.601 through 264.603).

L-3 WIPP Detection Monitoring Program (DMP)—Overview

L-3a Scope

This DMP plan governs groundwater sampling events conducted to meet the applicable requirements of 20.4.1.500 NMAC (incorporating 40 CFR Part 264 Subpart F), and ensures that such data are gathered in accordance with these and other applicable requirements. Analytical results collected during the DMP are compared to the baseline established in this Permit Part 5, Table 5.6, to determine whether or not a release has occurred.
There are two separate components of the Groundwater Monitoring Program, the Detection Monitoring Program (DMP) and the Water Level Monitoring Program (WLMP). The first component consists of a network of six Detection Monitoring Wells (DMWs). The DMWs (WQSP 1-6) were constructed to be consistent with the specifications provided in the Groundwater Monitoring Technical Enforcement Guidance Document and constitute the RCRA groundwater monitoring network specified in the DMP (Figure M-69). The DMWs were used to establish background groundwater quality in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §§ 264.97 and 264.98-(f)). The second component of the Culebra Groundwater Monitoring Program is the WLMP, which is used to determine the groundwater surface elevation and flow direction. Table L-4 is a list of the wells used in the WLMP. The list of wells is subject to change due to plugging and abandonment and drilling of new wells.

L-3b Current WIPP DMP

Wells WQSP-1, WQSP-2, and WQSP-3 are located directly upgradient (north) of the WIPP shaft area. WQSP-4, WQSP-5, and WQSP-6 are located downgradient (south) of the WIPP shaft area. All three Culebra downgradient wells (WQSP-4, -5, and -6) were sited to be located generally in the flow path of contaminants that might be released from the shaft area in the Culebra. Well WQSP-4 was also specifically located to monitor the zone of higher transmissivity, which may represent a faster flow path away from the WIPP shaft area to the LWA boundary (Amended Renewal Application Addendum L1, Section L1-2a(3)(a)(ii) (DOE, 2009)).

The compliance point is defined in 20.4.1.500 NMAC (incorporating 40 CFR §264.95) as the vertical plane immediately downgradient of the hazardous waste management unit area (i.e., at the downgradient footprint of the WIPP repository). Permit Part 5 specifies the point of compliance as “the vertical surface located at the hydraulically downgradient limit of the Underground HWDUs that extends to the Culebra Member of the Rustler Formation.” Wells WQSP-4, 5, and 6 are situated to demonstrate that during the operating life of the facility (including closure), there will be no releases of hazardous waste constituents that may have an adverse effect on human health and the environment due to the migration of waste constituents in the groundwater or subsurface environment, release of contaminants to the general public will not occur.

Transport modeling suggests that travel times from the Waste Handling Shaft to the LWA boundary could be on the order of thousands of years. This assumes conditions where hazardous constituents migrate from the sealed repository (post closure) to the Culebra via the sealed shafts.

Potentiometric surfaces and groundwater flow directions defined for the Culebra prior to large-scale pumping in the WIPP facility area and the excavation of WIPP facility shafts suggests that flow was generally to the south-southeast from the waste disposal and shaft areas (Mercer, 1983; Davies, 1989). Potentiometric surface maps of the Culebra adjusted for density differences show very similar characteristics. Water levels used to determine the wells used for measuring the potentiometric surface of the Culebra are measured monthly and listed in Table L-4.
L-3b(1) Detection Monitoring Well Construction Specification

Diagrams of the six DMP wells are shown in Figures L-7M-71 through L-12M-76. Detailed descriptions of geology and construction methods may be found in DOE (1995).

The six DMP Culebra wells were drilled between September 13 and October 16, 1994. The total depth of each well is shown in Table L-5. The wells were drilled through the Culebra into the Los Medaños as shown in Table L-5. The wells were drilled to the top of the Culebra using compressed air as the drilling fluid and a 9¾-in. drill bit. The wells were then cored using a 5¾-in. core bit to cut 4-in. (0.1-m) diameter core to total depth. See Table L-5 for the drilling and coring intervals for each well. After coring, DMP wells were reamed to 9¾-in. (0.3 m) in diameter to total depth. After reaming, wells were cased from the surface to total depth with 5-in. (0.1-m) (0.28-in. [0.7-centimeter (cm)] wall) blank fiberglass casing with in-line 5-in.- (0.1-m) diameter fiberglass 0.02-in. (0.1-cm) slotted screen across the Culebra interval as shown in Table L-5. The annulus between the borehole wall and the casing/screen is packed from total depth to surface with sand and with 8/16 Brady gravel, followed by sand, bentonite, and cement as indicated in Table L-5.

L-4 Monitoring Program Description

The WIPP DMP has been designed to meet the groundwater monitoring requirements of 20.4.1.500 NMAC (incorporating 40 CFR §§264.90 through 264.101). The following sections of the monitoring plan specify the components of the DMP.

L-4a Monitoring Frequency

Groundwater surface elevations will be monitored in each of the six DMWs on a monthly basis. The groundwater surface elevation in each DMW will also be measured prior to each annual sampling event. The groundwater surface elevation measurements in the WLMP wells will also be monitored on a monthly basis when accessible. The characteristics of the DMW (sampling frequency, location) will be evaluated if significant changes are observed in the groundwater flow direction or gradient.

L-4b Analytical Parameters and Hazardous Constituents

The parameters listed in Permit Part 5, Table 5.4.a, and hazardous constituents listed in Permit Part 5, Table 5.4.b, are measured as part of the DMP.

Additional hazardous constituents may be identified through changes to the list of hazardous waste numbers authorized for disposal at the WIPP facility. If hazardous constituents are identified, these will be added to Permit Part 5, Table 5.4.b, unless the Permittees provide justification for their omission (e.g., hazardous constituent not in 40 CFR §Part 264, Appendix IX), and this omission is approved by the NMED.

L-4c Groundwater Surface Elevation Measurement, Sample Collection and Laboratory Analysis

Groundwater surface elevations will be measured in each DMW prior to groundwater sample collection. Groundwater will be extracted using serial and final sampling methods. Serial samples will be collected until groundwater field indicator parameters stabilize or three well
bore volumes, whichever occurs first, after which the final sample for complete analysis will be collected. Final samples will then be analyzed for the parameters and constituents in Permit Part 5, Tables 5.4.a and 5.4.b.

L-4c(1) Groundwater Surface Elevation Monitoring Methodology

The WIPP groundwater level monitoring program (WLMP) activities are conducted in accordance with the WIPP facility SOPs listed in Table L-3.

Groundwater surface elevation measurements will be taken monthly at each of the six DMWs and prior to the annual sampling event. Additionally, groundwater surface elevation measurements will be taken monthly in the other Culebra wells as listed in Table L-4, when accessible. Well locations are shown in Figure L-14M-77. If a cumulative groundwater surface elevation change of more than 2 feet is detected in any DMP well over the course of one year, and the change in elevation is not attributable to site tests or natural stabilization of the site hydrologic system, the Permittees will notify the NMED in writing and discuss the origin of the changes in the Annual Culebra Groundwater Report specified in Permit Part 5. Abnormal, unexplained changes in groundwater surface elevation will be evaluated to determine if they indicate changes in site recharge/discharge, which could affect the assumptions regarding DMW placement and constitute new information as specified in 20.4.1.900 NMAC (incorporating 40 CFR §270.41(a)(2)).

Groundwater surface elevation monitoring will continue through the post-closure care period specified in Permit Part 7. The Permittees may temporarily increase the frequency of monitoring to effectively document naturally occurring or artificial perturbations that may be imposed on the hydrologic systems at any point in time. This will be conducted in selected key wells by increasing the frequency of the manual groundwater surface elevation measurements or by monitoring water pressures with the aid of electronic pressure transducers and remote data-logging systems. The Permittees will include such additional data in the reports specified in Section L-5c.

Interpretation of groundwater surface elevation measurements and corresponding fluctuations over time is complicated at the WIPP facility by spatial variation in fluid density. To monitor the hydraulic gradients of the hydrologic flow systems accurately, actual groundwater surface elevation measurements will be monitored at the frequencies specified in Table L-2, and the Culebra groundwater densities, of the fluids in the wells listed in Table L-4, will be calculated measured annually. The fluid density calculated for measured at well H-19b0 will be used to correct for freshwater head for the other wells on H-19 pad (H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7).

Measured Culebra water surface elevation data can be converted to equivalent freshwater head from knowledge of the density of the borehole fluid, using the following formula.

\[p = \gamma y \gamma h \]

where

\(p \) = freshwater head (length of freshwater head)
\(y \gamma \) = average specific gravity of the borehole fluid (unitless ratio of borehole fluid density to density of fresh water)
$\rho_p = \text{freshwater density (mass/volume)}$

$h = \text{fluid column height above the datum (length)}$

If the freshwater density is assumed to be 1.000 gram per cubic centimeter (g/cm3), then the equivalent freshwater head is equal to the fluid column height times the average borehole fluid specific gravity.

Density calculations are performed made annually. Density for the DMWs will be expressed as specific gravity as measured in the field during sampling events using a hydrometer. Freshwater head for other Culebra wells will be calculated as described above from fluid density measurements obtained using pressure transducers.

L-4c(1)(i) Field Methods and Data Collection Requirements

To obtain an accurate groundwater surface elevation measurement, a calibrated water-level measuring device will be lowered into a test well and the depth to water recorded from a known reference point. An SOP will be used when making water-level measurements for this program. The SOP will specify the methods to be used in obtaining groundwater-level measurements, and provide general instructions including prerequisites, safety precautions, performance frequency, quality assurance, data management, and records.

L-4c(1)(ii) Groundwater Surface Elevation Records and Document Control

Incoming groundwater surface elevation measurement data will be processed in a manner that ensures data integrity. The data management process for groundwater surface elevation measurements will begin with completion of the field data sheets. Date, time, tape measurement, unique equipment identification number, calibration due date, initial of the field personnel, and equipment/comments will be recorded on the field data sheets. If, for some unexpected reason, a measurement is not possible (e.g., a test is under way that blocks entry to the well bore), then a notation as to why the measurement was not taken will be recorded in the comment column. Personnel will also use the comment column to report any security observations (i.e., well lock missing, casing damage).

Data recorded on the field data sheets and submitted by field personnel will be subject to applicable SOPs (see Table L-3). These procedures specify the processes for administering and managing such data. The data will be entered onto a computerized work sheet. The work sheet program calculates groundwater surface elevation in both feet and meters relative to the top of the casing and also relative to mean sea level. The work sheet program adjusts groundwater surface elevations to equivalent freshwater heads.

A check print will be made of the work sheet printout. The check print will be used to verify that data taken in the field was properly reported on the database printout. A minimum of 10 percent of the spreadsheet calculations will be randomly verified on the check print to ensure that calculations are being performed correctly. If errors are found, the work sheet will be corrected. Groundwater surface elevation data and equivalent freshwater heads for the Culebra wells in Table L-4 will be transmitted to the NMED by May 31 and November 30. Semi-annual groundwater reports will also include annotated hydrographs and trend analysis.
L-4c(2) Groundwater Sampling

L-4c(2)(i) Groundwater Pumping and Sampling Systems

The groundwater pumping and sampling systems used to collect a groundwater sample from the six DMWs will provide continuous and adequate production of water so that a representative groundwater sample can be obtained.

The type of pumping and sampling system to be used in a well depends primarily on the aquifer characteristics of the Culebra and well construction. The DMWs are individually equipped with dedicated submersible pumping assemblies. Each well has a specific type of submersible pump matched to the ability of the well to yield water during pumping. The down-hole submersible pumps are controlled by a variable electronic flow controller to match the production capacity of the formation at each well.

As recommended in the “RCRA Ground-Water Monitoring Technical Enforcement Guidance Document” (EPA, 1986) the wells will be purged no more than three well bore volumes or until field indicator parameters have stabilized, whichever comes first. Well purging will be performed in accordance with an SOP in conjunction with serial sampling field parameter analysis to determine when the groundwater chemistry stabilizes and is therefore representative of undisturbed groundwater.

The DMWs are cased and screened through the production interval with materials (fiberglass-reinforced plastic) that do not yield contamination to the aquifer or allow the production interval to collapse under stress (high epoxy fiberglass). An electric, submersible pump installation without the use of a packer is used in this instance. The largest amount of discharge from the submersible pump takes place from a discharge pipe. In addition to this main discharge pipe, a dedicated sample line running parallel to the discharge pipe is used. The sampling line is manufactured from a chemically inert material. Cumulative flow is measured using a totalizing flow meter. Flow from the discharge pipe is routed to a discharge tank for disposal.

The dedicated sampling line is used to collect the water sample that will undergo analysis. By using a dedicated sample line, the water will not be contaminated by the metal discharge pipe. The sample line will branch from the main discharge pipe a few inches above the pump. Flow from the sample line will be routed into the sample collection area. Flow through the sample collection line is regulated by a flow-control valve. The sample line is insulated at the surface to minimize temperature fluctuations.

L-4c(2)(ii) Serial Samples Field Parameter Analysis

Serial sampling field parameter analysis is the collection measurement of data from temperature, specific conductivity, and pH meters installed in a flow-through cell for of sequential samples for the purpose of determining when the groundwater chemistry stabilizes and is therefore representative of undisturbed groundwater. The Permittees’ SOP for serial sampling field parameter analysis will provide criteria for determining when a final sample should be taken. Each DMW will be purged to no more than three well bore volumes, or until field parameters stabilize, whichever occurs first. Well stabilization occurs when the field-analyzed parameters are within ± 5% of for three consecutive measurements. A well bore volume is defined as the volume of water from static water level to the bottom of the well sump. Serial samples will be analyzed in the mobile field laboratory for field indicator parameters. The
Permittees will provide an explanation of why the sample was collected when field indicator parameters were not stabilized and place that explanation in the WIPP facility Operating Record.

Serial samples **field parameters** will be collected and analyzed to detect and monitor the chemical variation of the groundwater as a function of the volume of water pumped. Once serial sampling **data collection** begins, the **duration** frequency at which serial samples **field parameters** are collected and analyzed will be left to the discretion of the Permittees, but will be performed a minimum of three times during a sampling round.

The Permittees will use appropriate field methods to identify stabilization of the following field indicator parameters: pH, temperature, specific conductance (SC), and specific gravity.

The three field indicator parameters of temperature, specific conductance SC, and pH will be determined by either an “in-line” technique, using a self-contained flow cell, or an “off-line” technique, in which the samples will be collected from a sample line at atmospheric pressure. Specific conductance and specific gravity samples will be collected from the sample line at atmospheric pressure. Because of the lack of sophisticated weights and measures equipment available for field density assessments, field density evaluations will be expressed in terms of specific gravity, which is a unitless measure. Density is expressed as unit weight per unit volume.

New polyethylene containers, that are certified clean by the laboratory, will be used to collect the serial **final** samples from the sample line.

Serial samples collected in laboratory certified clean containers do not require rinsing prior to sample collection. Unfiltered groundwater will be used when determining temperature, pH, specific conductance, and specific gravity. Sample bottles will be properly identified and labeled.

Samples collected will immediately be analyzed for pH and specific conductance (SC) as these parameters are most sensitive to changes in ambient temperature. Temperature, pH, and specific conductance, when not measured in a flow cell, will be measured at the approximate time of serial sample collection. These samples will be collected from the unfiltered sample line.

Upon completion of the collection of the last serial sample suite, the serial sample bottles accrued throughout the duration of the pumping of the well will be discarded. No serial sample bottles will be reused for sampling purposes of any sort. However, serial samples may be stored for a period of time depending upon the need. Standard Operating Procedures (see Table L-3) defines the protocols for the collection of final and serial samples and analysis.

L-4c(2)(iii) Final Samples

The final sample will be collected once the measured field indicator parameters have stabilized (refer to Section L-4(c)(2)(ii)). A serial sample **collected data** will also be collected and analyzed for each day of pumping until final sampling. **This is** to ensure that samples collected for laboratory analysis are still representative of stable conditions. Sample preservation, handling, and transportation methods will maintain the integrity and representativeness of the final samples.
Prior to collecting the final samples, the collection team shall consider the analyses to be performed so that proper shipping or storage containers can be assembled. Table L-6 presents the sample containers, volumes, and holding times for laboratory samples collected as part of the DMP.

The monitoring system will use dedicated pumping systems and sample collection lines from the sampled formation to the well head.

Sample integrity will be ensured through appropriate decontamination procedures. Laboratory glassware will be washed after each use with a solution of nonphosphorus detergent and deionized (DI) water and rinsed in DI water. Sample containers will be new, certified clean containers that will be discarded after one use. Groundwater surface elevation measurement devices will be rinsed with fresh water after each use. Non-dedicated sample collection manifold assemblies will be rinsed in accordance with SOPs after each use. The exposed ends will be capped off during storage. Prior to the next use of the sampling manifold, it will be rinsed a second time with DI water and a rinsate blank sample will be collected to verify cleanliness.

Water samples will be collected at atmospheric pressure using either the filtered or unfiltered sampling lines. Detailed protocols, in the form of SOPs (see Table L-3) define how final samples will be collected in a consistent and repeatable fashion for analyses.

Final samples will be collected in the appropriate type of container for the specific analysis to be performed. The samples will be collected in new and unused glass and plastic containers (refer to Table L-6). For each parameter analyzed, a sufficient volume of sample will be collected to satisfy the volume requirements of the analytical laboratory (as specified by laboratory SOPs). This includes an additional volume of sample water necessary for maintaining quality control standards. All final samples will be treated, handled, and preserved as required for the specific type of analysis to be performed. Details about sample containers, preservation, and volumes required for individual types of analyses are found in the applicable SOPs generated, approved, and maintained by the contract analytical laboratory.

Final samples will be sent to the analytical laboratories and analyzed for parameters and hazardous constituents specified in Permit Part 5, Tables 5.4.a and 5.4.b.

Duplicates of the final sample will be provided to WIPP Project oversight agencies when requested.

Wastes resulting from the sampling and field analysis of groundwater are disposed of in accordance with the WIPP SOPs (see Table L-3).

L-4c(2)(iv) Sample Preservation, Tracking, Packaging, and Transportation

Many of the chemical constituents measured by the DMP are not chemically stable and require preservation and special handling techniques. Samples requiring acidification will be treated as requested by the analytical laboratory.

The analytical laboratory receiving the samples will prescribe the type and amount of preservative, the container material type, the required sample volumes that shall be collected, and the shipping requirements. This information will be recorded on the Final Sample Checklist for use by field personnel when final samples are being collected. The Permittees will follow the
EPA “RCRA Ground-Water Monitoring Technical Enforcement Guidance Document,” Table 4-1 (EPA, 1986), when laboratory SOPs do not specify sample container, volume, or preservation requirements. WIPP Waste Isolation Pilot Plant SOPs (see Table L-3) provide instructions to ensure proper sample preservation and shipping.

The sample tracking system at the WIPP facility uses uniquely numbered chain of custody/ request for analysis (CofC/RFA) forms. The primary consideration for storage or transportation is that samples shall be analyzed within the prescribed holding times for the analytes of interest. WIPP SOPs (see Table L-3) provide instructions to ensure proper sample tracking protocol.

L-4c(2)(v) Sample Documentation and Custody

To ensure the integrity of samples from the time of collection through reporting date, sample collection, handling, and custody shall be documented. Sample custody and documentation procedures for sampling and analysis activities are detailed in WIPP facility SOPs (see Table L-3).

Standardized forms used to document samples will include sample identification numbers, sample labels, custody tape, the sample tracking data, and CofC/RFA form. An example form is shown in Figure L-13.

Sample Numbers and Labels

A unique sample identification number will be assigned to each sample sent to the laboratory for analysis. The sample identification numbers will be used to track the sample from the time of collection through data reporting. Every sample container sent to the laboratory for analysis will be identified with a label affixed to it. Sample label information will be completed in indelible ink and will contain the following information: sample identification number with sample matrix type; sample location; analysis requested; time and date of collection; preservative(s), if any; and the sampler’s name or initials.

Custody Seals

Custody seals or custody tape will be used to detect unauthorized sample tampering from collection through analysis. For example, custody seals that are adhesive-backed strips are destroyed when removed or when the container is opened. The seal will be dated, initialed, and affixed to the sample container in such a manner that it is necessary to break the seal to open the container. Seals will be affixed to sample containers in the field immediately after collection. Upon receipt at the laboratory, the laboratory custodian will inspect the seal for integrity; a broken seal will invalidate the sample.

Sample Identification and Tracking

Sample tracking information will be completed for each sample collected. The sample tracking information includes the following information: CofC/RFA form number; date sample(s) were sent to the lab; laboratory name; acknowledgment of receipt or comments; well name and round number. Sample codes will indicate the well location; the geologic formation where the water was collected from, the sampling round number; and the sample number. The code is broken down as follows:
WQ6°C2R2³N1⁴

1 Well identification (e.g., WQSP-6 in this case)
2 Geologic formation (e.g., the Culebra in this case)
3 Sample round no. (Round 2)
4 Sample no. (N1)

To distinguish duplicate samples from other samples, a “D” is added as the last digit to signify a duplicate. Sample tracking information will be completed in the field by the sampling team.

Sample tracking is monitored and documented with the CofC/RFA form and the shipping airbill. Both of these documents are included in the data packets. Receipt at the analytical laboratory may be monitored, if necessary, via the shipper’s website tracking application. Samples are considered complete when a copy of the original CofC/RFA form is merged with the Field-Lab copy of the same document.

Chain of Custody and Request for Analysis

A CofC/RFA form will be completed during or immediately following sample collection and will accompany the sample through analysis and disposal. The CofC/RFA form will be signed and dated each time the sample custody is transferred. A sample will be considered to be in a person’s custody if: the sample is in his/her physical possession; the sample is in his/her unobstructed view; and/or the sample is placed, by the last person in possession of it, in a secured area with restricted access. During shipment, the carrier’s air bill number serves as custody verification. Upon receipt of the samples at the analytical laboratory, the laboratory sample custodian acknowledges possession of the samples by signing and dating the CofC/RFA form. The completed original (top page) of the CofC/RFA will be returned to the Permittees with the laboratory analytical report and becomes part of the permanent record of the sampling event. The CofC/RFA form also contains specific instructions to the analytical laboratory for sample analysis, potential hazards, and disposal instructions.

L-4c(3) Laboratory Analysis

Analysis of samples will be performed using methods selected to be consistent with EPA recommended procedures in SW-846 (EPA, 2015). Additional detail on analytical techniques and methods will be given in laboratory SOPs. In Permit Part 5, Tables 5.4.a and 5.4.b presents the analytical parameters and hazardous constituents for the WIPP DMP. The Permittees will establish the criteria for laboratory selection, including the stipulation that the laboratory follow the procedures specified in SW-846 and that the laboratory follow EPA protocols unless alternate methods or protocols are approved by the NMED. The analytical laboratory shall demonstrate, through laboratory SOPs that it will follow appropriate EPA SW-846 requirements and the requirements specified by the EPA protocols unless alternate methods or protocols are approved by the NMED. The analytical laboratory shall also provide documentation to the Permittees describing the sensitivity of laboratory instrumentation. This documentation will be retained in the WIPP facility Operating Record. Instrumentation sensitivity needs to be considered because of regulatory requirements governing constituent concentrations in groundwater and the complexity of brines associated with the Culebra groundwater.
The laboratory will maintain documentation of sample handling and custody, analytical results, and internal quality control (QC) data. Additionally, the laboratory will analyze QC samples in accordance with this plan and its own internal QC program for indicators of analytical accuracy and precision. Data generated outside of laboratory acceptance limits will trigger an evaluation and, if appropriate, corrective action as directed by the Permittees. The laboratory will report the results of the environmental sample and QC sample analyses and any necessary corrective actions that were performed. In the event that more than one analytical laboratory is used (e.g., for different analyses), each one will have the responsibilities specified above. A copy of the laboratory SOPs will be maintained in WIPP facility files. The Permittees will provide the NMED with an initial set of applicable laboratory SOPs for information purposes, and provide the NMED with any updated SOPs on an annual basis by January 31 upon request.

Data validation will be performed and reported in the Annual Culebra Groundwater Report and will be maintained in the WIPP facility Operating Record.

L-4d Calibration

L-4d(1) Sampling and Groundwater Elevation Monitoring Equipment Calibration

The equipment used to collect data for this DMP will be calibrated in accordance with SOPs. The Permittees will be responsible for calibrating needed equipment on schedule and for maintaining current calibration records for each piece of equipment.

L-4d(2) Groundwater Surface Elevation Monitoring Equipment Calibration Requirements

The equipment used in taking groundwater surface elevation measurements will be maintained in accordance with WIPP facility SOPs (see Table L-3). The Permittees will be responsible for ensuring equipment is calibrated on schedule in accordance with SOPs. The Permittees will also be responsible for maintaining copies of records of the most recent calibration for each piece of equipment.

L-4e Statistical Analysis of Laboratory Analytical Data

Analytical data collected as part of the DMP will be evaluated using appropriate statistical techniques. The following specifies the statistical analysis to be performed by the Permittees.

L-4e(1) Temporal and Spatial Analysis

Temporal and spatial analyses of the data were completed as part of establishing the water quality baseline (Crawley and Nagy, 1998; IT, 2000). As a result, the Permittees determined to evaluate changes relative to baseline on an individual location basis and to report the concentrations of constituents as a time series, either in tabular form or as time plots. No particular seasonal variations have been noted in the concentrations of groundwater samples collected during the spring and autumn; therefore, continuing temporal analysis is not required.

The analytical results for constituents will be reported as time series, either in tabular form or as time plots or both, and compared to the 95th percentile values or reporting limits identified in Permit Part 5, Table 5.6.
L-4e(2) Distributions and Descriptive Statistics

Techniques were established to compare detection monitoring data generated during the baseline studies. A 95th upper tolerance limit value (UTLV) or 95th percentile was determined from those data sets where target analytes were measured at concentrations above the method detection limits. The UTLV is provided for normal or lognormal distributions and a 95th percentile confidence interval is provided for data sets that are nonparametric or have greater than 15 percent non-detects. For analytes with only a few detects (greater than 95 percent non-detects), an accurate 95th percentile cannot be calculated. For these analytes, the maximum detected concentration is used as the baseline value. For the analytes that are non-detect in all the samples, the method reporting limit was used as the baseline value.

L-4e(3) Action Levels

Using baseline distributions, actions levels were identified in accordance with methodologies described in the baseline documents. Action levels are based on the 95th percentile or reporting limits identified in the baseline. If the groundwater concentration of a constituent identified in Permit Part 5, Table 5.6, is found to exceed an action level, a test for outliers is performed in accordance with the methodologies specified in “Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities” (EPA, 2009).

L-4e(4) Comparisons and Reporting

Prior to TRU mixed waste receipt, measurements were made of each to establish a background concentration for each groundwater quality hazardous constituent specified in Permit Part 5, Table L-5.4.b, at each DMW every detection monitoring well. These measurements were made during each of the ten background sampling events (with the exception of trans-1,2-dichloroethylene and vanadium that were added after TRU mixed waste disposal began). These measurements serve as a statistical baseline (Permit Part 5, Table 5.6) that is used for evaluating the significance of the results of subsequent sampling events during detection monitoring. Time-trend control charts with associated screening values for each hazardous constituent are used for this evaluation. The Permittees will compare the results from groundwater hazardous constituents of ongoing annual groundwater sample analysis to these baseline values in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.97(h)(4)). If the comparisons show that a constituent statistically exceeds the baseline of the DMWs (as defined in 20.4.1.500 NMAC (incorporating 40 CFR §264.98(f))), the well shall be resampled and an analysis performed as soon as possible, in accordance with 20.4.1.500 NMAC (incorporating 40 CFR §264.98(g)(3)). The results of the statistical comparison will be reported annually to the NMED in the Annual Culebra Groundwater Report by November 30, as required under 20.4.1.500 NMAC (incorporating 40 CFR §264.98(g)).

L-5 Reporting

L-5a Laboratory Data Reports

Laboratory data will be provided in electronic and hard copy reports to the Permittees and will contain the following information for each analytical report:

- A brief narrative summarizing laboratory analyses performed, date of issue, deviations from the analytical method, technical problems affecting data quality, laboratory quality
checks, corrective actions (if any), and the project manager’s signature approving issuance of the data report.

- Header information for each analytical data summary sheet including: sample number and corresponding laboratory identification number; sample matrix; date of collection, receipt, preparation and analysis; and analyst’s name.

- Parameter and hazardous constituents, analytical results, reporting units, reporting limit, analytical method used.

- Results of QC sample analyses for all concurrently analyzed QC samples.

All analytical results will be provided to the NMED as specified in the Permit Part 5.

L-5b Statistical Analysis and Reporting of Results

Analytical results for hazardous constituents from annual groundwater sampling activities will be compared and interpreted by the Permittees through generation of statistical analyses as specified in Section L-4e. The Permittees will perform statistical analyses; the results will be included in the Annual Culebra Groundwater Report in summary form, and will also be provided to the NMED as specified in Permit Part 5.

L-5c Semi-Annual Groundwater Surface Elevation Report and Annual Culebra Groundwater Report

Data collected from this DMP will be reported to the NMED as specified in Permit Part 5 in the Annual Culebra Groundwater Report. The report will include all applicable information that may affect the comparison of background groundwater quality and groundwater surface elevation data through time. This information will include but is not limited to:

- DMW and WLMP well configuration changes that may have occurred from the time of the last measurement (i.e., plug installation and removal, packer removal and reinstallation, or both; and the type and quantity of fluids that may have been introduced into the test wells).

- Pumping activities that may have taken place since publication of the last annual report (i.e., related to groundwater quality sampling, hydraulic testing, and shaft installation or grouting) that may have taken place since the last annual groundwater report.

- A discussion of the origins of abnormal unexpected changes in the groundwater surface elevation, which are not attributable to site tests or natural stabilization of the site hydrologic system that exceeds 2 ft in a DMP well over the course of the period covered by the Annual Culebra Groundwater Report (this may indicate changes in recharge/discharge which would affect the assumptions regarding DMP well placement and constitute new information as specified in 20.4.1.900 NMAC (incorporating 40 CFR §270.41(a)(2)).

- The results of the annual measurements of densities.

- Annotated hydrographs.
- Groundwater flow rate and direction.

- Potentiometric surface map generated using the following steps:
 - Examine hydrographs to identify month having the largest number of Culebra water levels available with the fewest wells affected by pumping or other anthropogenic events.
 - Convert water levels from subject month to equivalent freshwater heads using fluid densities appropriate to the date.
 - Fit trend surface through freshwater heads.
 - Extrapolate the trend surface to the boundaries of the model domain used for the current Performance Assessment Baseline Calculations (PABCs) and define initial fixed-head boundary conditions based on the trend surface.
 - Using the ensemble-average Culebra transmissivity field used for the current PABC, optimize the model boundary heads to improve the fit of the model to the freshwater heads at the wells using optimization software interactively with MODFLOW.
 - Run MODFLOW with optimal boundary conditions fit.
 - Contour MODFLOW head results on WIPP site.
 - Compute particle path and travel time from the Waste Handling Shaft to the LWA Boundary.
 - Data analysis that will accompany the potentiometric surface map will include:
 - Measured versus modeled scatter plot diagram
 - Frequency of modeled head residuals
 - Modeled residual freshwater head at each well
 - Explanations for modeled misfit residuals greater than 16.4 feet (5 meters).

- Semi-annual groundwater surface elevation results will be reported as specified in Permit Part 5, Condition Section 5.10.2.2.

The DMP data used in generating the Annual Culebra Groundwater Report will be maintained as part of the WIPP facility Operating Record and will be provided to the NMED for review as specified in the permit.
L-6 Records Management

Records generated during groundwater sampling and water level monitoring will be maintained in either project files at the Permittee's facility or the Operating Record. Project files will include, but are not limited to:

- Sampling and Analysis Plans (SAPs)
- SOPs
- Field Data Entry Sheets
- CofC/RFA forms
- Analytical Laboratory Data Reports
- Variance Logs and Nonconformance Reports
- Corrective Action Reports.

Detection Monitoring Program monitoring, testing, and analytical data and WLMP data will be maintained in the WIPP facility Operating Record.

L-7 Quality Assurance Requirements

Quality Assurance (QA) requirements specific to the DMP are presented in this section.

L-7a Data Quality Objectives and Quality Assurance Objectives

L-7a(1) Data Quality Objectives

Data Quality Objectives (DQOs) are qualitative and quantitative statements that specify the quality of data required to support project decisions. DQOs have been established to ensure that the data collected will be of a sufficient and known quality for their intended uses. The overall DQOs for this DMP are shown in the following sections.

L-7a(1)(i) Detection Monitoring Program

Collect accurate and defensible data of known quality that will be sufficient to assess the concentrations of constituents in the groundwater underlying the WIPP facility.

L-7a(1)(ii) Water Level Monitoring Program

Collect accurate and defensible data of known quality that will be sufficient to assess the groundwater flow direction and rate at the WIPP facility.

L-7a(2) Quality Assurance Objectives

Quality Assurance Objectives (QAOs) for measurement data have been specified in terms of accuracy, precision, completeness, representativeness, and comparability.
L-7a(2)(i) Accuracy

Accuracy is the closeness of agreement between a measurement and an accepted reference value. When applied to a set of observed values, accuracy is a combination of a random component and a common systematic error (bias) component. Measurements for accuracy will include analysis of calibration standards, laboratory control samples, matrix spike samples, and surrogate spike recoveries. The bias component of accuracy is expressed as percent recovery (%R). Percent recovery is expressed as follows:

\[\%R = \left(\frac{\text{measured sample concentration}}{\text{true concentration}} \right) \times 100 \]

L-7a(2)(i)(A) Accuracy Objectives for Field Measurements

Field measurements will include pH, Specific Conductance (SC), temperature, specific gravity, and static groundwater surface elevation. Field measurement accuracy will be determined using calibration standards. Thermometers used for field measurements will be calibrated to the National Institute for Standards and Technology (NIST) traceable standard on an annual basis to ensure accuracy. Accuracy of groundwater surface elevation measurements will be checked before each measurement period by verifying calibration of the device within the specified schedule. WIPP Waste Isolation Pilot Plant document WP 13-1 outlines the basic requirements for field equipment use and calibration. WIPP Waste Isolation Pilot Plant facility SOPs contains instructions that outline protocols for maintaining current calibration of groundwater surface elevation measurement instrumentation.

L-7a(2)(i)(B) Accuracy Objectives for Laboratory Measurements

Analytical system accuracy will be quantified using the following laboratory accuracy QC checks: calibration standards, laboratory control samples (LCS), laboratory blanks, matrix and surrogate spike recoveries. Single LCSs and matrix spike and surrogate spike sample analyses will be expressed as %R. Laboratory analytical accuracy is parameter dependent and will be prescribed in the laboratory SOP.

L-7a(2)(ii) Precision

Precision is the agreement among a set of replicate measurements without assumption or knowledge of the true value. Precision data will be derived from duplicate field and laboratory measurements. Precision will be expressed as relative percent difference (RPD), which is calculated as follows:

\[\text{RPD} = \left(\frac{|V_1 - V_2|}{\frac{V_1 + V_2}{2}} \right) \times 100 \]

Where

- \(\text{RPD} = \text{relative percent difference} \)
- \(V_1 = \text{sample 1 measured value} \)
- \(V_2 = \text{sample 2 measured value} \)
L-7a(2)(ii)(A) Precision Objectives for Field Measurements

Specific conductance, pH, and temperature will be measured during well purging and after sampling. Specific conductance measurements will be precise to ±10% pH to 0.10 standard unit, specific gravity to 0.01 by hydrometer and temperature to 0.10 degrees Celsius (°C). Water-level measurements will be precise to ± 0.01 ft. The precision of water density measurements, when measured in the field, will be ± 2 ft of error in the derived fresh-water head.

L-7a(2)(ii)(B) Precision Objectives for Laboratory Measurements

Precision of laboratory analyses will be determined by analyzing a LCS and a lab control sample duplicate (LCSD) or by analyzing one of the field samples in duplicate depending on the requirements of the particular standard method. The precision is measured as the RPD of the recoveries for the spiked LCS/LCSD pair or the RPD of the duplicate sample analysis results. Laboratory analytical precision is also parameter dependent and will be prescribed in laboratory SOPs.

L-7a(2)(iii) Contamination

In addition to measurements of precision and bias, QC checks for contamination will be performed. QC samples including trip blanks, field blanks, and method blanks will be analyzed to assess and document contamination attributable to sample collection equipment, sample handling and shipping, and laboratory reagents and glassware. Trip blanks will be used to assess volatile organic compound (VOC) sample contamination during shipment and handling and will be collected and analyzed at a frequency of one sample per sample shipment. Field blanks will be used to assess field sample collection methods and will be collected and analyzed at a minimum frequency of one sample per 20 samples (five percent of the samples collected). Method blanks will be used to assess contamination resulting from the analytical process and will be analyzed at a minimum frequency of one sample per 20 samples, or five percent of the samples collected. Evaluation of sample blanks will be performed following U.S. EPA “National Functional Guidelines for Organic Data Review” (EPA, 1999) and “National Functional Guidelines for Evaluating Inorganics Analyses” (EPA, 2004). Only method blanks will be analyzed via wet chemistry methods. The criteria for evaluating method blanks will be established as follows: If method blank results exceed method reporting limits, then that value will become the detection limit for the sample batch. Detection of analytes of interest in method blank samples may be used to disqualify some samples, requiring resampling and additional analyses on a case-by-case basis.

L-7a(2)(iv) Completeness

Completeness (%C) is a measure of the amount of usable valid data resulting from a data collection activity, given the sample design and analysis. Completeness (%C) may be affected by unexpected conditions that may occur during the data collection process.

Occurrences that reduce the amount of data collected include sample container breakage during sample shipment or in the laboratory and data generated while the laboratory was operating outside prescribed QC limits. All attempts will be made to minimize data loss and to recover lost data whenever possible. The completeness objective for analysis of Permit Part 5,
Table 5.4.a parameters will be 90 percent and 100 percent analysis of Permit Part 5, Table 5.4.b hazardous constituents. If the completeness objective for Permit Part 5, Table 5.4.b hazardous constituents is not met, the Permittees will determine the need for resampling on a case-by-case basis. Numerical expression of the completeness ($%C$) of data is as follows:

$$%C = \frac{\text{number of accepted samples}}{\text{total number of samples collected}} \times 100$$

L-7a(2)(v) Representativeness

Representativeness is the degree to which sample analyses accurately and precisely represent the media they are intended to represent. Data representativeness for this DMP will be accomplished through implementing approved sampling procedures and the use of validated analytical methods. Sampling procedures will be designed to minimize factors affecting the integrity of the samples. Groundwater samples will only be collected after well purging criteria have been met. The analytical methods selected will be those that will most accurately and precisely represent the true concentration of analytes of interest.

For water levels and density, representativeness is a qualitative term that describes the extent to which a sampling design adequately reflects the environmental conditions of a site. The SOPs for measurement ensure that samples are representative of site conditions.

L-7a(2)(vi) Comparability

Comparability is the extent to which one data set can be compared to another. Comparability will be achieved through reporting data in consistent units and collection and analysis of samples using consistent methodology. Aqueous samples will consistently be reported in units of measure dictated by the analytical method. Units of measure include:

- Milligrams per liter (mg/L) for alkalinity, inorganic compounds and metals and
- Micrograms per liter (μg/L) for VOCs and semivolatile organic compounds (SVOCs).

Culebra groundwater surface elevation measurements will be expressed as equivalent freshwater elevation in feet above mean sea level.

L-7b Design Control

The approved design for the DMP is specified in this Permit Attachment. Modifications to the DMP will be processed in accordance with 20.4.1.900 NMAC (incorporating 40 CFR §§ 270.42).

L-7c Instructions, Procedures, and Drawings

The preparation and use of instructions and procedures at the WIPP facility are outlined in the WIPP facility document WP 13-1 (see Table L-3). Activities performed for the DMP that may affect groundwater data quality will be performed in accordance with approved procedures which comply with the Permit.
L-7d Document Control

Permittees will ensure that the latest approved versions of WIPP facility SOPs will be used in performing groundwater monitoring functions and that obsolete materials will be adequately identified or removed from work areas.

L-7e Inspection and Surveillance

Inspection and surveillance activities will be conducted as outlined in WIPP document WP 13-1 (see Table L-3). The Permittees will be responsible for performing the applicable WIPP facility SOPs.

L-7f Control of Monitoring and Data Collection Equipment

WIPP document WP 13-1 (see Table L-3) outlines the basic requirements for control and calibrating monitoring and data collection (M&DC) equipment. M&DC equipment shall be properly controlled, calibrated, and maintained according to WIPP facility SOPs (see Table L-3) to ensure continued accuracy of groundwater monitoring data. Results of calibrations, maintenance, and repair will be documented. Calibration records will identify the reference standard and the relationship to national standards or nationally accepted measurement systems. Records will be maintained to track uses of M&DC equipment. If M&DC equipment is found to be out of tolerance, the equipment will be tagged and removed from service until corrections have been made and it will not be used until corrections are made.

L-7g Control of Nonconforming Conditions

In accordance with WP 13-1 (see Table L-3), equipment that does not conform to specified requirements will be controlled to prevent use. The disposition of defective items will be documented on records traceable to the affected items. Prior to final disposition, faulty items will be tagged and segregated. Repaired equipment will be subject to the original acceptance inspections and tests prior to use.

L-7h Corrective Action

Requirements for the development and implementation of a system to determine, document, and initiate appropriate corrective actions after encountering conditions adverse to quality at the WIPP facility are outlined in WIPP document WP 13-1 (see Table L-3). Conditions adverse to acceptable quality will be documented and reported in accordance with corrective action procedures and corrected as soon as practical. Immediate action will be taken to control work performed under conditions adverse to acceptable quality and its results to prevent quality degradation.

L-7i Quality Assurance Records

WIPP document Standard operating procedure WP 13-1 (see Table L-3) outlines the policy that will be used at the WIPP facility regarding identification, preparation, collection, storage, maintenance, disposition, and permanent storage of QA records.

Records to be generated in the DMP will be specified by procedure. Quality Assurance (QA) and RCRA operating Operating Records Records will be identified. This will be the basis for the
labeling of records as “QA” or “RCRA operating Operating record Record” on the Environmental Monitoring Records Inventory and Disposition Schedule.

L-8 References

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Table L-1

Hydrological Parameters for Rock Units above the Salado at the WIPP Site

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hydraulic Conductivity</th>
<th>Storage</th>
<th>Thickness</th>
<th>Hydraulic Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Rosa</td>
<td>2×10^{-6} to 2×10^{-6} m/s (1) (2)</td>
<td>0 to 91 m</td>
<td>0.001 (5)</td>
<td></td>
</tr>
<tr>
<td>Dewey Lake</td>
<td>10^{-8} m/s</td>
<td>Specific storage 1×10^{-5} (1/m) (2)</td>
<td>152 m</td>
<td>0.001 (5)</td>
</tr>
<tr>
<td>Forty-Niner</td>
<td>1×10^{-13} to 1×10^{-11} m/s (anhydrite) 1×10^{-9} m/s (mudstone) (2)</td>
<td>Specific storage 1×10^{-5} (1/m) (2)</td>
<td>13 to 23 m</td>
<td>NA (6)</td>
</tr>
<tr>
<td>Magenta</td>
<td>$1 \times 10^{-8.5}$ to $1 \times 10^{-6.5}$ m/s (2)</td>
<td>Specific storage 1×10^{-5} (1/m) (2)</td>
<td>7 to 8.5 m</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Tamarisk</td>
<td>1×10^{-13} to 1×10^{-11} m/s (anhydrite) 1×10^{-9} m/s (mudstone) (2)</td>
<td>Specific storage 1×10^{-5} (1/m) (2)</td>
<td>26 to 56 m</td>
<td>NA (6)</td>
</tr>
<tr>
<td>Culebra</td>
<td>$1 \times 10^{-7.5}$ to $1 \times 10^{-5.5}$ m/s (2)</td>
<td>Specific storage 1×10^{-5} (1/m) (2)</td>
<td>4 to 11.6 m</td>
<td>0.003 to 0.007 (5)</td>
</tr>
<tr>
<td>Los Medaños</td>
<td>6×10^{-15} to 1×10^{-13} m/s 1.5×10^{-11} to 1.2×10^{-11} m/s (basal interval)</td>
<td>Specific storage 1×10^{-5} (1/m) (2)</td>
<td>29 to 38 m</td>
<td>NA (6)</td>
</tr>
</tbody>
</table>

Matrix characteristics relevant to fluid flow include values used in this table such as permeability, hydraulic conductivity, gradient, etc.)

Table Notes:

1. The Santa Rosa Formation is not present in the western portion of the WIPP site. It was combined with the Dewey Lake Red Beds in three-dimensional regional groundwater flow modeling (Corbet and Knupp, 1996), and the range of values entered here are those used in that study for the Dewey Lake/Triassic hydrostratigraphic unit.

2. Values or ranges of values given for these entries are the values used in three-dimensional regional groundwater flow modeling (Corbet and Knupp, 1996). Values are estimated based on literature values for similar rock types, adjusted to be consistent with site-specific data where available. Ranges of values include spatial variation over the WIPP site and differences in values used in different simulations to test model sensitivity to the parameter.
(3) Hydraulic gradient is a dimensionless term describing change in the elevation of hydraulic head divided by change in horizontal distance. Values given in these entries are determined from potentiometric surfaces. The range of values given for the Culebra reflects the highest and lowest gradients observed within the WIPP site boundary. Values for the Dewey Lake and Santa Rosa are assumed to be the same as the gradient determined from the water table. Note that the Santa Rosa Formation is absent or above the water table in most of the controlled area, and that the concept of a horizontal hydraulic gradient is not meaningful for these regions.

(4) Flow in units of very low hydraulic conductivity is slow, and primarily vertical. The concept of a horizontal hydraulic gradient is not applicable.

Sources: Beauheim, (1986); Domenico and Schwartz, (1990); Domski, Upton, and Beauheim, (1996); Earlough, (1977).
Table L-2
WIPP Groundwater Detection Monitoring Program Sample Collection and Groundwater Surface Elevation Measurement Frequency

<table>
<thead>
<tr>
<th>Installation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Quality Sampling</td>
<td></td>
</tr>
<tr>
<td>DMWs</td>
<td>Annually</td>
</tr>
<tr>
<td>Groundwater Surface Elevation Monitoring</td>
<td></td>
</tr>
<tr>
<td>DMWs</td>
<td>Monthly and prior to sampling events</td>
</tr>
<tr>
<td>WLMP Wells (see Table L-4)</td>
<td>Monthly</td>
</tr>
<tr>
<td>Number</td>
<td>Title/Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>WP 02-EM1010</td>
<td>Field Parameter Measurements and Final Sample Collection: This procedure provides general instructions necessary to perform field analyses of serial samples in support of the DMP. Serial samples are collected and analyzed at the field laboratory for field indicators. Serial sample results help determine if pumped groundwater is representative of undisturbed groundwater within the formation. This procedure also describes the steps for collecting groundwater samples from the DMWs near the WIPP facility. Samples are collected and analyzed at the Field Laboratory until stabilization of the field parameters occurs. Final samples for Resource Conservation and Recovery Act (RCRA) analyses are collected and analyzed by a contract laboratory.</td>
</tr>
<tr>
<td>WP 02-EM1014</td>
<td>Groundwater Level Measurement: This document describes the method used for groundwater level measurements in support of groundwater monitoring at the WIPP facility using a portable electronic water-level probe.</td>
</tr>
<tr>
<td>WP 02-EM1026</td>
<td>Water Level Data Handling and Reporting: This procedure provides instructions on handling water level data. Data are collected and recorded on field forms in accordance with WP 02-EM1014. This procedure is initiated when wells in the water surveillance program have been measured for a given month.</td>
</tr>
<tr>
<td>WP 02-EM3001</td>
<td>Administrative Processes for Environmental Monitoring and Hydrology Programs: This procedure provides the administrative guidance environmental monitoring personnel use to maintain quality control associated with environmental monitoring sampling and reporting activities. This administrative procedure does not pertain to volatile organic compound (VOC) monitoring, with the exception of Section 5.0 which pertains to the regulatory reporting review process.</td>
</tr>
<tr>
<td>WP 02-EM3003</td>
<td>Data Validation and Verification of RCRA Constituents: This procedure provides instructions on performing verification and validation of laboratory data containing the analytical results of groundwater monitoring samples. This procedure is applied only to the non-radiological analyses results for compliance data associated with the detection monitoring samples. The data reviewed for this procedure includes general chemistry parameters and RCRA constituents.</td>
</tr>
<tr>
<td>WP-02-RC.01</td>
<td>Hazardous and Universal Waste Management Plan: This plan describes the responsibilities and handling requirements for hazardous and universal wastes generated at the WIPP facility. It is meant to ensure that these wastes are properly handled, accumulated, and transported to an approved Treatment, Storage, Disposal Facility (TSDF) in accordance with applicable state and federal regulations, U.S. Department of Energy (DOE) Orders, and Management and Operating Contractor (MOC) policies and procedures. This plan implements applicable sections of 20.4.1.100-1102 New Mexico Administrative Code (NMAC). Hazardous Waste Management (incorporating 40 Code of Federal Regulations [CFR] Parts 260-268 and 273).</td>
</tr>
<tr>
<td>WP 10-AD3029</td>
<td>Calibration and Control of Monitoring and Data Collection Equipment: This procedure provides direction for the control and calibration of Monitoring and Data Collection (M&DC) equipment at the WIPP facility, and ensures traceability to NIST (National Institute of Standards and Technology) standards, international standards, or intrinsic standards. This procedure also establishes requirements and responsibilities for identifying recall equipment, and for obtaining calibration services for WIPP facility M&DC equipment.</td>
</tr>
<tr>
<td>WP 13-1</td>
<td>Management and Operating Contractor Quality Assurance Program Description: This document establishes the minimum quality requirements for MOC personnel and guidance for the development and implementation of QA-quality assurance programs by MOC organizations.</td>
</tr>
</tbody>
</table>
Table L-4

List of Culebra Wells in the WLMP, Current as of January 2022

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>WELL ID</th>
<th>WELL ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC-7R</td>
<td>IMC-461</td>
<td>SNL-15</td>
</tr>
<tr>
<td>C-2737</td>
<td>SNL-1</td>
<td>SNL-16</td>
</tr>
<tr>
<td>H-4bR</td>
<td>SNL-2</td>
<td>SNL-17</td>
</tr>
<tr>
<td>H-5bR</td>
<td>SNL-3</td>
<td>SNL-18</td>
</tr>
<tr>
<td>H-6bR</td>
<td>SNL-5</td>
<td>SNL-19</td>
</tr>
<tr>
<td>H-9bR</td>
<td>SNL-6</td>
<td>WQSP-1</td>
</tr>
<tr>
<td>H-10cR</td>
<td>SNL-8</td>
<td>WQSP-2</td>
</tr>
<tr>
<td>H-11b4R</td>
<td>SNL-9</td>
<td>WQSP-3</td>
</tr>
<tr>
<td>H-12R</td>
<td>SNL-10</td>
<td>WQSP-4</td>
</tr>
<tr>
<td>H-15R</td>
<td>SNL-12</td>
<td>WQSP-5</td>
</tr>
<tr>
<td>H-16</td>
<td>SNL-13</td>
<td>WQSP-6</td>
</tr>
<tr>
<td>H-19 pad*</td>
<td>SNL-14</td>
<td>WIPP-11R</td>
</tr>
</tbody>
</table>

The water level for the H-19b0 well on the H-19 pad is measured monthly; the fluid density measured annually at well H-19b0 will be used to correct for freshwater head for the other wells on the H-19 pad (H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7).
Table L-5
Details of Construction for the Six Culebra Detection Monitoring Wells

<table>
<thead>
<tr>
<th>NAME (Figure)</th>
<th>DATE DRILLED</th>
<th>TOTAL DEPTH INTO LOS MÉDANOS feet (meters) bgs</th>
<th>DEPTH DRILLED INTO LOS MÉDANOS feet (meters)</th>
<th>DRILLING DEPTHS WITH AIR feet (meters) bgs</th>
<th>CORING</th>
<th>DEPTH FOR 5 in. CASING feet (meters) bgs</th>
<th>INTERVAL FOR SLOTTED SCREEN feet (meters) bgs</th>
<th>SAND PACK INTERVAL feet (meters) bgs</th>
<th>BRADY GRAVEL PACK INTERVAL feet (meters) bgs</th>
<th>CULEBRA INTERVAL feet (meters) bgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>WQSP-1 Figure L-7M-71</td>
<td>September 13 through 16, 1994</td>
<td>737 (225)</td>
<td>15 (5)</td>
<td>696 (212)</td>
<td>696 to 737 (212 to 225)</td>
<td>737 (225, 225 to 225)</td>
<td>702 to 727 (214 to 222)</td>
<td>640 to 651 (195 to 198)</td>
<td>651 to 737 (198 to 225)</td>
<td>699 to 722 (213 to 220)</td>
</tr>
<tr>
<td>WQSP-2 Figure L-8M-72</td>
<td>September 6 through 12, 1994</td>
<td>846 (258)</td>
<td>12 (4)</td>
<td>800 (244)</td>
<td>800 to 846 (244 to 258)</td>
<td>846 (258)</td>
<td>811 to 836 (247 to 255)</td>
<td>790 to 793 (241 to 242)</td>
<td>793 to 846 (242 to 258)</td>
<td>810.1 to 833.7 (247 to 254)</td>
</tr>
<tr>
<td>WQSP-3 Figure L-9M-73</td>
<td>October 20 through 26, 1994</td>
<td>880 (268)</td>
<td>10 (3)</td>
<td>833 (254)</td>
<td>833 to 880 (254 to 268)</td>
<td>880 (268)</td>
<td>844 to 869 (257 to 265)</td>
<td>827 to 830 (252 to 253)</td>
<td>830 to 880 (253 to 268)</td>
<td>844 to 870 (257 to 265)</td>
</tr>
<tr>
<td>WQSP-4 Figure L-10M-74</td>
<td>October 5 through 10, 1994</td>
<td>800 (244)</td>
<td>9 (3)</td>
<td>740 (226)</td>
<td>740 to 798 (226 to 243)</td>
<td>800 (244)</td>
<td>764 to 789 (233 to 240)</td>
<td>752 to 755 (229 to 230)</td>
<td>755 to 800 (230 to 244)</td>
<td>766 to 790.8 (233 to 241)</td>
</tr>
<tr>
<td>WQSP-5 Figure L-11M-75</td>
<td>October 12 through 18, 1994</td>
<td>681 (208)</td>
<td>7 (2)</td>
<td>648 (198)</td>
<td>648 to 676 (198 to 206)</td>
<td>681 (208)</td>
<td>646 to 671 (197 to 205)</td>
<td>623 to 626 (190 to 191)</td>
<td>626 to 681 (191 to 208)</td>
<td>648 to 674.4 (198 to 205)</td>
</tr>
<tr>
<td>WQSP-6 Figure L-12M-76</td>
<td>September 26 through October 3, 1994</td>
<td>616.6 (188)</td>
<td>10 (3)</td>
<td>568 (173)</td>
<td>568 to 617 (173 to 188)</td>
<td>617 (188)</td>
<td>581 to 606 (177 to 185)</td>
<td>567 to 570 (173 to 174)</td>
<td>570 to 616.6 (174 to 188)</td>
<td>582 to 606.9 (177 to 185)</td>
</tr>
<tr>
<td>(10) PARAMETERS</td>
<td>(12) NO. OF BOTTLES</td>
<td>(13) VOLUME</td>
<td>(14) TYPE</td>
<td>(15) ACID WASH</td>
<td>(16) SAMPLE FILTER</td>
<td>(17) PRESERVATIVE</td>
<td>(18) HOLDING TIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicator(^4) Parameters:</td>
<td></td>
</tr>
<tr>
<td>• pH</td>
<td>-</td>
<td>25 mL(^{-1})</td>
<td>Glass</td>
<td>Field determined</td>
<td>No</td>
<td>Field determined</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SC</td>
<td>-</td>
<td>100 mL(^{-1})</td>
<td>Glass</td>
<td>Field determined</td>
<td>No</td>
<td>Field determined</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• TOC</td>
<td>4</td>
<td>15 mL(^{-1})</td>
<td>Glass</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>28 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td>1</td>
<td>1 Liter(^L)</td>
<td>Plastic</td>
<td>Yes</td>
<td>No</td>
<td>HNO(_3), pH<2</td>
<td>Not specified in DMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenolics</td>
<td>1</td>
<td>1 Liter(^L)</td>
<td>Amber Glass</td>
<td>Yes</td>
<td>No</td>
<td>H(_2)SO(_4), pH<2</td>
<td>Not specified in DMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals/Cations</td>
<td>2</td>
<td>1 Liter(^L)</td>
<td>Plastic</td>
<td>Yes</td>
<td>No</td>
<td>HNO(_3), pH<2</td>
<td>6 months(^2)months(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>4</td>
<td>40 mL(^{mL})</td>
<td>Glass</td>
<td>No</td>
<td>No</td>
<td>HCL, pH<2</td>
<td>14 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC (Purgeable)</td>
<td>2</td>
<td>40 mL(^{mL})</td>
<td>Glass</td>
<td>No</td>
<td>No</td>
<td>HCL, pH<2</td>
<td>14 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC (Non-Purgeable)</td>
<td>2</td>
<td>40 mL(^{mL})</td>
<td>Glass</td>
<td>No</td>
<td>No</td>
<td>HCL, pH<2</td>
<td>14 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN/As Semi-VOC</td>
<td>1</td>
<td>½ Gallon(^{1 L})</td>
<td>Amber Glass</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>14 days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCLP</td>
<td>1</td>
<td>1 Liter(^L)</td>
<td>Plastic</td>
<td>Yes</td>
<td>No</td>
<td>HNO(_3), pH<2</td>
<td>7 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide (Total)</td>
<td>1</td>
<td>1 Liter(^L)</td>
<td>Plastic</td>
<td>Yes</td>
<td>No</td>
<td>NaOH, pH>12</td>
<td>14 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfide</td>
<td>1</td>
<td>250 mL(^{mL})</td>
<td>Amber Glass</td>
<td>Yes</td>
<td>No</td>
<td>NaOH + Zn Acetate</td>
<td>28 days(^2)days(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radionuclides</td>
<td>1</td>
<td>1 Gallon</td>
<td>Plastic Cube</td>
<td>Yes</td>
<td>Yes</td>
<td>HNO(_3), pH<2</td>
<td>6 months(^2)months(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = RCRA Detection Monitoring Analytes
2\(^1\) = As specified in Table 4-1 of the RCRA TEGD
3\(^2\) = Reduced holding time of 1 week for WIPP-specific Divalent cation 2 samples noted in the GMD
Note: Unless otherwise indicated, information in this table is from SOP WP 02-EM1010 and is provided as information only.
Note: Deviations from this table are allowed with prior approval by the NMED.
Figure L-1
General Location of the WIPP Facility
Figure L-2
WIPP Facility Boundaries Showing 16-square-Mile Land Withdrawal Boundary.
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SERIES</th>
<th>GROUP</th>
<th>FORMATION</th>
<th>MEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECENT</td>
<td>RECENT</td>
<td></td>
<td>SURFICIAL DEPOSITS</td>
<td></td>
</tr>
<tr>
<td>QUATERNARY</td>
<td>PLEISTOCENE</td>
<td></td>
<td>MESCALERO CALICHE</td>
<td>GATUÑA</td>
</tr>
<tr>
<td>TERTIARY</td>
<td>MID-PLIOCENE</td>
<td></td>
<td></td>
<td>OGALLALA</td>
</tr>
<tr>
<td>TRIASSIC</td>
<td>DOCKUM</td>
<td></td>
<td></td>
<td>SANTA ROSA</td>
</tr>
</tbody>
</table>

PERMIAN

OCHOAN

DEWEY LAKE

- Forty-riner
- Magenta
- Tamarisk
- Cuiebra
- Los Medanos

RUSTLER

- Upper

SALADO

- McNutt Potash

CASTILE

GUADALUPIAN

DELAWARE MOUNTAIN

BELL CANYON

CHERRY CANYON

BRUSHY CANYON

Figure L-3

Site Geologic Column
Figure L-4
Generalized Stratigraphic Cross Section above Bell Canyon Formation at WIPP Site
Model generated September 2019 utilizing May 2018 freshwater head contours with observed heads (ft) listed at each well. Contours are at 5-ft intervals with the blue line particle track from the waste handling shaft to the WIPP Land Withdrawal Boundary. The purple line is a constant head boundary representing the Rustler halite margin.

Figure L-5
Culebra Freshwater-Head Potentiometric Surface
Figure L-6
Detection Monitoring Well Locations
Figure L-7
As-Built Configuration of Well WQSP-1
Figure L-8
As-Built Configuration of Well WQSP-2

Note: Depths in feet bgs approximate
Not to Scale
Figure L-9
As-Built Configuration of Well WQSP-3

Note: Depths in feet basis approximate
Not to Scale
*From DOE/WIPP-95-2154
Figure L-10
As-Built Configuration of Well WQSP-4
Figure L-11
As-Built Configuration of Well WQSP-5

Note: Depths in feet bgs approximate
Not to Scale
Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

Figure L-12
As-Built Configuration of Well WQSP-6

Note: Depths in feet bgs approximate
Not to Scale
Chain of Custody Record

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Project Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Matrix</th>
<th>Sample Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relinquished By: [Signature]</th>
<th>Date / Time</th>
<th>Received By: [Signature]</th>
<th>Relinquished By: [Signature]</th>
<th>Date / Time</th>
<th>Received By: [Signature]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requested Turnaround Times:</th>
<th>Special Instructions:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Disposal:</th>
<th>Results To:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return to Client</td>
<td>Disposal by Lab</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carrier / Airbill No:	

Example Chain-of-Custody/Request for Analysis Form

Figure L-13

Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

WP-02-EM1001, revision xx
Figure L-14
Groundwater Level Surveillance Wells
(inset represents the groundwater surveillance wells in WIPP Land Withdrawal Area)
ATTACHMENT M

FIGURES
DISCLAIMER

The figures presented in this attachment are illustrations and are for information purposes only. These figures are not to scale.
ATTACHMENT M

FIGURES

LIST OF FIGURES

Figure M-1 Waste Handling Building Unit – TRU Mixed Waste Container Storage and Surge Areas ... 5
Figure M-2 Parking Area Unit – TRU Mixed Waste Container Storage and Surge Areas 6
Figure M-3 Standard 55-Gallon Drum (Typical) .. 7
Figure M-4 Standard Waste Box.. 8
Figure M-5 Ten-Drum Overpack .. 9
Figure M-6 85-Gallon Drum .. 10
Figure M-7 100-Gallon Drum .. 11
Figure M-8 Typical Standard Large Box 2 ... 12
Figure M-9 Facility Canister Assembly .. 13
Figure M-10 RH-TRU 72-B Canister Assembly .. 14
Figure M-11 Typical Shielded Container ... 15
Figure M-12 Waste Handling Building Plan (Ground Floor) ... 16
Figure M-13 RH Bay Ground Floor and Waste Transport Routes ... 17
Figure M-14 RH Hot Cell Storage Area ... 18
Figure M-15 RH Canister Transfer Cell Storage Area and Waste Transport Route 19
Figure M-16 RH Facility Cask Loading Room and Cask Unloading Storage Area and Waste Transport Route ... 20
Figure M-17 TRUPACT-II Type B Shipping Container ... 21
Figure M-18 Typical HalfPACT Type B Shipping Container ... 22
Figure M-19 Typical TRUPACT-III Type B Shipping Container .. 23
Figure M-20 Payload Transfer Station .. 24
Figure M-21 Facility Pallet ... 25
Figure M-22 Typical Containment Pallet .. 26
Figure M-23 Facility Transfer Vehicle, Facility Pallet, and Typical Pallet Stand .. 27
Figure M-24 Typical Yard Transfer Vehicle ... 28
Figure M-25 RH TRU 72-B Shipping Cask on Trailer .. 29
Figure M-26 CNS 10-160B Shipping Cask on Trailer ... 30
Figure M-27 RH-TRU 72-B Type B Shipping Cask ... 31
Figure M-28 CNS 10-160B Type B Shipping Cask ... 32
Figure M-39	Surface and Underground RH Transuranic Mixed Waste Process Flow Diagram for CNS 10-160B Shipping Cask	45
Figure M-40	Typical RH Emplacement Equipment	58
Figure M-41	Typical Room Barricade	56
Figure M-42	Underground Ventilation System Airflow (with S#5)	55
Figure M-43	Underground Ventilation System Airflow (with Building 416)	57
Figure M-44	Typical MgO Backfill Sacks Emplaced on Drum Stacks and Emplacement Configurations	49
Figure M-45	Waste Transfer Cage to Transporter	50
Figure M-46	Push-Pull Attachment to Forklift to Allow Handling of Waste Containers	51
Figure M-47	Typical RH and CH TRU Mixed Waste Container Disposal Configuration	52
Figure M-48	Underground Ventilation System Airflow	53
Figure M-49	General Location of the WIPP Facility	61
Figure M-50	RH TRU Waste Facility Cask Unloading from Waste Shaft Conveyance	59
Figure M-51	Section of Borehole Showing the RH Shield Plug and Supplemental Shielding Plate(s)	60
Figure M-52	Typical Room Barricade	56
Figure M-53	Underground Ventilation System Airflow	57
Figure M-54	Typical RH Emplacement Equipment	58
Figure M-55	General Location of the WIPP Facility	61
Figure M-56	WIPP Traffic Flow Diagram	62
Figure M-59 WIPP Traffic Flow Diagram with Building 416 .. 63
Figure M-60 Typical CH Mixed Waste Transport Routes in Waste Handling Building - Container Storage Unit .. 64
Figure M-61 WIPP Panel Closure Schedule .. 65
Figure M-62 WIPP Facility Final Closure 84-Month Schedule .. 66
Figure M-63 Typical Substantial Barrier and Bulkhead ... 67
Figure M-64 Typical Shaft Sealing System ... 68
Figure M-65 Perimeter Fenceline and Roadway ... 69
Figure M-66 WIPP Facility Boundaries Showing 16-square-Mile Land Withdrawal Boundary ... 70
Figure M-67 Site Geologic Column ... 71
Figure M-68 Generalized Stratigraphic Cross Section above the Bell Canyon Formation at the WIPP Site ... 72
Figure M-69 Culebra Freshwater-Head Potentiometric Surface ... 73
Figure M-70 Detection Monitoring Well Locations ... 74
Figure M-71 As-Built Configuration of Well WQSP-1 .. 75
Figure M-72 As-Built Configuration of Well WQSP-2 .. 76
Figure M-73 As-Built Configuration of Well WQSP-3 .. 77
Figure M-74 As-Built Configuration of Well WQSP-4 .. 78
Figure M-75 As-Built Configuration of Well WQSP-5 .. 79
Figure M-76 As-Built Configuration of Well WQSP-6 .. 80
Figure M-77 Groundwater Level Surveillance Wells (inset represents the Groundwater Level Surveillance Wells within the WIPP Land Withdrawal Area) ... 81
Figure M-78 Repository VOC Monitoring Locations .. 82
Figure M-79 Typical Disposal Room VOC Monitoring Locations ... 83
Figure M-80 Typical Disposal Room Sample Head Arrangement .. 84
Figure M-81 VOC Monitoring System Design ... 85
Figure M-82 VOC Monitoring System Design (continued) .. 86
Figure M-1
Waste Handling Building Unit – TRU Mixed Waste Container Storage and Surge Areas
Figure M-2
Parking Area Unit – TRU Mixed Waste Container Storage and Surge Areas
Figure M-3
Standard 55-Gallon Drum (Typical)
Figure M-4
Standard Waste Box
Figure M-5
Ten-Drum Overpack
Figure M-6
85-Gallon Drum
Figure M-7
100-Gallon Drum
Figure M-8
Typical Standard Large Box 2
Figure M-9
Facility Canister Assembly
Figure M-10
RH-TRU 72-B Canister Assembly
Figure M-11
Typical Shielded Container
Figure M-12
Waste Handling Building Plan (Ground Floor)
Figure M-13
RH Bay Ground Floor and Waste Transport Routes
Figure M-14
RH Hot Cell Storage Area
Figure M-15
RH Canister Transfer Cell Storage Area and Waste Transport Route
Figure M-16
RH Facility Cask Loading Room and Cask Unloading Storage Area and Waste Transport Route
Figure M-17
TRUPACT-II Type B Shipping Container
Figure M-18
Typical HalfPACT Type B Shipping Container
Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

Figure M-19
Typical TRUPACT-III Type B Shipping Container
Figure M-20
Payload Transfer Station
Figure M-21
Facility Pallet
Figure M-22
Typical Containment Pallet
Figure M-23
Facility Transfer Vehicle, Facility Pallet, and Typical Pallet Stand
Figure M-24
Typical Yard Transfer Vehicle
Figure M-25
RH TRU 72-B Shipping Cask on Trailer
Figure M-26
CNS 10-160B Shipping Cask on Trailer
Figure M-27
RH-TRU 72-B Type B Shipping Cask
Figure M-28
CNS 10-160B Type B Shipping Cask
Figure M-29
RH Transuranic Waste Facility Cask and Light Weight Facility Cask
Figure M-30
RH Shielded Insert Assembly
Figure M-32
RH-TRU 72-B Cask Transfer Car
Figure M-33
CNS 10-160B Cask Transfer Car
Figure M-34
RH Facility Cask Transfer Car (Side View)
Figure M-35
Transfer Cell Shuttle Car
Figure M-36
Facility Cask Rotating Device
Figure M-37
TRUPACT-II Containers on Trailer
Figure M-38
WIPP Facility Surface and Underground CH Transuranic Mixed Waste Process Flow Diagram
Figure M-39
WIPP Facility Surface and Underground CH Transuranic Mixed Waste Process Flow Diagram (Continued)
Figure M-40

- RH-72B Cask Received at Gate; Shipment Verified
- Security and Radiological Checks Performed*
- Cask Transported into the RH Bay on Trailer
- Impact Limiters Removed; Rad Surveys Performed* and Evaluated
- Cask Moved to Cask Transfer Car

- Outer Lid Unbolted and Removed
- Cask Transferred to Cask Unloading Room
- Cask Lowered into Transfer Cell Shuttle Car
- Detension Cask Inner Lid
- Canister Moved Under Facility Cask Loading Room Port

- Remove Inner Lid
- Radiological Swipes Collected and Evaluated
- Contamination Detected?
 - Yes
 - Management Decision to Return to Generator Site
 - No
 - Canister Identification Verified?
 - Yes
 - Canister Stored in Shipping Cask
 - Generator Contacted for Resolution
 - No
 - Canister Transferred to Facility Cask

- Facility Cask Loaded Onto Waste Shaft Conveyance
- Facility Cask Transferred to Underground
- Facility Cask Transferred to Horizontal Emplacement Machine
- Canister Emplaced in Borehole

- Borehole Shield Plug Installed. Emplacement Complete
- Facility Cask
- Rad Survey Performed*
- Cask Prepared for Reuse

*If radiological surveys or swipes reveal cask contamination, the cask will be decontaminated.
CNS 10-160B Cask Received at Gate; Shipment Verified

Security and Radiological Checks Performed*

Cask Transported into the RH Bay Trailer

Top Impact Limiter Removed; Rad Surveys Performed*

Cask Moved to Cask Transfer Car

Cask Lid Unbolted

Cask Transferred to Cask Unloading Room

Cask Lid Removed and Lifted Into Hot Cell

Drum Carriage(s) Lifted Into Hot Cell

Radiological Swipes Collected and Evaluated

Drum Identification Verified?

No

Drum Stored in Hot Cell

Generator Contacted for Resolution

Yes

Drums Loaded in Facility Canister

Shielded Insert Positioned in Transfer Cell

Facility Canister Lowered Into Shielded Insert

Transfer Cell Shuttle Car Moved Under Facility Cask Loading Room Port

Canister Transferred to Facility Cask

Facility Cask Loaded Onto Waste Shaft Conveyance

Facility Cask Transferred to Underground

Facility Cask Transferred to Horizontal Emplacement Machine

Canister Emplaced in Borehole

Borehole Shield Plug Installed. Emplacement Complete

Facility Cask

Rad Survey Performed*

Cask Prepared for Reuse

*If radiological surveys or swipes reveal cask contamination, the cask will be decontaminated.
Figure M-42
Typical Disposal Panel
Figure M-43
Repository Horizon and Underground Waste Transport Routes
Figure M-44
Spatial View of the Miscellaneous Unit and Waste Handling Facility
Figure M-45
Typical MgO Backfill Sacks Emplaced on Drum Stacks and Emplacement Configurations
Figure M-46
Waste Transfer Cage to Transporter
Figure M-47
Push-Pull Attachment to Forklift to Allow Handling of Waste Containers

1. PUSH RACK
2. BASE ASSEMBLY
3. UPPER RETAINER
4. LINKAGE ASSEMBLY
5. GRIPPER CYLINDER
6. GRIPPER BAR
7. GRIPPER JAW
8. PUSH CYLINDER
9. PLATFN
Figure M-48
Typical RH and CH TRU Mixed Waste Container Disposal Configuration

NOTE: MgO will be emplaced as necessary
Figure M-49
Underground Ventilation System Airflow
Figure M-50
Underground Ventilation System Airflow (with SVS)
Figure M-51
Underground Ventilation System Airflow (with S#5)
Figure M-52
Typical Room Barricade
Figure M-53
Underground Ventilation System Airflow (with Building 416)
Figure M-54
Typical RH Emplacement Equipment
Figure M-55
RH TRU Waste Facility Cask Unloading from Waste Shaft Conveyance
Figure M-56
Section of Borehole Showing the RH Shield Plug and Supplemental Shielding Plate(s)
Figure M-57
General Location of the WIPP Facility
(see Figure D-1 for legend of the surface buildings)

Figure M-58
WIPP Traffic Flow Diagram
(see Figure D-1-NFB for legend of the surface buildings)

Figure M-59
WIPP Traffic Flow Diagram with Building 416
Figure M-60
Typical CH Mixed Waste Transport Routes in Waste Handling Building - Container Storage Unit
Figure M-61
WIPP Panel Closure Schedule
NOTIFY NMED OF INTENT TO CLOSE WIPP

PERFORM CONTAMINATION SURVEY FOR SURFACE SUPPORT STRUCTURES INCLUDING CONTAINER STORAGE UNITS

SAMPLE ANALYSIS

DECONTAMINATION AS NECESSARY

FINAL CONTAMINATION SURVEYS

DECONTAMINATION AS NECESSARY

PREPARE AND SUBMIT CONTAINER MANAGEMENT UNIT CLOSURE CERTIFICATION TO NMED

DISPOSE OF CLOSURE-DERIVED WASTE INCLUDING CONTAMINATED STRUCTURES AND EQUIPMENT

CLOSURE OF OPEN HWMJ PANEL (SEE PANEL CLOSURE SCHEDULE)

INSTALL BOREHOLE SEALS

INSTALL REPOSITORY SEALS

RECONTOUR AND REVEGETATE SITE

PREPARE AND SUBMIT FINAL CLOSURE CERTIFICATION TO NMED

NOTIFY NMED OF INTENT TO CLOSE WIPP

BEGIN FINAL CLOSURE

SUBMIT CERTIFICATION

FINAL CLOSURE COMPLETE
NOTES

1. CONFIGURATION AND PLACEMENT OF THE SUBSTANTIAL BARRIER AND THE BULKHEAD
 DICTATED BY AS-FOUND (FIELD) CONDITIONS, AS DESIGNATED BY THE COGNIZANT
 ENGINEER.

2. SUBSTANTIAL BARRIER MATERIAL WILL CONSIST OF RUN-OF-MINE SALT OR OTHER
 SUITABLE NON-FLAMMABLE MATERIAL AS DESIGNATED BY THE COGNIZANT ENGINEER.

3. SUBSTANTIAL BARRIER MATERIAL SHOULD BE AGAINST THE WASTE FACE. THE HEIGHT
 OF THE SUBSTANTIAL BARRIER NEAR THE WASTE WILL BE AT LEAST EQUAL TO THE
 HEIGHT OF THE BOTTOM OF THE TOP ROW OF WASTE.

4. DIMENSIONS INDICATED ARE MINIMUMS. THE HEIGHT OF THE SUBSTANTIAL BARRIER IS
 MEASURED AT THE WASTE FACE. THE LENGTH OF THE SUBSTANTIAL BARRIER IS
 MEASURED FROM THE BOTTOM OF THE WASTE FACE TO THE TOE OF THE SUBSTANTIAL BARRIER MATERIAL.
Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

Figure M-64
Typical Shaft Sealing System
Figure M-65
Perimeter Fenceline and Roadway
Figure M-66
WIPP Facility Boundaries Showing 16-square-Mile Land Withdrawal Boundary
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SERIES</th>
<th>GROUP</th>
<th>FORMATION</th>
<th>MEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECENT</td>
<td>RECENT</td>
<td></td>
<td>SURFICIAL DEPOSITS</td>
<td></td>
</tr>
<tr>
<td>QUATERNARY</td>
<td>PLEISTOCENE</td>
<td></td>
<td>MESCALERO CALICHE</td>
<td>GATUÑA</td>
</tr>
<tr>
<td>TERTIARY</td>
<td>MID-PLIOCENE</td>
<td></td>
<td>OGALLALA</td>
<td></td>
</tr>
<tr>
<td>TRIASSIC</td>
<td>DOCKUM</td>
<td></td>
<td>SANTA ROSA</td>
<td></td>
</tr>
<tr>
<td>PERMAN</td>
<td>OCHOAN</td>
<td></td>
<td>DEWEY LAKE REDBeds</td>
<td>FORTY-NINER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAGENTA DOLOMITE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TAMARISK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CULEBRA DOLOMITE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOS MÉDANOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPPER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SALADO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCNUTT POTASH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOWER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CASTILE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BELL CANYON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHERRY CANYON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRUSHY CANYON</td>
</tr>
</tbody>
</table>

Figure M-67
Site Geologic Column
Figure M-68
Generalized Stratigraphic Cross Section above the Bell Canyon Formation at the WIPP Site
Model generated September 2019 utilizing May 2018 freshwater head contours with observed heads (ft) listed at each well. Contours are at 5 ft intervals with the blue line particle track from the waste handling shaft to the WIPP Land Withdrawal Boundary. The purple line is a constant head boundary representing the Rustler halite margin.

Figure M-69
Culebra Freshwater-Head Potentiometric Surface
Figure M-70
Detection Monitoring Well Locations
Diagram showing well construction details:

- **Top of Casing Elevation**: 3,419.2 ft. above mean sea level (amsl)
- **15' Hole**
- **10.75" x 0.375" Wall Surface Casing**
- **9.875" Borehole**
- **5" x 0.280" Wall Blank**
- **Fiberglass Well Casing**
- **Cement Portland-ASTM C1510-92**
- **Bentonite Seal**
- **Sand Pack**
- **8/16 Brady Gravel**
- **5" Fiberglass 0.020" Slot Screen**
- **Centralizers Located at Bottom and 60-Foot Intervals to Si**
- **Blank Casing**
- **Total Depth**

Note: Depths in feet below ground surface (bgs) approximate.

Figure M-71
As-Built Configuration of Well WQSP-1
Figure M-72
As-Built Configuration of Well WQSP-2

Note: Depths in feet bgs approximate.
WELL CONSTRUCTION
15' Hole
10.75" x 0.375" Wall Surface Casing
9.875" Borehole
5" x 0.280" Wall Blank
Fiberglass Well Casing
Cement Portland-ASTM C1510-92
Bentonite Seal
Sand Pack
8/16 Brady Gravel
5" Fiberglass 0.020" Slot Screen
Centralizers Located at Bottom and Top of Screen and at 60-Foot Intervals to Surface
Blank Casing
Total Depth

GEOLOGIC
Ground Surface

Holocene Deposits

SANTA ROSA FORMATION

FORTY-NINER MEMBER

MAGENTA DOLomite MEMBER

TAMARISK MEMBER

CULEBRA DOLomite MEMBER

LOS MEDANOS MEMBER

Note: Depths in feet bgs approximate.
Top of Casing Elevation 3,433.1 ft. amsl

GEOLOGIC

 Holocene Deposits

SANTA ROSA FORMATION

 DEWEY LAKE RED BEDS FORMATION

FIBREY DOLomite Member

Forty-Niner Member

Magenta Dolomite Member

Tamarisk Member

Culebra Dolomite Member

Los Medaños Member

WELL CONSTRUCTION

Ground Surface

15' Hole

10.75" x 0.375" Wall Surface Casing

9.875" Borehole

5" x 0.280" Wall Blank
Fiberglass Well Casing
Cement Portland-ASTM C1510-92
Bentonite Seal
Sand Pack
8/16 Brady Gravel
5" Fiberglass 0.020" Slot Screen
Centralizers Located at Bottom and Top of Screen and at 60-Foot Intervals to Surface
Blank Casing
Total Depth

Note: Depths in feet bgs approximate.

Figure M-74
As-Built Configuration of Well WQSP-4
Waste Isolation Pilot Plant
Hazardous Waste Facility Permit
Updated Renewal Application
March 2022

Figure M-75
As-Built Configuration of Well WQSP-5

Note: Depths in feet bgs approximate.
Top of Casing Elevation 3,364.7 ft. amsl

GEOLOGIC

Holocene Deposits

WELL CONSTRUCTION

Ground Surface

15' Hole
10.75" x 0.375" Wall Surface Casing

9.875" Borehole
5" x 0.280" Wall Blank
Fiberglass Well Casing
Cement Portland-ASTM C1510-92

Bentonite Seal

Sand Pack

8/16 Brady Gravel

5" Fiberglass 0.020" Slot Screen
Centralizers Located at Bottom and Top of Screen and at 60-Foot Intervals to Surface

Total Depth

Note: Depths in feet bgs approximate.

Figure M-76
As-Built Configuration of Well WQSP-6
Figure M-77
Groundwater Level Surveillance Wells
(inset represents the Groundwater Level Surveillance Wells within the WIPP Land Withdrawal Area)
(see Figure D-1 and Figure D-1a for a detailed map and legend of the surface buildings)

Figure M-78
Repository VOC Monitoring Locations
Figure M-79
Typical Disposal Room VOC Monitoring Locations
Figure M-80
Typical Disposal Room Sample Head Arrangement
TYPICAL PASSIVE AIR-SAMPLING KIT WITH CANISTER

Figure M-81
VOC Monitoring System Design
TYPICAL SUBATMOSPHERIC SAMPLING ASSEMBLY WITH CANISTER

Figure M-82
VOC Monitoring System Design (continued)
ATTACHMENT N

VOLATILE ORGANIC COMPOUND MONITORING PLAN
ATTACHMENT N

VOLATILE ORGANIC COMPOUND MONITORING PLAN

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>N-1a</td>
<td>Background</td>
<td>5</td>
</tr>
<tr>
<td>N-1b</td>
<td>Objectives of the Volatile Organic Compound Monitoring Plan</td>
<td>6</td>
</tr>
<tr>
<td>N-2</td>
<td>Target Volatile Organic Compounds</td>
<td>6</td>
</tr>
<tr>
<td>N-3</td>
<td>Monitoring Design</td>
<td>7</td>
</tr>
<tr>
<td>N-3a</td>
<td>Sampling Locations</td>
<td>7</td>
</tr>
<tr>
<td>N-3a(1)</td>
<td>Sampling Locations for Repository VOC Monitoring</td>
<td>7</td>
</tr>
<tr>
<td>N-3a(2)</td>
<td>Sampling Locations for Disposal Room VOC Monitoring</td>
<td>7</td>
</tr>
<tr>
<td>N-3b</td>
<td>Analytes to Be Monitored</td>
<td>8</td>
</tr>
<tr>
<td>N-3c</td>
<td>Sampling and Analysis Methods</td>
<td>8</td>
</tr>
<tr>
<td>N-3d</td>
<td>Sampling Schedule</td>
<td>9</td>
</tr>
<tr>
<td>N-3d(1)</td>
<td>Sampling Schedule for Repository VOC Monitoring</td>
<td>9</td>
</tr>
<tr>
<td>N-3d(2)</td>
<td>Sampling Schedule for Disposal Room VOC Monitoring</td>
<td>9</td>
</tr>
<tr>
<td>N-3e</td>
<td>Data Evaluation and Reporting</td>
<td>10</td>
</tr>
<tr>
<td>N-3e(1)</td>
<td>Data Evaluation and Reporting for Repository VOC Monitoring</td>
<td>10</td>
</tr>
<tr>
<td>N-3e(2)</td>
<td>Data Evaluation and Reporting for Disposal Room VOC Monitoring</td>
<td>12</td>
</tr>
<tr>
<td>N-4</td>
<td>Sampling and Analysis Procedures</td>
<td>12</td>
</tr>
<tr>
<td>N-4a</td>
<td>Sampling Equipment</td>
<td>12</td>
</tr>
<tr>
<td>N-4a(1)</td>
<td>Sample Canisters</td>
<td>12</td>
</tr>
<tr>
<td>N-4a(2)</td>
<td>Sample Collection Units</td>
<td>13</td>
</tr>
<tr>
<td>N-4a(3)</td>
<td>Sample Tubing</td>
<td>13</td>
</tr>
<tr>
<td>N-4b</td>
<td>Sample Collection</td>
<td>13</td>
</tr>
<tr>
<td>N-4c</td>
<td>Sample Management</td>
<td>14</td>
</tr>
<tr>
<td>N-4d</td>
<td>Maintenance of Sample Collection Units</td>
<td>14</td>
</tr>
<tr>
<td>N-4e</td>
<td>Analytical Procedures</td>
<td>15</td>
</tr>
<tr>
<td>N-5</td>
<td>Quality Assurance</td>
<td>15</td>
</tr>
<tr>
<td>N-5a</td>
<td>Quality Assurance Objectives for the Measurement of Precision, Accuracy, Sensitivity, and Completeness</td>
<td>15</td>
</tr>
<tr>
<td>N-5a(1)</td>
<td>Evaluation of Laboratory Precision</td>
<td>16</td>
</tr>
<tr>
<td>N-5a(2)</td>
<td>Evaluation of Field Precision</td>
<td>17</td>
</tr>
<tr>
<td>N-5a(3)</td>
<td>Evaluation of Laboratory Accuracy</td>
<td>17</td>
</tr>
<tr>
<td>N-5a(4)</td>
<td>Evaluation of Sensitivity</td>
<td>17</td>
</tr>
<tr>
<td>N-5a(5)</td>
<td>Completeness</td>
<td>18</td>
</tr>
<tr>
<td>N-5b</td>
<td>Sample Handling and Custody Procedures</td>
<td>18</td>
</tr>
<tr>
<td>N-5c</td>
<td>Calibration Procedures and Frequency</td>
<td>18</td>
</tr>
<tr>
<td>N-5d</td>
<td>Data Reduction, Validation, and Reporting</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table	Title
Table N-1 | Target Analytes and Methods for Repository VOC (Station VOC-C and VOC-D) Monitoring and Disposal VOC Room VOC Monitoring
Table N-2 | Quality Assurance Objectives for Accuracy, Precision, Sensitivity, and Completeness

LIST OF FIGURES

Figure	Title
Figure N-1 | Repository VOC Monitoring Locations
Figure N-2 | VOC Monitoring System Design
Figure N-3 | Typical Disposal Room VOC Monitoring Locations
Figure N-4a | Disposal Room Sample Head Arrangement for Panels 1-7
Figure N-4b | Disposal Room Sample Head Arrangement for Panel 8
ACRONYMS, ABBREVIATIONS, AND UNITS

1 ARA additional requested analyte
2 BS/BSD blank spike/blank spike duplicate
3 CFR Code of Federal Regulations
4 CH contact-handled
5 CRQL contract-required quantitation limit
6 DOE U.S. Department of Energy
7 DRVMP Disposal Room VOC Monitoring Program
8 EDD electronic data deliverable
9 EPA U.S. Environmental Protection Agency
10 ft feet
11 GC/MS gas chromatography/mass spectrometry
12 HI hazard index
13 HWDU Hazardous Waste Disposal Unit
14 IUR inhalation unit risk
15 L liter
16 LCS laboratory control sample
17 LPEP Laboratory Performance Evaluation Plan
18 m meter
19 MDL method detection limit
20 mm millimeter
21 MOC Management and Operating Contractor
22 MRL method reporting limit
23 mtorr millitorr
24 NIST National Institute of Standards and Technology
25 NMAC New Mexico Administrative Code
26 NMED New Mexico Environment Department
27 PASK passive air-sampling kit
28 ppbv parts per billion by volume
29 ppmv parts per million by volume
30 PT proficiency testing
31 QA quality assurance
32 QAPjP Quality Assurance Project Plan
33 QC quality control
<table>
<thead>
<tr>
<th></th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RfC</td>
<td>reference concentration</td>
</tr>
<tr>
<td>2</td>
<td>RH</td>
<td>remote-handled</td>
</tr>
<tr>
<td>3</td>
<td>RPD</td>
<td>relative percent difference</td>
</tr>
<tr>
<td>4</td>
<td>RVMP</td>
<td>Repository VOC Monitoring Program</td>
</tr>
<tr>
<td>5</td>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>6</td>
<td>TIC</td>
<td>tentatively identified compound</td>
</tr>
<tr>
<td>7</td>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>8</td>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>9</td>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
</tbody>
</table>
ATTACHMENT N

VOLATILE ORGANIC COMPOUND MONITORING PLAN

N-1 Introduction

This Permit Attachment N describes the monitoring plan for volatile organic compound (VOC) emissions from transuranic (TRU) mixed waste that may be entrained in the exhaust air from the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Underground Hazardous Waste Disposal Units (HWDUs) during the disposal phase at the facility. The purpose of VOC monitoring is to ensure compliance with the VOC action levels and limits specified in Permit Part 4. This VOC monitoring plan consists of two programs: (1) the Repository VOC Monitoring Program (RVMP), which assesses compliance with the action levels in Permit Part 4, Section 4.6.2.3; and (2) the Disposal Room VOC Monitoring Program (DRVMP) (includes ongoing disposal room VOC monitoring), which assesses compliance with the disposal room action levels and limits in Permit Part 4, Tables 4.4.1, 4.4.2, 4.6.3.2, and 4.6.3.3. This plan includes the monitoring design, a description of sampling and analysis procedures, quality assurance (QA) objectives, and reporting activities.

N-1a Background

The Underground underground HWDUs are located 2,150 feet (ft) (655 meters [m]) below ground surface at the WIPP facility, in the WIPP underground. As defined for this Permit, an Underground underground HWDU is a single excavated panel consisting of seven rooms and two access drifts designated for disposal of contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste. Each room in Panels 1-7 is approximately 300 ft (91 m) long, 33 ft (10 m) wide, and 13 ft (4 m) high. Each room in Panel 8 is approximately 300 ft (91 m) long, 33 ft (10 m) wide, and 16 ft (5 m) high. Access drifts connect the rooms and have the same cross section. The Permittees shall dispose of TRU mixed waste in Underground underground HWDUs designated as Panels 1 through 8, 11, and 12.

This plan addresses the following elements:

1. Rationale for the design of the VOC monitoring programs, based on:
 - Possible pathways from the WIPP underground HWDUs during the active life of the facility.
 - Demonstrating compliance with the disposal room limits by monitoring VOCs in underground disposal rooms.
 - Demonstrating compliance with the ambient air monitoring action levels by monitoring VOC emissions on the surface.
 - VOC sampling operations at the WIPP facility.
 - Optimum locations for sampling.

2. Descriptions of the specific elements of the VOC monitoring programs, including:
The type of monitoring conducted,

Sampling locations,

The monitoring interval,

The specific hazardous constituents monitored,

VOC monitoring schedule,

Sampling equipment,

Sampling and analytical techniques,

Data recording/reporting procedures, and

Notification and action levels for remedial action.

N-1b Objectives of the Volatile Organic Compound Monitoring Plan

The CH and RH TRU mixed waste disposed in the WIPP Underground HWDUs contain VOCs which could be released from the WIPP underground facility during the disposal phase of the project. This Plan describes how:

- VOCs released from waste panels will be monitored to confirm that the running annual average risk to the non-waste surface worker due to VOCs in the air emissions from the Underground HWDUs do not exceed the action levels identified in Permit Part 4, Section 4.6.2.3, and calculated from measured VOC concentrations using risk factors identified in Table 4.6.2.3. Appropriate remedial action, as specified in Permit Section 4.6.2.4, will be taken if the action levels in Permit Part 4, Section 4.6.2.3 are reached.

- The VOCs released from waste containers in disposal rooms will be monitored to confirm that the concentration of VOCs in the air of closed and active rooms in active panels do not exceed the VOC disposal room limits identified in Permit Part 4, Table 4.4.1 or Table 4.4.2, as appropriate. Remedial action, as specified in Permit Part 4, Section 4.6.3.3, will be taken if the original sample results are greater than or equal to the action levels in Permit Part 4, Table 4.6.3.2 or Table 4.6.3.3, as appropriate.

N-2 Target Volatile Organic Compounds

The target VOCs for repository monitoring (Station VOC-C and VOC-D) and disposal room monitoring are presented in Table N-1.

These target VOCs were selected because together they represent approximately 99 percent of the carcinogenic risk due to air emissions of VOCs.
N-3 Monitoring Design

Detailed design features of this plan are presented in this section. This plan uses available sampling and analysis techniques to measure VOC concentrations in air. Subatmospheric sample collection units are used in the Repository and Disposal Room VOC Monitoring Programs. These sample collection units are described in greater detail in Section N-4a(2).

N-3a Sampling Locations

Air samples will be collected at the WIPP facility to quantify airborne VOC concentrations as described in the following sections.

N-3a(1) Sampling Locations for Repository VOC Monitoring

Mine ventilation air, which could potentially be impacted by VOC emissions from the Underground HWDUs identified as Panels 1 through 8, 11, and 12 will exit the underground through the Exhaust Shaft. Building 489 has been identified as the location of the maximum non-waste surface worker exposure. Air samples will be collected from Station VOC-C located at the west air intake for Building 489 (Figure M-78N-1) to quantify VOCs in the ambient air. Background VOCs will be measured by sampling from Station VOC-D located at groundwater pad WQSP-4 (Figure M-78N-1). This pad is located approximately one mile southeast (upwind based on the predominant wind direction) of the Exhaust Shaft within the WIPP facility boundary.

N-3a(2) Sampling Locations for Disposal Room VOC Monitoring

For purposes of compliance with Section 310 of Public Law 108-447, the VOC monitoring of airborne VOCs in underground disposal rooms in which waste has been emplaced will be performed as follows (Figures M-79 and M-80):

1. A sample head will be installed, prior to the certification of a Panel, inside the disposal room behind the exhaust drift bulkhead and at the inlet side of the disposal room, and inlet sides of each disposal room, with the exception of Room 1. An inlet sample head will not be installed in Room 1 because panel closure will commence once Room 1 is filled.

2. Sampling at the exhaust side location is initiated when TRU mixed waste will be emplaced in the active disposal room. Sampling is initiated at the inlet location when the active disposal room is filled.

3. When the active disposal room is filled, another sample head will be installed to the inlet of the filled active disposal room. (Figure N-3 and N-4)

4. The exhaust drift bulkhead will be removed and re-installed in the next disposal room so disposal activities may proceed.

5. A ventilation barrier will be installed where the bulkhead was located in the active disposal room's exhaust drift. Another ventilation barrier will be installed in the active disposal room's air inlet drift, thereby closing that active disposal room.
Monitoring of VOCs will continue in the now closed disposal room. Monitoring of VOCs will occur in the active disposal room and all the closed disposal rooms in which waste has been emplaced until commencement of panel closure activities (i.e., completion of ventilation barriers in Room 1).

This sequence for installing sample locations will proceed in the remaining disposal rooms until the inlet air ventilation barrier is installed in Room 1. An inlet sampler will not be installed in Room 1 because disposal room sampling proceeds to the next panel.

N-3b Models to Be Monitored

The VOCs that have been identified for repository and disposal room VOC monitoring are listed in Table N-1. The analysis will focus on routine detection and quantification of these target analytes in collected samples. As part of the analytical evaluations, the presence of other compounds (i.e., non-target VOCs) will also be monitored. Some non-target VOCs may be included on the laboratory’s target analyte list as additional requested analytes (ARAs) to gain a better understanding of potential concentrations and associated risk. The analytical laboratory will be directed to calibrate for ARAs, when necessary. The analytical laboratory will also be directed to classify and report other non-target VOCs as tentatively identified compounds (TICs). When tentative identification can be made, the evaluation of TICs in original samples will include those concentrations that are \(\geq 10 \) percent of the relative internal standard. The evaluation of ARAs only includes concentrations that are greater than or equal to the MRLs listed in Table N-2.

Non-target VOCs classified as ARAs or TICs meet the following criteria: (1) are listed in Appendix VIII of 40 Code of Federal Regulations (CFR) Part 261 (incorporated by reference in 20.4.1.200 New Mexico Administrative Code (NMAC)), and (2) are detected in 10 percent or more of any original VOC monitoring samples collected over a 12-month timeframe. Non-target VOCs will be added, as applicable, to the analytical laboratory target analyte list for both the repository and disposal room VOC monitoring programs, unless the Permittees can justify their exclusion. Non-target VOCs reported as “unknown” by the analytical laboratory are not evaluated due to indeterminate identifications.

Information regarding additional requested analytes and TICs detected in the repository and disposal room VOC monitoring programs will be placed in the WIPP Operating Record and reported to the New Mexico Environment Department (NMED) in the Semi-Annual VOC Monitoring Report as specified in Permit Part 4, Section 4.6.2.2. As applicable, the Permittees will also report the justification for exclusion of the ARA or TIC from the target analyte list (e.g., the compound does not contribute to more than one percent of the risk; the compound persists in the background samples at similar concentrations). If new targets are required, the Permittees will submit the appropriate permit modification annually (in October) to update Table 4.6.2.3 to include the new analyte and associated recommended U.S. Environmental Protection Agency (EPA) risk values for the inhalation unit risk (IUR) and reference concentration (RFC). Added compounds will be included in the risk assessment described in Section N-3e(1).

N-3c Sampling and Analysis Methods

The VOC monitoring programs include a comprehensive VOC monitoring program established at the facility; equipment, training, and documentation are already in place.
The sampling methods used for VOC monitoring are based on the concepts contained in the EPA Compendium Method TO-15 (EPA, 1999). The TO-15 sampling concept uses 6-liter passivated stainless-steel canisters to collect integrated air samples at each sample location. This conceptual method will be used as a reference for collecting the samples at the WIPP facility. The samples will be analyzed using gas chromatography/mass spectrometry (GC/MS) under an established QA/quality control (QC) program. Laboratory analytical procedures have been developed based on the concepts contained in both TO-15 and SW-846 Method 8260B. Section N-5 contains additional QA/QC information for this project.

The TO-15 method is an EPA-recognized sampling concept for VOC sampling and speciation. It can be used to provide subatmospheric samples, integrated samples, or grab samples, as well as compound quantitation for a broad range of concentrations. This sampling technique is also viable for use while analyzing the sample using other EPA methods such as SW-846 Method 8260B.

For subatmospheric sampling, air is collected in an initially evacuated passivated canister. When the canister is opened to the atmosphere, the differential pressure causes the sample to flow into the canister. Flow rate and duration are regulated with a flow-restrictive inlet and flow controller. The air will pass through a particulate filter to prevent sample and equipment contamination. Passivated sampling equipment components are used to inhibit adsorption of compounds on the surfaces of the equipment. The required Method Reporting Limit (MRL) for the RVMP is 0.2 parts per billion by volume (ppbv) in SCAN mode and 0.1 ppbv in SIM mode. Consequently, low concentrations can be measured. The required MRL for DRVMP is 500 ppbv (0.5 parts per million by volume (ppmv)) to allow for reliable quantitation. The MRL is a function of instrument performance, sample preparation, sample dilution, and all steps involved in the sample analysis process. The DRVMP will employ sample collection units that will provide a subatmospheric sample within a short duration (less than 1 hour). Passivated sampling lines will be installed in the disposal room as described in Section N-3a(2) and maintained (to the degree possible) after the room is closed, until the panel associated with the room is closed. The independent lines will run from the sample inlet point to a sampling manifold located in an area accessible to sampling personnel.

N-3d Sampling Schedule

The Permittees will perform sampling on the following schedule in accordance with standard operating procedures.

N-3d(1) Sampling Schedule for Repository VOC Monitoring

Routine collection of a 24-hour time-integrated sample will be conducted two times per week. The RVMP sampling will continue until the certified closure of the last underground HWDU.

N-3d(2) Sampling Schedule for Disposal Room VOC Monitoring

The disposal room sampling in open panels will occur once every two weeks, unless the need to increase the frequency to weekly occurs in accordance with Permit Section 4.6.3.3.
Beginning with Panel 3, disposal room sampling in filled panels will occur monthly until final panel closure unless an explosion isolation wall is installed. The Permittees will sample VOCs in Room 1 of each filled panel.

N-3e Data Evaluation and Reporting

N-3e(1) Data Evaluation and Reporting for Repository VOC Monitoring

When the Permittees receive laboratory analytical data from an air-sampling event, the data will be validated as specified in Section N-5d. After obtaining validated data from an original surface VOC monitoring sample obtained during an air-sampling event, the data will be evaluated to determine whether the VOC emissions from the Underground HWDUs exceed the action levels in Permit Part 4, Section 4.6.2.3. The values are calculated in terms of excess cancer risk for compounds believed to be carcinogenic and in terms of a hazard index (HI) for non-carcinogens using the following steps as follows:

Step 1: Calculate the carcinogenic risk (risk due to exposure to target) for the non-waste surface worker (for each target VOC) using the following equation:

\[R_{VOC_j} = \frac{C_{VOC_j} \times EF \times ED \times IUR_{VOC_j} \times 1000}{AT} \]

(N-1)

Where:

\[R_{VOC_j} = \text{Risk due to exposure to target VOC}_j \]

\[C_{VOC_j} = \text{Concentration target VOC}_j \text{ at the receptor (milligram per cubic meter (mg/m}^3\text{)), calculated as the concentration at VOC-C (mg/m}^3\text{)} - \text{the concentration at VOC-D (mg/m}^3\text{)} \]

\[EF = \text{Exposure frequency (hours/year)} = 1,920 \text{ hours per year} \]

\[ED = \text{Exposure duration, years} = 10 \text{ years} \]

\[IUR_{VOC_j} = \text{Inhalation unit risk factor from Table 4.6.2.3 (microgram per cubic meter (µg/m}^3\text{)-1}} \]

\[AT = \text{Averaging time for carcinogens, = 613,200 hours based on 70 years} \]

\[1,000 = \mu g/mg \]

Step 2: Calculate the total carcinogenic risk. This is the sum of the risk due to each carcinogenic target VOC:

\[\text{Total Carcinogenic Risk} = \sum_{j=1}^{m} R_{VOC_j} \]

(N-2)

Where:

\[\text{Total Risk must be less than } 10^{-5} \]
Step 3: Calculate

The formula for calculating the non-carcinogenic hazard index is similar:

\[HI_{VOC_j} = \frac{Conc_{VOC_j} \times EF \times ED}{AT \times RfC_{VOC_j}} \]

(N-3)

Where:

\[HI_{VOC_j} = \text{Hazard Index for exposure to target VOC}_j \]

\[Conc_{VOC_j} = \text{Concentration target VOC}_j \text{ at the receptor (mg/m}^3\text{), calculated as the concentration at VOC-C (mg/m}^3\text{) – the concentration at VOC-D (mg/m}^3\text{)} \]

\[EF = \text{Exposure frequency (hours/year)} = 1,920 \text{ hours per year} \]

\[ED = \text{Exposure duration, years} = 10 \text{ years} \]

\[RfC_{VOC_j} = \text{Reference concentration from Table 4.6.2.3 (mg/m}^3\text{)} \]

\[AT = \text{Averaging time for non-carcinogens, = 87,600 hours, based on exposure duration} \]

Step 4: Calculate the total hazard. This is the sum of the hazard index due to each non-carcinogenic target VOC:

\[\text{Total Hazard Index} = \sum_{j=1}^{m} HI_{VOC_j} \]

(N-4)

Where:

\[\text{Hazard Index must be less than or equal to 1.0} \]

\[m = \text{the number of non-carcinogenic target VOCs} \]

The total carcinogenic risk (Equation N-2) and the total HI (Equation N-4) calculated from the surface VOC concentrations for each sampling event will be compared directly to the action levels in Permit Part 4, Section 4.6.2.3. This will establish whether the combined effect of any of the concentrations of VOCs in the emissions from the Underground HWDUs exceeded the risk and HI action levels at the time of the sampling.

As specified in Permit Part 4, the Permittees shall notify the Secretary in writing, within seven calendar days of obtaining validated analytical results, whenever the risk or HI exceeds the action levels specified in Permit Part 4, Section 4.6.2.3.

The surface VOC concentrations for each target VOC that is calculated for each sampling event will then be averaged with the surface VOC-concentrations calculated for the air-sampling events conducted during the previous 12 months. This will be considered the running annual average concentration for each target VOC. The running annual average risk and HI will be
compared to action levels specified in Permit Part 4, Section 4.6.2.3. When a VOC is added to
the target analyte list, the running annual average concentration will be calculated using all
available data.

As specified in Permit Part 4, the Permittees shall notify the Secretary in writing, within seven
calendar days of obtaining validated analytical results, whenever the running annual average
risk or HI (calculated after each sampling event) exceeds the action levels specified in Permit
Part 4, Section 4.6.2.3.

The Permittees will maintain a database with the VOC air-sampling data and the results will be
reported to the Secretary as specified in Permit Part 4.

N-3e(2) Data Evaluation and Reporting for Disposal Room VOC Monitoring

When the Permittees receive laboratory analytical data from an air-sampling event, the data will
be validated as specified in Section N-5d. The validated data will be evaluated to determine
whether the VOC concentrations in the air of any closed room, the active open room, or the
immediately adjacent closed room exceeded the Action Levels specified in Permit Part 4, Table 4.6.3.2 or Table 4.6.3.3, as appropriate.

The Permittees shall notify the Secretary in writing, within seven calendar days of obtaining
validated analytical results, whenever the concentration of any VOC specified in Permit Part 4, Table 4.4.1 or Table 4.4.2 exceeds the action levels specified in Permit Part 4, Table 4.6.3.2 or Table 4.6.3.3, respectively.

The Permittees shall submit to the Secretary the Semi-Annual VOC Monitoring Report specified
in Permit Section 4.6.2.2 that also includes results from disposal room VOC monitoring.

N-4 Sampling and Analysis Procedures

This section describes the equipment and procedures that will be implemented during sample
collection and analysis activities for VOCs at the WIPP facility.

N-4a Sampling Equipment

The sampling equipment that will be used includes: 6-liter (L) stainless-steel passivated
canisters, passive air-sampling kits (PASKs), subatmospheric sampling assemblies, passivated
stainless-steel tubing, and one or more in-line filters. A discussion of each of these items is
presented below.

N-4a(1) Sample Canisters

Six-liter, stainless-steel canisters with passivated interior surfaces will be used to collect and
store all ambient air and disposal room samples for VOC analyses collected as part of the
monitoring processes. These canisters will be cleaned and certified (batch certification
acceptable for disposal room monitoring) prior to their use, in a manner similar to that described
by Compendium Method TO-15. The canisters will be certified clean to below the required
reporting limits for the VOC analytical method for the target VOCs. The vacuum of certified
clean canisters will be verified as adequate upon initiation of a sample cycle as described in
standard operating procedures (SOPs).- The sample canisters are initially evacuated at the analytical laboratory to <0.05 millimeter of mercury (mm Hg) (50 millitorr).

N-4a(2) Sample Collection Units

The sample collection unit for surface VOC samples is a commercially available PASK comprised of components that regulate the rate and duration of air flow into a sample canister. It can be operated either manually, using canister valves, or unattended, using a programmable timer.

The sample collection unit for disposal room VOC monitoring is a subatmospheric sampling assembly that regulates the rate and duration of air flow into a sample canister.- The subatmospheric sampling assembly also allows for purging of sample lines to ensure that a representative sample is collected.

Sample collection units will use passivated components for the sample flow path.- When sample canisters installed on sample collection units are opened to the atmosphere, the differential pressure causes the sample to flow into the canister at a regulated rate. - By the end of each sampling period, the canisters will be near atmospheric pressure.- Detailed instructions on sample collection will be given in SOPs. A conceptual diagram of the VOC sample collection units are provided in Figures M-81 and M-82N-2.

N-4a(3) Sample Tubing

The tubing used as a sample path is comprised of passivated stainless-steel to prevent the inner walls from absorbing sample constituents and/or contaminants when they are pulled from the sample point to the sample collection unit.

N-4b Sample Collection

Sample collection for VOCs at the WIPP facility will be conducted in accordance with written SOPs that are kept on file at the facility. - These SOPs will specify the steps necessary to ensure the collection of samples that are of acceptable quality to meet the applicable data quality objectives in Section N-5.

Repository VOC samples will be 24–hour time-integrated samples for each sampling event. Alternative sampling durations may be defined for assessment purposes and to meet the data quality objectives.- The selection of sampling days will be specified in SOPs and will be alternated from week-to-week in order to avoid potential bias created by plant operations.

Sample flow for the PASK will be set using an in-line mass flow controller. The flow controllers are initially factory-calibrated and specify a typical accuracy of better than 10 percent full scale. Additionally, each air flow controller is calibrated at a manufacturer-specified frequency using a National Institute of Standards and Technology (NIST) primary flow standard.

To verify the matrix similarity and assess field-sampling precision, field duplicate samples will be collected (two canisters filled simultaneously) for each VOC monitoring program at an overall frequency of at least five percent (see Section N-5a).
Prior to collecting the active open disposal room and closed room samples, the sample lines are purged to ensure that the air collected is not air that has been stagnant in the tubing. This is important in regard to the disposal room sample because of the long lengths of tubing associated with these samples.

N-4c Sample Management

Field-sampling data sheets will be used to document the sampler conditions under which each sample is collected. These data sheets have been developed specifically for VOC monitoring at the WIPP facility. The individuals assigned to collect the specific samples will be required to fill in all of the appropriate sample data and to maintain this record in sample logbooks. The program team leader will review these forms for each sampling event.

All sample containers will be marked with identification at the time of collection of the sample. A Request-for-Analysis Form will be completed to identify the sample canister number(s), sample type and type of analysis requested.

All samples will be maintained, and shipped if necessary, at ambient temperatures. Collected samples will be transported in appropriate containers. Prior to leaving the underground for analysis, sample containers may undergo radiological screening, which will ensure that contaminated samples or equipment will not be transported to the surface. Samples will not be accepted by the receiving laboratory personnel unless they are properly labeled and sealed to ensure a tamper-free shipment.

An important component of the sampling program is a demonstration that collected samples were obtained from the locations stated and that they reached the laboratory without alteration. To satisfy this requirement, evidence of collection, shipment, laboratory receipt, and custody will be documented with a completed Chain-of-Custody Form. Chain-of-custody procedures will be followed closely, and additional requirements imposed by the laboratory for sample analysis will be included as necessary.

Individuals collecting samples will be responsible for the initiation of custody procedures. The chain of custody will include documentation as to the canister certification, location of sampling event, time, date, and the name of the individual handling the samples. Deviations from procedure will be considered variances. Variances must be preapproved by the program manager and recorded in the project files. Unintentional deviations, sampler malfunctions, and other problems are nonconformances. Nonconformances must be documented and recorded in the project files. All field logbooks/data sheets must be incorporated into the Permittees' WIPP's records management program.

N-4d Maintenance of Sample Collection Units

Periodic maintenance for sample collection units and associated equipment will be performed as needed. This maintenance may include cleaning, replacement of damaged or malfunctioning parts, and leak testing. Additionally, complete spare sample collection units will be maintained on-site to minimize downtime because of equipment malfunction.
N-4e Analytical Procedures

Analytical procedures used in the analysis of VOC samples from canisters are based on concepts contained in Compendium Method TO-15 (EPA, 1999) and in SW-846 Method 8260B (EPA, 2015).

Analysis of samples will be performed by a certified laboratory. Methods will be specified in procurement documents and will be selected to be consistent with Compendium Method TO-15 (EPA, 1999) or EPA recommended procedures in SW-846 (EPA, 2015). Additional detail on analytical techniques and methods will be given in laboratory SOPs.

The Permittees will establish the criteria for laboratory selection, including the stipulation that the laboratory follow the procedures specified in the appropriate Air Compendium or SW-846 method and that the laboratory follow EPA protocols. The selected laboratory shall demonstrate, through laboratory SOPs, that it will follow appropriate EPA SW-846 requirements and the requirements specified by the EPA Air Compendium protocols. The laboratory shall also provide documentation to the Permittees describing the sensitivity of laboratory instrumentation. This documentation will be retained in the facility operating record and will be available for review upon request by NMED.

The SOPs for the laboratory currently under contract will be maintained in the operating record by the Permittees. The Permittees will provide NMED with an initial set of applicable laboratory SOPs for information purposes, and provide NMED with any updated SOPs on an annual basis by January 31 upon request.

Data validation will be performed by the Permittees. Copies of the data validation report will be kept on file in the operating record for review upon request by NMED.

N-5 Quality Assurance

The QA activities for the VOC monitoring programs will be conducted in accordance with the documents: EPA Guidance for Quality Assurance Project Plans QA/G-5 (EPA, 2002) and the EPA Requirements for Preparing Quality Assurance Project Plans, QA/R-5 (EPA, 2001). The QA criteria for the VOC monitoring programs are listed in Table N-2. This section addresses the methods to be used to evaluate the components of the measurement system and how this evaluation will be used to assess data quality. The QA limits for the sampling procedures and laboratory analysis shall be in accordance with the limits set forth in the specific EPA Method referenced in standard operating procedures employed by either the Permittees or the laboratory. The Permittees standard operating procedures will be in the facility Operating Record and available for review by NMED at anytime upon request. The laboratory standard operating procedures will also be in the facility Operating Record and will be supplied to the NMED as indicated in Section N-4e.

N-5a Quality Assurance Objectives for the Measurement of Precision, Accuracy, Sensitivity, and Completeness

QA objectives for this plan will be defined in terms of the following data quality parameters.

Precision. For the duration of this program, precision will be defined and evaluated by the RPD values calculated between field duplicate samples and between laboratory duplicate samples.
$RPD = \left(\frac{(A - B)}{(A + B)/2} \right) \times 100$

(N-5)

Where

\[A = \text{Original sample result} \]
\[B = \text{Duplicate sample result} \]

Accuracy. Analytical accuracy will be defined and evaluated through the use of analytical standards. Because recovery standards cannot reliably be added to the sampling stream, overall system accuracy will be based on analytical instrument performance evaluation criteria. These criteria will include performance verification for instrument calibrations, laboratory control samples, sample surrogate recoveries (when required by method or laboratory SOPs), and sample internal standard areas. Use of the appropriate criteria as determined by the analytical method performed, will constitute the verification of accuracy for target analyte quantitation (i.e., quantitative accuracy). Evaluation of standard ion abundance criteria for bromofluorobenzene (BFB) will be used to evaluate the accuracy of the analytical system in the identification of targeted analytes, as well as the evaluation of unknown contaminants (i.e., qualitative accuracy).

Sensitivity. Sensitivity will be defined by the required MRLs for the program. Attainment of required MRLs will be verified by the performance of statistical method detection limit (MDL) studies in accordance with 40 Code of Federal Regulations § CFR Part 136. The MDL represents the minimum concentration that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. An MDL study will be performed by the program analytical laboratory prior to sampling and analysis, and annually thereafter.

Completeness. Completeness will be defined as the percentage of the ratio of the number of valid sample results received (i.e., those which meet data quality objectives) versus the total number of samples collected. Completeness may be affected, for example, by sample loss or destruction during shipping, by laboratory sample handling errors, or by rejection of analytical data during data validation.

N-5a(1) Evaluation of Laboratory Precision

Laboratory sample duplicates and blank spike/blank spike duplicates (BS/BSD) will be used to evaluate laboratory precision. QA objectives for laboratory precision are listed in Table N-2, and are based on precision criteria proposed by the EPA for canister sampling programs (EPA, 1991). These values will be appropriate for the evaluation of samples with little or no matrix effects. Because of the potentially high level of salt-type aerosols in the WIPP underground environment, the analytical precision achieved for WIPP samples may vary with respect to the EPA criteria. RPDs for BS/BSD analyses will be tracked through the use of control charts. RPDs obtained for laboratory sample duplicates will be compared to those obtained for BS/BSDs to ascertain any sample matrix effects on analytical precision. BS/BSDs and laboratory sample duplicates will be analyzed at a frequency of 10 percent, or one per analytical lot, whichever is more frequent.
N-5a(2) Evaluation of Field Precision

Field duplicate samples will be collected at a frequency of at least five percent for the RVMP and at least five percent for the DRVMP. The data quality objective for field precision is 35 percent for each set of field duplicate samples.

N-5a(3) Evaluation of Laboratory Accuracy

Quantitative analytical accuracy will be evaluated through performance criteria on the basis of (1) relative response factors generated during instrument calibration, (2) analysis of laboratory control samples (LCS), and (3) recovery of internal standard compounds. The criteria for the initial calibration (five-point calibration) is ≤ 30 percent relative standard deviation for target analytes. After the successful completion of the five-point calibration, it is sufficient to analyze only a midpoint standard for every 24 hours of operation. The midpoint standard will pass a 30 percent difference acceptance criterion for each target compound before sample analysis may begin.

A blank spike or LCS is an internal QC sample generated by the analytical laboratory by spiking a standard air matrix (humid zero air) with a known amount of a certified reference gas. The reference gas will contain the target VOCs at known concentrations. Percent recoveries for the target VOCs will be calculated for each LCS relative to the reference concentrations. Objectives for percent recovery are listed in Table N-2, and are based on accuracy criteria proposed by the EPA for canister sampling programs (EPA, 1991). LCSs, laboratory control samples will be analyzed at a frequency of 10 percent, or one per analytical lot, whichever is more frequent.

Internal standards will be introduced into each sample analyzed, and will be monitored as a verification of stable instrument performance. In the absence of any unusual interferences, areas should not change by more than 40 percent over a 24-hour period. Deviations larger than 40 percent are an indication of a potential instrument malfunction. If an internal standard area in a given sample changes by more than 40 percent, the sample will be reanalyzed. If the 40 percent criterion is not achieved during the reanalysis, the instrument will undergo a performance check and the midpoint standard will be reanalyzed to verify proper operation. Response and recovery of internal standards will also be compared between samples, LCSs, and calibration standards to identify any matrix effects on analytical accuracy.

N-5a(4) Evaluation of Sensitivity

The presence of aerosol salts in underground locations may affect the MDL of the samples collected in those areas. The sample inlet of these sample collection units will be protected sufficiently from the underground environment to minimize salt aerosol interference. Up to two filters, inert to VOCs, will be installed in the sample flow path to minimize particulate interference.

The MDL for each of the target VOCs will be evaluated by the analytical laboratories before sampling begins. The initial and annual MDL evaluation will be performed in accordance with Code of Federal Regulations §CFR Part 136, and with EPA/530-SW-90-021, as revised and retitled, “Project Quality Assurance and Quality Control” (Chapter 1 of SW-846) (2015-1996).
N-5a(5) Completeness

The expected completeness for this program is greater than or equal to 95 percent. Data completeness will be tracked monthly.

N-5b Sample Handling and Custody Procedures

Sample packaging, shipping, and custody procedures are addressed in Section N-4c.

N-5c Calibration Procedures and Frequency

Calibration procedures and frequencies for analytical instrumentation are listed in Section N-4e.

N-5d Data Reduction, Validation, and Reporting

Field-sampling data sheets will contain documentation of all pertinent data for the sampling and will at a minimum include the following: sample identification, sample location, sample collection date, initial vacuum, ending vacuum, collection start and collection stop time, and flow rate and ambient temperature.

Data validation procedures will include at a minimum, a check of all field data sheets for completeness and correctness. Sample custody and analysis records will be reviewed by the analytical laboratory QA officer and the analytical laboratory supervisor at a frequency of at least 10 percent.

Electronic Data Deliverables (EDDs) are provided by the laboratory prior to receipt of hard certified copy data packages. Electronic Data Deliverables EDDs will be evaluated within five calendar days of receipt to determine if VOC concentrations are at or above action levels in Permit Part 4, Section 4.6.3.2 for disposal room VOC monitoring data, or the action levels specified in Permit Part 4, Section 4.6.2.3 for repository monitoring data. If the EDD indicates that VOC concentrations are at or above these action levels or concentrations, the hard certified copy data package will be validated within five calendar days as opposed to the 14 calendar day time frame.

Data will be reported as specified in Section N-3(e) and Permit Part 4.

Acceptable data for this VOC monitoring plan will meet stated precision and accuracy criteria. The QA objectives for precision, accuracy, and completeness as shown in Table N-2 can be achieved when established methods of analyses are used as proposed in this plan and standard sample matrices are being assessed.

N-5e Performance and System Audits

The Permittees will evaluate whether the monitoring systems and analytical methods are functioning properly through performance and system audits. The assessment period will be determined by the Permittees. System audits will initially address start-up functions for each phase of the project. These audits will consist of on-site evaluation of materials and equipment, review of certifications for canisters and measurement and test equipment, review of laboratory qualification and operation and, at the request of the QA officer, an on-site audit of the laboratory facilities. The function of the system audit is to verify that the requirements in this
plan have been met prior to initiating the program. System audits will be performed at or shortly
after the initiation of the VOC monitoring programs and on an annual basis thereafter.

Performance audits will be accomplished as necessary through the evaluation of analytical QC
data by performing periodic site audits throughout the duration of the project, and through the
introduction of third-party audit cylinders (laboratory blinds) into the analytical sampling stream.
Performance audits will also include a surveillance/review of data associated with canister
certifications and measurement and test equipment, a project-specific technical audit of field
operations, and a laboratory performance audit. Field logs, logbooks, and data sheets, as
applicable will be reviewed during data validation. Blind-audit canisters will be introduced once
during the sampling period. Details concerning scheduling, personnel, and data quality
evaluation are addressed in the QAPjP.

By May 1, 2016 the Permittees shall develop and implement a RVMP Laboratory Performance
Evaluation Plan (LPEP) that has been reviewed and approved by the Secretary prior to use, for
Repository VOC ambient monitoring. In addition to the timely submittal of validated data
packages under this LPEP to the Secretary, the results shall also be reported annually in the
October Semi-Annual VOC Monitoring Report. The second contract laboratory performing the
performance evaluation to be used for comparison to the primary contract laboratory shall use
the required MRLs as required in Table N-2, which are defined to be equivalent to the CRQLs.
Any contract laboratory involved in this program shall have a site specific quality assurance
project plan and an associated QA/QC program that are acceptable and aligned with EPA
guidance. The LPEP shall, at a minimum, include the following sections:

1. Table of Contents
2. Introduction
3. Background
4. Scope/Objectives: this section shall include comparative testing of subatmospheric
 sampling containers, the field background canisters, and a test of the cleanliness of the
 canister less than the SIM mode MRL in Table N-2.
5. Laboratory Specific SOPs
6. Sampling Methodologies
7. Analytical Methodologies
8. Quality Assurance Requirements
9. Schedules
10. Reporting: data packages shall contain all applicable sections found in the document
 “Statement of Work for the Analysis of Air Toxics from Superfund Sites” (EPA 1990),
 Exhibit B, Section 2, “Reporting Requirements and Order of Data Deliverables” and as
 approved by the Secretary.

As an alternative to the LPEP, the Permittees will notify the Secretary of their intention to require
the contract laboratory to participate in proficiency testing. The Permittees will then, within 90
days, submit to the NMED for approval, a proposal for proficiency testing. If the Permittees are
unable to develop a proficiency testing plan that is acceptable to the NMED, then the Permittees
will prepare and submit the LPEP for approval. The proposal for proficiency testing will include
the following, as applicable:

- Specific analytical method(s)
- Schedule for proficiency testing implementation, and
• Provision for the periodic reporting of proficiency testing results and corrective actions, if any.

Results of proficiency testing (PT) will be reported in the Semi-Annual VOC Monitoring Report as specified in Permit Part 4, Section 4.6.2.2.

N-5f Preventive Maintenance

Maintenance of sample collection units is described briefly in Section N-4d Maintenance of analytical equipment will be addressed in the analytical laboratory SOP.

N-5g Corrective Actions

If the required completeness of valid data (95 percent) is not maintained, corrective action may be required. Corrective action for field-sampling activities may include recertification and cleaning of sample collection units, reanalysis of samples, additional training of personnel, modification to field and laboratory procedures, and recalibration of measurement and test equipment.

Laboratory corrective actions may be required to maintain data quality. The laboratory continuing calibration criteria indicate the relative response factor for the midpoint standard will be less than 30 percent different from the mean relative response factor for the initial calibration. Differences greater than 30 percent will require recalibration of the instrument before samples can be analyzed. If the internal standard areas in a sample change by more than 40 percent, the sample will be reanalyzed. If the 40 percent criterion is not achieved during the reanalysis, the instrument will undergo a performance check and the midpoint standard will be reanalyzed to verify proper operation. Deviations larger than 40 percent may indicate instrument malfunction.

The laboratory results for samples, duplicate analyses, LCSs, and blanks should routinely be within the QC limits. If results exceed control limits, the reason for the nonconformances and appropriate corrective action must be identified and implemented.

N-5h Records Management

The VOC Monitoring Programs will require administration of record files (both laboratory and field data collection files). The records control systems will provide adequate control and retention for program-related information. Records administration, including QA records, will be conducted in accordance with applicable DOE, MOC, and WIPP Project requirements.

Unless otherwise specified, VOC monitoring plan records will be retained as lifetime records. Temporary and permanent storage of QA records will occur in facilities that prevent damage from temperature, fire, moisture, pressure, excessive light, and electromagnetic fields. Access to stored VOC Monitoring Program QA Records will be controlled and documented to prevent unauthorized use or alteration of completed records.

Revisions to completed records (i.e., as a result of audits or data validation procedures) may be made only with the approval of the responsible program manager and in accordance with
applicable QA procedures. Records of project activities will be maintained at the WIPP site. Documentation will be available for inspection by internal and external auditors.

N-6 Sampling and Analysis Procedures for Disposal Room VOC Monitoring in Filled Panels

Disposal room VOC samples in filled panels will be collected using the subatmospheric pressure grab sampling technique described in Compendium Method TO-15 (EPA, 1999). This method uses an evacuated, passivated canister (or equivalent) that is under vacuum (0.05 mm Hg) to draw the air sample from the sample lines into the canister. The sample lines will be purged prior to sampling to ensure that a representative sample is collected. The passivation of tubing and canisters used for VOC sampling effectively seals the inner walls and prevents compounds from being retained on the surfaces of the equipment. By the end of each sampling period, the canisters will be near atmospheric pressure.

The analytical procedures for disposal room VOC monitoring in filled panels are the same as specified in Section N-4e.

N-76 References

TABLES
<table>
<thead>
<tr>
<th>Target Analyte</th>
<th>EPA Standard Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrachloride</td>
<td>EPA TO-15<sup>a</sup></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>EPA 8260B<sup>b</sup></td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Analyte</th>
<th>Accuracy (Percent Recovery)</th>
<th>Precision (RPD)</th>
<th>Required Repository Surface Monitoring MRL for SCAN Mode (ppbv)</th>
<th>Required Repository Surface Monitoring MRL for SIM Mode (ppbv)</th>
<th>Required Disposal Room MRL (ppbv)</th>
<th>Completeness (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrachloride</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>Chloroform</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>Toluene</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>60 to 140</td>
<td>25</td>
<td>35</td>
<td>0.2</td>
<td>0.1</td>
<td>500</td>
</tr>
</tbody>
</table>

MRL maximum method reporting limit for undiluted samples
RPD relative percent difference
Figure N-1
Repository VOC Monitoring Locations

(see Figure D-1 and Figure D-1a for a detailed map and legend of the surface buildings)
Figure N-2
VOC Monitoring System Design

TYPICAL PASSIVE AIR SAMPLING KIT WITH CANISTER

CRITICAL ORIFICE
FLOW CONTROLLER
GAUGE
CANISTER VALVE
6L PASSIVATED CANISTER
TYPICAL SUBATMOSPHERIC SAMPLING ASSEMBLY WITH CANISTER

Figure N-2
VOC Monitoring System Design (continued)
Figure N-3
Typical Disposal Room VOC Monitoring Locations
Figure N-4a
Disposal Room Sample Head Arrangement for Panels 1-7
Figure N-4b
Disposal Room Sample Head Arrangement for Panel 8
Enclosure 2
Consolidation Matrix
March 2022
66 pages
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1 Facility Description</td>
<td>A-1 Facility Description</td>
<td>A-1 Facility Description</td>
<td>A-1 Facility Description</td>
<td>The 2020 Permit Renewal Application change is no longer needed because the facility mailing address / facility location was updated in a subsequent Class 1 PMN.</td>
</tr>
<tr>
<td>FACILITY MAILING ADDRESS: U.S. Department of Energy P.O. Box 3090 Carlsbad, NM 88221</td>
<td>[no changes]</td>
<td>FACILITY MAILING ADDRESS: U.S. Department of Energy P.O. Box 3090 Carlsbad, NM 88221</td>
<td>FACILITY MAILING ADDRESS: U.S. Department of Energy P.O. Box 3090 Carlsbad, NM 88221</td>
<td></td>
</tr>
<tr>
<td>FACILITY LOCATION: 30 26 miles east of Carlsbad on the Jal Highway, in Eddy County.</td>
<td>[no changes]</td>
<td>FACILITY LOCATION: 34 Louis Whitlock Road, Carlsbad, NM 88220</td>
<td>FACILITY LOCATION: 34 Louis Whitlock Road, Carlsbad, NM 88220</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the facility mailing address / facility location was updated in a subsequent Class 1 PMN.</td>
</tr>
<tr>
<td>GEOGRAPHIC LOCATION: 32° 22′ 3011″ N -103° 47′ 3029″ W</td>
<td>[no changes]</td>
<td>GEOGRAPHIC LOCATION: 32.3697706 -103.7913501</td>
<td>GEOGRAPHIC LOCATION: 32.3697706 -103.7913501</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the geographic location was updated in a subsequent Class 1 PMN.</td>
</tr>
</tbody>
</table>
The underground structures include the underground Hazardous Waste Disposal Units (HWDUs), an area for future underground HWDUs, the shaft pillar area, interconnecting drifts and other areas unrelated to the Hazardous Waste Facility Permit. The underground HWDUs are defined as waste panels, each consisting of seven rooms and two access drifts. The WIPP facility underground area is designated as Panels 1 through 10, although only Panels 1 through 8 will be used under the terms of this permit. Each of the seven rooms is approximately 300 feet long, 33 feet wide and 13 feet high. Permit Part 4 of the permit authorizes the management and disposal of CH and RH TRU mixed waste containers in underground HWDUs. The Disposal Phase of the WIPP Project consists of receiving CH and RH TRU mixed waste shipping containers, unloading and transporting the waste containers to the underground HWDUs, emplacing the waste in the underground HWDUs, and subsequently achieving closure of the underground HWDUs in compliance with applicable State and Federal regulations. As required by 20.4.1.500 NMAC (incorporating 40 CFR §264.601), the Permittees shall ensure that the environmental performance standards for a miscellaneous unit, which are applicable to the underground HWDUs in the geologic repository, will be met. Permit Attachment A2 describes the underground HWDUs, the TRU mixed waste management facilities and operations, and compliance with the technical requirements of 20.4.1.500 NMAC (incorporating 40 CFR Part 264). Permit Attachments G, G1, and G2 describe the closure activities.

The underground structures include the underground Hazardous Waste Disposal Units (HWDUs), an area for future underground HWDUs, the shaft pillar area, interconnecting drifts and other areas unrelated to the Hazardous Waste Facility Permit. The underground HWDUs are defined as waste panels, each consisting of seven rooms and two access drifts. The WIPP facility underground area is designated as Panels 1 through 10, although only Panels 1 through 8 will be used under the terms of this permit. Each of the seven rooms is approximately 300 feet long, 33 feet wide and 13 feet high. Permit Part 4 of the permit authorizes the management and disposal of CH and RH TRU mixed waste containers in underground HWDUs. The Disposal Phase of the WIPP Project consists of receiving CH and RH TRU mixed waste shipping containers, unloading and transporting the waste containers to the underground HWDUs, emplacing the waste in the underground HWDUs, and subsequently achieving closure of the underground HWDUs in compliance with applicable State and Federal regulations. As required by 20.4.1.500 NMAC (incorporating 40 CFR §264.601), the Permittees shall ensure that the environmental performance standards for a miscellaneous unit, which are applicable to the underground HWDUs in the geologic repository, will be met. Permit Attachment A2 describes the underground HWDUs, the TRU mixed waste management facilities and operations, and compliance with the technical requirements of 20.4.1.500 NMAC.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-1 Description of the Geologic Repository</td>
<td>The WIPP geologic repository is mined within a 2,000-feet (ft) (610 meters (m))-thick bedded-salt formation called the Salado Formation, which is 2,000 feet (ft) (610 meters (m))-thick. The Underground HWDUs (miscellaneous units) are located 2,150 ft (655 m) beneath the ground surface. TRU mixed waste management activities underground will be confined to the southern portion of the 120-acre (48.6 hectares) mined area during the Disposal Phase. During the ten-year term of this Permit, disposal of TRU mixed waste will occur only in the HWDUs designated as Panels 5 through 7 and 8 and in any currently active panel (See Figure A2-1). RH TRU mixed waste disposal began in Panel 4. The Permittees may also request in the future a Permit to allow disposal of containers of TRU mixed waste in the areas designated as Panels 9 and 10 in Figure A2-1. This Permit, during its 10-year term, authorizes the excavation of Panels 6 through 10 and the disposal of waste in Panels 1 through 8. In future, the Permittees may request Permit modifications to allow disposal of TRU mixed waste in other areas of the underground, one of which may be Panel 10.</td>
<td>A2-1 Description of the Geologic Repository</td>
<td>The WIPP geologic repository is mined within a 2,000-feet (ft) (610-meters (m))-thick bedded-salt formation called the Salado Formation. The Underground HWDUs (miscellaneous units) are located 2,150 ft (655 m) beneath the ground surface. TRU mixed waste management activities underground will be confined to the southern portion of the 120-acre (48.6 hectares) mined area and the western portion of the 29.2-acre (11.8 hectares) mined area during the Disposal Phase. During the term of this Permit, disposal of TRU mixed waste will occur only in the HWDUs designated as Panels 5 through 8 and in any currently active panel (See Figure A2-1). RH TRU mixed waste disposal began in Panel 4. The Permittees may also request in the future a Permit to allow disposal of containers of TRU mixed waste in the areas designated as Panels 9 and 10 in Figure A2-1. This Permit, during its 10-year term, authorizes the excavation of Panels 6 through 10 and the disposal of waste in Panels 1 through 8.</td>
<td>A2-1 Description of the Geologic Repository</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A2-1 Description of the Geologic Repository</td>
<td>Panels 1 through 8 will consist of seven rooms and two access drifts each. Panels 9 and 10 have yet to be designed. Access drifts connect the rooms and have the same cross section (see Section A2-2a(3)). The closure system installed in each HWDU after it is filled will prevent anyone from entering the HWDU and will restrict ventilation airflow. The point of compliance for air emissions from the Underground is defined in Permit Attachment N (Volatile Organic Compound Monitoring Plan). The point of compliance is the location where the concentration of volatile organic compounds (VOCs) in the air emissions from the Underground HWDUs will be measured and then compared to the VOC action levels (10^{-5} for carcinogens and H>1 for non-carcinogens) as required by Permit Part 4, Section 4.6.2.3.</td>
<td>Panels 1 through 8 will consist of seven rooms and two access drifts each. Panels 9 and 10 have yet to be designed. Access drifts connect the rooms and have the same cross section (see Section A2-2a(3)). The closure system installed in each HWDU after it is filled will prevent anyone from entering the HWDU and will restrict ventilation airflow. The point of compliance for air emissions from the Underground is defined in Permit Attachment N (Volatile Organic Compound Monitoring Plan). The point of compliance is the location where the concentration of volatile organic compounds (VOCs) in the air emissions from the Underground HWDUs will be measured and then compared to the VOC action levels (10^{-5} for carcinogens and HI>H>1 for non-carcinogens) as required by Permit Part 4, Section 4.6.2.3.</td>
<td>A2-1 Description of the Geologic Repository</td>
<td>The 2022 updated RLSON Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-1 Description of the Geologic Repository
The HWDUs identified as Panels 1 through 8, 11, and 12 (Figure A2-1) provide room for up to 5,244,900 cubic feet (ft^3) (148,500 cubic meters (m^3)) of CH TRU mixed waste. The CH TRU mixed waste containers may be stacked up to three high across the width of the room.</td>
<td>A2-1 Description of the Geologic Repository
The HWDUs identified as Panels 1 through 8 (Figure A2-1) provide room for up to 5,244,900 cubic feet (ft^3) ($148,500$ cubic meters (m^3)) of CH TRU mixed waste. The CH TRU mixed waste containers may be stacked up to three high across the width of the room.</td>
<td>A2-1 Description of the Geologic Repository
Description of Five-Shaft Configuration (with Shaft #5)
The HWDUs identified as Panels 1 through 8 (Figure A2-1) provide room for up to 5,244,900 cubic feet (ft^3) ($148,500$ cubic meters (m^3)) of CH TRU mixed waste. The CH TRU mixed waste containers may be stacked up to three high across the width of the room.</td>
<td>A2-1 Description of the Geologic Repository
Description of Five-Shaft Configuration (with Shaft #5)
The HWDUs identified as Panels 1 through 8, 11, and 12 (Figure A2-1) provide room for up to 5,244,900 cubic feet (ft^3) ($148,500$ cubic meters (m^3)) of CH TRU mixed waste. The CH TRU mixed waste containers may be stacked up to three high across the width of the room.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. Note that the Class 3 PMR for the excavation of Shaft #5 and the associated connecting drifts split Section A2-1 into subsections (now the current Permit). These subsections did not exist during the preparation of the Class 3 PMR for Replacement Panels 11 & 12 or the 2020 Permit Renewal Application.</td>
</tr>
</tbody>
</table>
Consolation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-1 Description of the Geologic Repository</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>Panels 4 through 8 provide room for up to 93,050 ft³ (2,635 m³) of RH TRU mixed waste. RH Remote-handled TRU mixed waste may be disposed of in up to 730 boreholes per panel, subject to the limitations in Permit Part 4, Section 4.1.1.2.ii. These boreholes shall be drilled on nominal eight-foot centers, horizontally, about mid-height in the ribs of a disposal room. The thermal loading from RH TRU mixed waste shall not exceed 10 kilowatts per acre when averaged over the area of a panel, as shown in Permit Attachment A3, plus 100 feet of each of a Panel's adjoining barrier pillars for Panels 4 through 8, and 150 feet of each of a Panel's adjoining barrier pillars for Panels 11 and 12.</td>
<td>Panels 4 through 8 provide room for up to 93,050 ft³ (2,635 m³) of RH TRU mixed waste. RH Remote-handled TRU mixed waste may be disposed of in up to 730 boreholes per panel, subject to the limitations in Permit Part 4, Section 4.1.1.2.ii. These boreholes shall be drilled on nominal eight-foot centers, horizontally, about mid-height in the ribs of a disposal room. The thermal loading from RH TRU mixed waste shall not exceed 10 kilowatts per acre when averaged over the area of a panel, as shown in Permit Attachment A3, plus 100 feet of each of a Panel's adjoining barrier pillars for Panels 4 through 8, and 150 feet of each of a Panel's adjoining barrier pillars for Panels 11 and 12.</td>
<td>Panels 4 through 8, 11, and 12 provide room for up to 83,000 ft³ (2,350 m³) of RH TRU mixed waste. RH Remote-handled TRU mixed waste may be disposed of in up to 730 boreholes per panel, subject to the limitations in Permit Part 4, Section 4.1.1.2.ii. These boreholes shall be drilled on nominal eight-foot centers, horizontally, about mid-height in the ribs of a disposal room. The thermal loading from RH TRU mixed waste shall not exceed 10 kilowatts per acre when averaged over the area of a panel, as shown in Permit Attachment A3, plus 100 feet of each of a Panel's adjoining barrier pillars for Panels 4 through 8, and 150 feet of each of a Panel's adjoining barrier pillars for Panels 11 and 12.</td>
<td>Note that the Class 3 PMR and the associated connecting drifts split Section A2-1 into subsections (now the current Permit). These subsections did not exist during the preparation of the Class 3 PMR for Replacement Panels 11 & 12 or the 2020 Permit Renewal Application.</td>
<td></td>
</tr>
<tr>
<td>A2-2a(3) Subsurface Structures</td>
<td>A2-2a(3) Subsurface Structures</td>
<td>A2-2a(3) Subsurface Structures</td>
<td>A2-2a(3) Subsurface Structures</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>Underground Hazardous Waste Disposal Units (HWUDUs)</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>During the terms of this and the preceding Permit, the final TRU mixed waste volume emplaced in the repository will not exceed the maximum capacities listed in Permit Part 4, Table 4.1.1 for each HWUDU. CH Contact-handled TRU mixed waste will be disposed of in Underground HWUDUs identified as Panels 1 through 8, 11, and 12. RH TRU mixed waste may be disposed of in Panels 4 through 8.</td>
<td>During the terms of this and the preceding Permit, the final TRU mixed waste volume emplaced in the repository will not exceed the maximum capacities listed in Permit Part 4, Table 4.1.1 for each HWUDU. CH Contact-handled TRU mixed waste will be disposed of in Underground HWUDUs identified as Panels 1 through 8, 11, and 12. RH TRU mixed waste may be disposed of in Panels 4 through 8.</td>
<td>During the terms of this and the preceding Permit, the final TRU mixed waste volume emplaced in the repository will not exceed the maximum capacities listed in Permit Part 4, Table 4.1.1 for each HWUDU. CH Contact-handled TRU mixed waste will be disposed of in Underground HWUDUs identified as Panels 1 through 8, 11, and 12. RH TRU mixed waste may be disposed of in Panels 4 through 8.</td>
<td>During the terms of this and the preceding Permit, the final TRU mixed waste volume emplaced in the repository will not exceed the maximum capacities listed in Permit Part 4, Table 4.1.1 for each HWUDU. CH Contact-handled TRU mixed waste will be disposed of in Underground HWUDUs identified as Panels 1 through 8, 11, and 12. RH TRU mixed waste may be disposed of in Panels 4 through 8.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 permit Renewal Application onto the current Permit.</td>
</tr>
</tbody>
</table>

A2-1 Description of the Geologic Repository

Panels 4 through 8 provide room for up to 93,050 ft³ (2,635 m³) of RH TRU mixed waste. RH Remote-handled TRU mixed waste may be disposed of in up to 730 boreholes per panel, subject to the limitations in Permit Part 4, Section 4.1.1.2.ii. These boreholes shall be drilled on nominal eight-foot centers, horizontally, about mid-height in the ribs of a disposal room. The thermal loading from RH TRU mixed waste shall not exceed 10 kilowatts per acre when averaged over the area of a panel, as shown in Permit Attachment A3, plus 100 feet of each of a Panel’s adjoining barrier pillars for Panels 4 through 8, and 150 feet of each of a Panel’s adjoining barrier pillars for Panels 11 and 12.

Underground Hazardous Waste Disposal Units (HWUDUs)

During the terms of this and the preceding Permit, the final TRU mixed waste volume emplaced in the repository will not exceed the maximum capacities listed in Permit Part 4, Table 4.1.1 for each HWUDU. CH Contact-handled TRU mixed waste will be disposed of in Underground HWUDUs identified as Panels 1 through 8, 11, and 12. RH TRU mixed waste may be disposed of in Panels 4 through 8.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-2a(3) Subsurface Structures</td>
<td>A2-2a(3) Subsurface Structures</td>
<td></td>
<td>A2-2a(3) Subsurface Structures</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. Note that the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits) added language that did not exist during the preparation of the Class 3 PMR for Replacement Panels 11 & 12 or the 2020 Permit Renewal Application. Due to the Class 2 PMR change, the "or 14 ft (4.3 m)" language highlighted in blue text from the Class 3 is not carried forward into the 2022 updated RLSO Renewal.</td>
</tr>
<tr>
<td>Underground Hazardous Waste Disposal Units (HWDUs)</td>
<td></td>
</tr>
<tr>
<td>Main entries and cross cuts in the repository provide access and ventilation to the HWDUs. The main entries link the shaft pillar/service area with the TRU mixed waste management area and are separated by pillars. Each of the Underground Hazardous Waste Disposal Units labeled Panels 1 through 8 will have seven rooms. The locations of these HWDUs are shown in Figure M-43A2-1. The rooms will have nominal dimensions of 13 ft (4.0 m) high by 33 ft (10 m) wide by 300 ft (91 m) long and will be supported separated by 100 ft (30 m) wide pillars.</td>
<td>Main entries and cross cuts in the repository provide access and ventilation to the HWDUs. The main entries link the shaft pillar/service area with the TRU mixed waste management area and are separated by pillars. Each of the Underground Hazardous Waste Disposal Units labeled Panels 1 through 8 will have seven rooms. The locations of these HWDUs are shown in Figure A2-1. The rooms will have nominal dimensions of 13 ft (4.0 m) or 14 ft (4.3 m) high by 33 ft (10 m) wide by 300 ft (91 m) long and will be supported separated by 100 ft (30 m) wide pillars.</td>
<td>Main entries and cross cuts in the repository provide access and ventilation to the HWDUs. The main entries link the shaft pillar/service area with the TRU mixed waste management area and are separated by pillars. Each of the Underground Hazardous Waste Disposal Units labeled Panels 1 through 8 will have seven rooms. The locations of these HWDUs are shown in Figure A2-1. The rooms in Panels 1-7 will have nominal dimensions of 13 ft (4.0 m) high by 33 ft (10 m) wide by 300 ft (91 m) long and will be supported separated by 100 ft (30 m) wide pillars. The rooms in Panel 8 will have nominal dimensions of 16 ft (5.0 m) high by 33 ft (10 m) wide by 300 ft (91 m) long and will be supported by 100 ft (30 m) wide pillars.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits) added language that did not exist during the preparation of the Class 3 PMR for Replacement Panels 11 & 12 or the 2020 Permit Renewal Application. Due to the Class 2 PMR change, the **"or 14 ft (4.3 m)"** language highlighted in blue text from the Class 3 is not carried forward into the 2022 updated RLSO Renewal.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-2a(3) Subsurface Structures</td>
<td>A2-2a(3) Subsurface Structures</td>
<td></td>
<td>A2-2a(3) Subsurface Structures</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>Underground Hazardous Waste Disposal Units (HWDUs)</td>
<td></td>
</tr>
<tr>
<td>As currently planned, future Permits may allow disposal of TRU mixed waste containers in two additional panels, identified as Panels 9 and 10. Disposal of TRU mixed waste in Panels 9 and 10 is prohibited under this Permit. If TRU mixed waste volumes disposed of in the eight panels fail to reach the stated design capacity, the Permittees may request a Permit modification to allow disposal of TRU mixed waste in the four main entries and crosscuts adjacent to the waste panels (referred to as the disposal area access drifts). These areas access drifts are labeled Panels 9 and 10 in Figure M-43A2-1. A permit modification or future permit modification request would be submitted describing the condition of those drifts and the controls exercised for personnel safety and environmental protection while disposing of waste in these areas. These areas access drifts have the following nominal dimensions:</td>
<td>As currently planned, future Permits may allow disposal of TRU mixed waste containers in two additional panels, identified as Panels 9 and 10. Disposal of TRU mixed waste in Panels 9 and 10 is prohibited under this Permit. If TRU mixed waste volumes disposed of in the eight panels fail to reach the stated design capacity, the Permittees may request a Permit modification to allow disposal of TRU mixed waste in the four main entries and crosscuts adjacent to the waste panels (referred to as the disposal area access drifts). These areas access drifts are labeled Panels 9 and 10 in Figure M-43A2-1. A permit modification or future permit modification request would be submitted describing the condition of those drifts and the controls exercised for personnel safety and environmental protection while disposing of waste in these areas. These areas access drifts have the following nominal dimensions:</td>
<td>As currently planned, future Permits may allow disposal of TRU mixed waste containers in two additional panels, identified as Panels 9 and 10. Disposal of TRU mixed waste in Panels 9 and 10 is prohibited under this Permit. If TRU mixed waste volumes disposed of in the eight panels fail to reach the stated design capacity, the Permittees may request a Permit modification to allow disposal of TRU mixed waste in the four main entries and crosscuts adjacent to the waste panels (referred to as the disposal area access drifts). These areas access drifts are labeled Panels 9 and 10 in Figure M-43A2-1. A permit modification or future permit modification request would be submitted describing the condition of those drifts and the controls exercised for personnel safety and environmental protection while disposing of waste in these areas. These areas access drifts have the following nominal dimensions:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-2a(3) Subsurface Structures Underground Hazardous Waste Disposal Units (HWDUs)</td>
<td>A2-2a(3) Subsurface Structures Underground Hazardous Waste Disposal Units (HWDUs)</td>
<td>A2-2a(3) Subsurface Structures Underground Hazardous Waste Disposal Units (HWDUs)</td>
<td>A2-2a(3) Subsurface Structures Underground Hazardous Waste Disposal Units (HWDUs)</td>
<td>The 2022 updated RLTA Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. Both the 2020 Permit Renewal Application and the Class 3 changes are the same.</td>
</tr>
<tr>
<td>The E-140 waste transport route south of the Waste Shaft Station is mined to be 25 ft wide nominally and its height ranges from about 14 ft to 20 ft.</td>
<td>The E-140 waste transport route south of the Waste Shaft Station is mined to be 25 ft wide nominally and its height ranges from about 14 ft to 20 ft.</td>
<td>The E-140 waste transport route south of the Waste Shaft Station is mined to be 25 ft wide nominally and its height ranges from about 14 ft to 20 ft.</td>
<td>The E-140 waste transport route south of the Waste Shaft Station is mined to be 25 ft wide nominally and its height ranges from about 14 ft to 20 ft.</td>
<td></td>
</tr>
<tr>
<td>The W-30 waste transport route south of S-700 is mined to be 20 ft wide nominally and its height will be at least 14 ft.</td>
<td>The W-30 waste transport route south of S-700 is mined to be 20 ft wide nominally and its height will be at least 14 ft.</td>
<td>The W-30 waste transport route south of S-700 is mined to be 20 ft wide nominally and its height will be at least 14 ft.</td>
<td>The W-30 waste transport route south of S-700 is mined to be 20 ft wide nominally and its height will be at least 14 ft.</td>
<td></td>
</tr>
<tr>
<td>All other drifts that are part of the waste transport route will be at least 20 ft wide and 14 ft high to accommodate waste transport equipment.</td>
<td>All other drifts that are part of the waste transport route will be at least 20 ft wide and 14 ft high to accommodate waste transport equipment.</td>
<td>All other drifts that are part of the waste transport route will be at least 20 ft wide and 14 ft high to accommodate waste transport equipment.</td>
<td>All other drifts that are part of the waste transport route will be at least 20 ft wide and 14 ft high to accommodate waste transport equipment.</td>
<td></td>
</tr>
<tr>
<td>Other drifts (i.e. mains and cross-cuts) vary in width and height according to their function typically ranging from 14 ft to 20 ft wide and 12 ft to 20 ft high.</td>
<td>Other drifts (i.e. mains and cross-cuts) vary in width and height according to their function typically ranging from 14 ft to 20 ft wide and 12 ft to 20 ft high.</td>
<td>Other drifts (i.e. mains and cross-cuts) vary in width and height according to their function typically ranging from 14 ft to 20 ft wide and 12 ft to 20 ft high.</td>
<td>Other drifts (i.e. mains and cross-cuts) vary in width and height according to their function typically ranging from 14 ft to 20 ft wide and 12 ft to 20 ft high.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>The anticipated schedule for the filling of each of the Underground HWDUs known as Panels 1 through 8 is shown in Permit Attachment G, Table G-1. Panel closure in accordance with the Closure Plan in Permit Attachment G and Permit Attachment G1 is estimated to require an additional 150-180 days following placement of the final waste in the panel.</td>
<td>The anticipated schedule for the filling of each of the Underground HWDUs known as Panels 1 through 8, 11, and 12 is shown in Permit Attachment G, Table G-1. Panel closure in accordance with the Closure Plan in Permit Attachment G and Permit Attachment G1 is estimated to require an additional 150 days.</td>
<td>The anticipated schedule for the filling of each of the Underground HWDUs known as Panels 1 through 8 is shown in Permit Attachment G, Table G-1. Panel closure in accordance with the Closure Plan in Permit Attachment G and Permit Attachment G1 is estimated to require an additional 150-180 days following placement of the final waste in the panel.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
<td></td>
</tr>
<tr>
<td>The minimum instrumentation for each of the eight panels will be: one borehole extensometer installed in the roof at near the center of each disposal room. The roof extensometers will monitor the dilation of the immediate salt roof beam and possible bed separations along clay seams. Additional instrumentation will be installed as conditions warrant.</td>
<td>The minimum instrumentation for each of the eight panels will be: one borehole extensometer installed in the roof at the center of each disposal room. The roof extensometers will monitor the dilation of the immediate salt roof beam and possible bed separations along clay seams. Additional instrumentation will be installed as conditions warrant.</td>
<td>The minimum instrumentation for each of the eight panels will be: one borehole extensometer installed in the roof at near the center of each disposal room. The roof extensometers will monitor the dilation of the immediate salt roof beam and possible bed separations along clay seams. Additional instrumentation will be installed as conditions warrant.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Figure A2-1, Repository Horizon</td>
<td>Figure A-2, Repository Horizon</td>
<td>Figure A2-1, Repository Horizon</td>
<td>Figure A2-1, Repository Horizon</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>Figure M-43, Repository Horizon and Underground Waste Transport Routes</td>
<td>Figure A2-1, Repository Horizon was updated to include Panel 11 and Panel 12 into the facility layout.</td>
<td>Figure A2-1, Repository Horizon</td>
<td>Figure M-43, Repository Horizon and Underground Waste Transport Routes</td>
<td>The current Permit Figure A2-1 is captured as Figure M-43 in the 2022 updated RLSO Renewal.</td>
</tr>
<tr>
<td>Figure A2-1 → Figure M-43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure A2-2, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure A2-2, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure A2-2, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure A2-2, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. The 2022 updated RLSO Renewal is the same as the Class 3 PMR. The current Permit Figure A2-2 is captured as Figure M-44 in the 2022 updated RLSO Renewal.</td>
</tr>
<tr>
<td>Figure M-44, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure M-44, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure M-44, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure M-44, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>[The Figures from Attachment A2 have been consolidated into a new Permit Attachment M. The cross-walk for figure alignment is provided below.] Figure A2-2 → Figure M-44</td>
</tr>
<tr>
<td>Figure M-44, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure A2-2, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure A2-2, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>Figure M-44, Spatial View of the Miscellaneous Unit and Waste Handling Facility</td>
<td>[The Figures from Attachment A2 have been consolidated into a new Permit Attachment M. The cross-walk for figure alignment is provided below.] Figure A2-2 → Figure M-44</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Typical Disposal Panel</td>
<td>Typical Disposal Panel</td>
<td>Typical Disposal Panel</td>
<td>Typical Disposal Panel</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
</tbody>
</table>
| [Attachment A3 has been deleted. The one figure depicted in Attachment A3 has been consolidated into a new Permit Attachment M. The crosswalk for figure alignment is provided below.] | [The current Permit split the “Typical Disposal Panel” into two figures based on the adjudication of the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits)]. | [Figure A3-1, Typical Disposal Panel Dimensions for Panels 1-7. This depicts a room height of 13 feet.]
| ![Figure A3-1, Typical Disposal Panel Dimensions for Panels 1-7](image1) | ![Figure A3-2, Typical Disposal Panel Dimensions for Panel 8. This depicts a room height of 16 feet.](image2) | ![Figure A3-1, Typical Disposal Panel Dimensions for Panels 1-7](image1) | ![Figure A3-2, Typical Disposal Panel Dimensions for Panel 8. This depicts a room height of 16 feet.](image2) | ![Figure M-42, Typical Disposal Panel](image3) |
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A4A3-4 Underground Traffic</td>
<td>A4-4 Underground Traffic</td>
<td>A4-4 Underground Traffic</td>
<td>A4A3-4 Underground Traffic</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>Typically, the traffic routes during waste disposal in Panels 1-8 will use the same main access drifts.</td>
<td>Typically, the traffic routes during waste disposal in Panels 1-8 will use the same main access drifts.</td>
<td>Typically, the traffic routes during waste disposal in Panels 11 and 12 will use the designated access drifts in the West Mains.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Figures A4-4 and A4-4a were consolidated into Figure M-43.]</td>
<td>[Changed Figure A4-4 and A4-4a to include Panels 11 & 12]</td>
<td>[Shows Figures A4-4 and A4a]</td>
<td>Figure M-43</td>
<td>The current figures A4-4 and A4-4a in Permit Attachment A4 are merged as Figure M-42 in the 2022 updated RLSO Renewal.</td>
</tr>
</tbody>
</table>

Figure A4-4 → Figure M-43
Figure A4-4a → Figure M-43

Figure M-43, Repository Horizon and Underground Waste Transport Routes
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Figures A4-4 and A4-4a were consolidated into Figure M-43.]</td>
<td>[Added a Figure A4-4b to show typical underground transport routes using S-700 or S-850 for Panels 11 & 12 towards the west of the facility].</td>
<td>[Shows Figures A4-4 and A4a]</td>
<td>Figure M-43</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. The current figures A4-4 and A4-4a in Permit Attachment A4 are merged as Figure M-42 in the 2022 updated RLSO Renewal.</td>
</tr>
</tbody>
</table>
Hazardous Waste Permit Part A Form

6. Process Codes and Design Capacities (continued)

<table>
<thead>
<tr>
<th>Line Numbers</th>
<th>A. Process Code</th>
<th>B. Process Design Capacity</th>
<th>C. Process Total Number of Units</th>
<th>D. Unit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 X 0 1</td>
<td>1000.00</td>
<td>C</td>
<td>001</td>
<td>Panel 8</td>
</tr>
<tr>
<td>6 X 0 4</td>
<td>1000.00</td>
<td>C</td>
<td>002</td>
<td>Panels 7, 7B</td>
</tr>
<tr>
<td>7 S 0 1</td>
<td>194.1</td>
<td>C</td>
<td>001</td>
<td>Waste Handling Unit</td>
</tr>
<tr>
<td>8 S 0 1</td>
<td>242.0</td>
<td>C</td>
<td>001</td>
<td>Parking Area Unit</td>
</tr>
</tbody>
</table>

Rationale / Description of Changes

[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]

When requested, the changes from the Class 3 PMR, as shown, will be included.
<table>
<thead>
<tr>
<th>Hazardous Waste Permit Part A Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Waste Isolation Pilot Plant (WIPP) geologic repository is defined as a “miscellaneous unit” under 40 CFR §260.10. “Miscellaneous unit” means a hazardous waste management unit where hazardous waste is treated, stored, or disposed of and that is not a container, tank, surface impoundment, waste pile, land treatment unit, landfill, incinerator, containment building, boiler, industrial furnace, or underground injection well with appropriate technical standards under 40 CFR Part 146, corrective action management unit, or unit eligible for research, development, and demonstration permit under 40 CFR §270.65. The WIPP is a geologic repository designed for the disposal of defense-generated transuranic (TRU) waste. Some of the TRU wastes disposed of at the WIPP contain hazardous wastes as co-contaminants. More than half the waste to be disposed of at the WIPP also meets the definition of debris waste. The debris categories include manufactured goods, biological materials, and naturally occurring geological materials. Approximately 70 percent of waste anticipated for disposal in the WIPP repository is categorized as debris waste. The geologic repository has been divided into ten discrete hazardous waste management units (HWMU), eight of which are permitted for disposal under 40 CFR Part 264, Subpart X.</td>
<td>The Waste Isolation Pilot Plant (WIPP) geologic repository is defined as a “miscellaneous unit” under 40 CFR §260.10. “Miscellaneous unit” means a hazardous waste management unit where hazardous waste is treated, stored, or disposed of and that is not a container, tank, surface impoundment, waste pile, land treatment unit, landfill, incinerator, containment building, boiler, industrial furnace, or underground injection well with appropriate technical standards under 40 CFR Part 146, corrective action management unit, or unit eligible for research, development, and demonstration permit under 40 CFR §270.65. The WIPP is a geologic repository designed for the disposal of defense-generated transuranic (TRU) waste. Some of the TRU wastes disposed of at the WIPP contain hazardous wastes as co-contaminants. More than half the waste to be disposed of at the WIPP also meets the definition of debris waste. The debris categories include manufactured goods, biological materials, and naturally occurring geological materials. Approximately 70 percent of waste anticipated for disposal in the WIPP repository is categorized as debris waste. The geologic repository has been divided into ten discrete hazardous waste management units (HWMU), eight of which are permitted for disposal under 40 CFR Part 264, Subpart X.</td>
<td>The Waste Isolation Pilot Plant (WIPP) geologic repository is defined as a “miscellaneous unit” under 40 CFR §260.10. “Miscellaneous unit” means a hazardous waste management unit where hazardous waste is treated, stored, or disposed of and that is not a container, tank, surface impoundment, waste pile, land treatment unit, landfill, incinerator, containment building, boiler, industrial furnace, or underground injection well with appropriate technical standards under 40 CFR Part 146, corrective action management unit, or unit eligible for research, development, and demonstration permit under 40 CFR §270.65. The WIPP is a geologic repository designed for the disposal of defense-generated transuranic (TRU) waste. Some of the TRU wastes disposed of at the WIPP contain hazardous wastes as co-contaminants. More than half the waste to be disposed of at the WIPP also meets the definition of debris waste. The debris categories include manufactured goods, biological materials, and naturally occurring geological materials. Approximately 70 percent of waste anticipated for disposal in the WIPP repository is categorized as debris waste. The geologic repository has been divided into ten discrete hazardous waste management units (HWMU), eight of which are permitted for disposal under 40 CFR Part 264, Subpart X.</td>
<td>Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.</td>
</tr>
</tbody>
</table>

[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste Permit Part A Form</td>
<td>Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.</td>
</tr>
<tr>
<td>Narrative to Item 6. Process Codes and Design Capacities</td>
<td>For purposes of this application, all TRU waste is managed as though it were mixed. During the Disposal Phase of the facility, which is expected to last 25 years, the emplaced TRU mixed waste volume will not exceed the design capacity specified in Item 6, Process Codes and Design Capacities. This volume is calculated based on the gross internal volume of the outermost disposal containers and cannot exceed 151,135 m³ for Panels 1 through 8, 11, and 12. The Land Withdrawal Act (LWA) TRU waste volume is tracked and reported by the DOE internally for the purposes of compliance with the WIPP LWA total capacity limit for TRU waste of 6.2 million ft³ (175,564 m³), and is included for informational purposes in Permit Part 4, Table 4.1.1.</td>
<td>For purposes of this application, all TRU waste is managed as though it were mixed. During the Disposal Phase of the facility, which is expected to last 25 years, the emplaced TRU mixed waste volume will not exceed the design capacity specified in Item 6, Process Codes and Design Capacities. This volume is calculated based on the gross internal volume of the outermost disposal containers and cannot exceed 151,135 m³ for Panels 1 through 8. The Land Withdrawal Act (LWA) TRU waste volume is tracked and reported by the DOE internally for the purposes of compliance with the WIPP LWA total capacity limit for TRU waste of 6.2 million ft³ (175,564 m³), and is included for informational purposes in Permit Part 4, Table 4.1.1.</td>
<td>[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]</td>
<td></td>
</tr>
</tbody>
</table>

[When requested, the changes from the Class 3 PMR, as shown, will be included.]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]</td>
<td>[When requested, the changes from the Class 3 PMR, as shown, will be included.]</td>
<td>[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]</td>
<td>[When requested, the changes from the Class 3 PMR, as shown, will be included.]</td>
<td></td>
</tr>
</tbody>
</table>

The process design capacities for each of the eight underground HWMUs in the geologic repository (i.e., miscellaneous unit) are shown in Item 6, Process Codes and Design Capacities. In addition, two HWMUs have been designated as container storage units (S01) in Item 6, Process Codes and Design Capacities. One is inside the Waste Handling Building (WHB) and consists of the contact-handled (CH) bay, waste shaft conveyance loading room, waste shaft conveyance entry room, RH bay, cask unloading room, hot cell, transfer cell, and facility cask loading room. This HWMU will be used for waste receipt, handling, and storage (including storage of derived waste) prior to emplacement in the underground geologic repository. No treatment or disposal will occur in this S01 HWMU. The capacity of this S01 unit for storage is 194.1 m³, based on 36 ten-drum overpacks on 18 facility pallets, four CH Packages at the TRUDOCKs, one standard waste box of derived waste, two loaded casks and one 55-gallon drum of derived waste in the RH Bay, one loaded cask in the Cask Unloading Room, 13 55-gallon drums in the Hot Cell, one canister in the Transfer Cell and one canister in the Facility Cask Unloading Room. The second S01 HWMU is the parking area outside the WHB where the Contact- and Remote-Handled Package trailers and the road cask trailers will be parked awaiting waste handling operations. The capacity of this unit is 50 Contact-Handled Packages and twelve Remote-Handled Packages with a combined TRU mixed waste volume of 242 m³.

The process design capacities for each of the eight underground HWMUs in the geologic repository (i.e., miscellaneous unit) are shown in Item 6, Process Codes and Design Capacities. In addition, two HWMUs have been designated as container storage units (S01) in Item 6, Process Codes and Design Capacities. One is inside the Waste Handling Building (WHB) and consists of the contact-handled (CH) bay, waste shaft conveyance loading room, waste shaft conveyance entry room, RH bay, cask unloading room, hot cell, transfer cell, and facility cask loading room. This HWMU will be used for waste receipt, handling, and storage (including storage of derived waste) prior to emplacement in the underground geologic repository. No treatment or disposal will occur in this S01 HWMU. The capacity of this S01 unit for storage is 194.1 m³, based on 36 ten-drum overpacks on 18 facility pallets, four CH Packages at the TRUDOCKs, one standard waste box of derived waste, two loaded casks and one 55-gallon drum of derived waste in the RH Bay, one loaded cask in the Cask Unloading Room, 13 55-gallon drums in the Hot Cell, one canister in the Transfer Cell and one canister in the Facility Cask Unloading Room. The second S01 HWMU is the parking area outside the WHB where the Contact- and Remote-Handled Package trailers and the road cask trailers will be parked awaiting waste handling operations. The capacity of this unit is 50 Contact-Handled Packages and twelve Remote-Handled Packages with a combined TRU mixed waste volume of 242 m³.

[no change]
Hazardous Waste Permit Part A Form

Narrative to Item 6. Process Codes and Design Capacities

During the ten-year period of the permit, a CH TRU mixed waste volume of up to 148,500 m3 could be emplaced in Panels 1 to 8 and an RH TRU mixed waste volume up to 2,635 m3 could be emplaced in Panels 4 to 8 for a total of 151,135 m3, as shown in Item 6, Process Codes and Design Capacities. Panels 9 and 10 will be constructed under the initial term of this permit. These latter areas will not receive waste for disposal under this permit. Panels 11 and 12 will be constructed during the term of this permit. Each panel will be certified for a maximum CH TRU mixed waste volume of up to 18,750 m3 and a maximum RH TRU mixed waste volume of up to 650 m3.

Rationale / Description of Changes

[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]

[When requested, the changes from the Class 3 PMR, as shown, will be included.]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B3 Facilities</td>
<td>Appendix B3 Facilities</td>
<td>Appendix B3 Facilities</td>
<td>Appendix B3 Facilities</td>
<td>Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.</td>
</tr>
<tr>
<td>[no change]</td>
<td></td>
<td>[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]</td>
<td>[When requested, the changes from the Class 3 PMR, as shown, will be included.]</td>
<td></td>
</tr>
</tbody>
</table>

Figure B3-1, Spatial View of the WIPP Facility

Figure B3-1-S#5, Spatial View of the WIPP Facility (with S#5)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B3 Facilities</td>
<td>Appendix B3 Facilities</td>
<td>Appendix B3 Facilities</td>
<td>Appendix B3 Facilities</td>
<td>Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.</td>
</tr>
<tr>
<td>[no change]</td>
<td>[no change]</td>
<td>[no change]</td>
<td>[Attachment B Part A Form will be provided to the NMED for the Draft Permit upon request.]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[When requested, the changes from the Class 3 PMR, as shown, will be included.]</td>
<td></td>
</tr>
</tbody>
</table>

Figure B3-2, Repository Horizon

Figure B3-2, Repository Horizon
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>The 2022 updated RLSO Renewal merges the changes from the Class 3 PMR (Replacement Panels 11 & 12) onto the current Permit.</td>
</tr>
<tr>
<td>[no change]</td>
<td>Figure D-2, Spatial View of the WIPP Facility, was updated in the Class 3 PMR to include Panels 11 and 12.</td>
<td>Figure D-2 shows the spatial view of the WIPP facility without Shaft #5.</td>
<td>Figure D-2-S#5 shows the spatial view of the WIPP facility with Shaft #5. This figure was added to the Permit with the adjudication of a Class 3 PMR in 2021 (excavation of a new shaft and the associated connecting drifts).</td>
<td></td>
</tr>
</tbody>
</table>

Figure D-2, Spatial View of the WIPP Facility

Figure D-2-S#5, Spatial View of the WIPP Facility (with S#5)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>The information from Figure D-3 was consolidated into the 2022 updated RLSO Renewal Figure M-43, Repository Horizon and Underground Waste Transport Routes. Figure D-3 is no longer required.</td>
</tr>
<tr>
<td>..</td>
<td>Figure D-3, WIPP Underground Facilities was updated in the Class 3 PMR to include Panels 11 and 12.</td>
<td>Figure D-3 shows the WIPP Underground Facilities with Shaft #5.</td>
<td>Figure D-3 was removed/deleted.</td>
<td></td>
</tr>
<tr>
<td>..</td>
<td>Figure D-3 was removed/deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..</td>
<td>Figure D-3 was removed/deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..</td>
<td>Figure D-3 was removed/deleted.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>Attachment D Figures</td>
<td>The information from Figure D-7 was consolidated into the 2022 updated RLSO Renewal Figure M-43, Repository Horizon and Underground Waste Transport Routes. Figure D-7 is no longer required.</td>
</tr>
<tr>
<td>Figure D-7 was removed/deleted.</td>
<td>Figure D-7, Designated Underground Assembly Areas</td>
<td>Figure D-7 shows the Designated Underground Assembly Areas with Shaft #5.</td>
<td>Figure D-7 was removed/deleted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>D-9 Location of the RCRA Contingency Plan and Plan Revision</td>
<td>D-9 Location of the RCRA Contingency Plan and Plan Revision</td>
<td>D-9 Location of the RCRA Contingency Plan and Plan Revision</td>
<td>D-9 Location of the RCRA Contingency Plan and Plan Revision</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the Attachment D, Section D-9 changes were addressed in a subsequent Class 1 PMN.</td>
</tr>
<tr>
<td>…In addition, the Permittees will make copies available to the following federal, state, and local agencies and mining companies in the vicinity of the WIPP facility, as required by 20.4.1.300 (incorporating 40 CFR §262.262(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.53(b)):</td>
<td>…In addition, the Permittees will make copies available to the following federal, state, and local agencies and mining companies in the vicinity of the WIPP facility, as required by 20.4.1.300 (incorporating 40 CFR §262.262(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.53(b)):</td>
<td>…In addition, the Permittees will make copies available to the following federal, state, and local agencies and mining companies in the vicinity of the WIPP facility, as required by 20.4.1.300 (incorporating 40 CFR §262.262(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.53(b)):</td>
<td>…In addition, the Permittees will make copies available to the following federal, state, and local agencies and mining companies in the vicinity of the WIPP facility, as required by 20.4.1.300 (incorporating 40 CFR §262.262(a)) and 20.4.1.500 NMAC (incorporating 40 CFR §264.53(b)):</td>
<td></td>
</tr>
<tr>
<td>• Intrepid Potash New Mexico LLC</td>
<td></td>
</tr>
<tr>
<td>• White Marble Mine</td>
<td>• White Marble Mine</td>
<td>• White Marble Mine</td>
<td>• White Marble Mine</td>
<td></td>
</tr>
<tr>
<td>• Mosaic Potash Carlsbad Inc.</td>
<td></td>
</tr>
<tr>
<td>• City of Carlsbad</td>
<td>• City of Carlsbad</td>
<td>• City of Carlsbad</td>
<td>• City of Carlsbad</td>
<td></td>
</tr>
<tr>
<td>• Carlsbad Medical Center, Carlsbad</td>
<td></td>
</tr>
<tr>
<td>• Lea Regional Medical Center, Hobbs</td>
<td></td>
</tr>
<tr>
<td>• City of Hobbs</td>
<td>• City of Hobbs</td>
<td>• City of Hobbs</td>
<td>• City of Hobbs</td>
<td></td>
</tr>
<tr>
<td>• BLM, Carlsbad</td>
<td>• BLM, Carlsbad</td>
<td>• BLM, Carlsbad</td>
<td>• BLM, Carlsbad</td>
<td></td>
</tr>
<tr>
<td>• New Mexico State Police</td>
<td></td>
</tr>
<tr>
<td>• Eddy County Fire Service</td>
<td></td>
</tr>
<tr>
<td>• Eddy County Emergency Management</td>
<td></td>
</tr>
<tr>
<td>• Lea County Emergency Management</td>
<td></td>
</tr>
<tr>
<td>[no changes]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2020 Permit Renewal Application [Attachment E]

Class 3 Permit Modification Request for Construction and Use of HWDUs 11 & 12

<table>
<thead>
<tr>
<th>Current Permit [as of March 2022]</th>
<th>2022 Updated Redline/Strikeout Renewal Consolidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table E-1 Inspection Schedule/Procedures</td>
<td>Table E-1 Inspection Schedule/Procedures</td>
</tr>
<tr>
<td>[Fire Sprinkler System row; Inspection Frequency column]</td>
<td>[Fire Sprinkler System row; Inspection Frequency column]</td>
</tr>
<tr>
<td>Monthly/quarterly/annually</td>
<td>Monthly</td>
</tr>
<tr>
<td>[no changes]</td>
<td>[no changes]</td>
</tr>
</tbody>
</table>

Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures

<table>
<thead>
<tr>
<th>Cask Unloading Room row</th>
<th>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cask Unloading Room row]</td>
<td>[Cask Unloading Room row]</td>
</tr>
<tr>
<td>[no changes]</td>
<td>[no changes]</td>
</tr>
</tbody>
</table>

Rationale / Description of Changes:

The 2020 Permit Renewal Application changes are no longer needed because the Attachment E, Table E-1 changes were addressed in a subsequent Class 1 PMN.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Hot Cell row]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Hot Cell row]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Hot Cell row]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Hot Cell row]</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the Attachment E, Table E-1 changes were addressed in a subsequent Class 1 PMN.</td>
</tr>
<tr>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the Attachment E, Table E-1 changes were addressed in a subsequent Class 1 PMN.</td>
</tr>
<tr>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Transfer Cell row]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Transfer Cell row]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Transfer Cell row]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures [Transfer Cell row]</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the Attachment E, Table E-1 changes were addressed in a subsequent Class 1 PMN.</td>
</tr>
<tr>
<td>Table E-1a</td>
<td>RH TRU Mixed Waste Inspection Schedule/Procedures</td>
<td>Table E-1a</td>
<td>RH TRU Mixed Waste Inspection Schedule/Procedures</td>
<td>Table E-1a</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Facility Cask Loading Room row</td>
<td>[no change]</td>
<td>Facility Cask Loading Room row</td>
<td>[no language]</td>
<td>Facility Cask Loading Room row</td>
</tr>
<tr>
<td>RH Bay row</td>
<td>[no change]</td>
<td>RH Bay row</td>
<td>[no language]</td>
<td>RH Bay row</td>
</tr>
</tbody>
</table>

The 2020 Permit Renewal Application changes are no longer needed because the Attachment E, Table E-1 changes were addressed in a subsequent Class 1 PMN.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table E-1a</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures</td>
<td>Current Permit [as of March 2022]</td>
<td>Table E-1a RH TRU Mixed Waste Inspection Schedule/Procedures</td>
<td>The 2022 updated RLSO Renewal merges the changes from a subsequent Class 1 PMN and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>[Surface RH TRU Mixed Waste Handling Area row]</td>
<td>[Surface RH TRU Mixed Waste Handling Area row]</td>
<td>Current Permit [as of March 2022]</td>
<td>[Surface RH TRU Mixed Waste Handling Area row]</td>
<td></td>
</tr>
<tr>
<td>Permit Part 2, Section 2.6.4 warning signs, Posted Warning, Communications Systems, Container Conditions, and Floor Coating Integrity</td>
<td>Current Permit [as of March 2022]</td>
<td>Current Permit [as of March 2022]</td>
<td>Current Permit [as of March 2022]</td>
<td></td>
</tr>
</tbody>
</table>

*a Inspecting for Deterioration
b Leaks/Spills

c Required

d Aisle Space

e Permit Part 2, Section 2.6.4 warning signs
f Posted Warning

g Communications Systems
h Container Conditions
i Floor Coating Integrity
Introduction
The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB Unit, the PAU parking area HWMU, and Panels 1 through 8, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

Introduction
The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB, the parking area HWMU, and Panels 1 through 8, Panel 11, and Panel 12, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

Introduction
The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB, the parking area HWMU, and Panels 1 through 8, Panel 11, and Panel 12, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

Introduction
The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB Unit, the PAU parking area HWMU, and Panels 1 through 8, Panel 11, and Panel 12, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

Introduction
The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB, the parking area HWMU, and Panels 1 through 8, Panel 11, and Panel 12, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

Introduction
The hazardous waste management units (HWMUs) addressed in this Closure Plan include the aboveground HWMU in the WHB, the parking area HWMU, and Panels 1 through 8, Panel 11, and Panel 12, each consisting of seven rooms. In addition, this Closure Plan includes closures for Panels 9 and 10.

Rationale / Description of Changes
The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1c Maximum Waste Inventory</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. However, if other waste management units are authorized under this permit, this Closure Plan will be revised to include the additional waste management units. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. If other waste management units are permitted during the Disposal Phase, this Closure Plan will be revised to include the additional waste management units. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. (If authorized in the future for TRU mixed waste disposal and Panel 10 is not authorized for waste emplacement under this permit, this Closure Plan will be revised to include the additional waste management units.) At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
</tr>
<tr>
<td>G-1c Maximum Waste Inventory</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. However, if other waste management units are authorized under this permit, this Closure Plan will be revised to include the additional waste management units. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. If other waste management units are permitted during the Disposal Phase, this Closure Plan will be revised to include the additional waste management units. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. (If authorized in the future for TRU mixed waste disposal and Panel 10 is not authorized for waste emplacement under this permit, this Closure Plan will be revised to include the additional waste management units.) At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
</tr>
<tr>
<td>G-1c Maximum Waste Inventory</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. However, if other waste management units are authorized under this permit, this Closure Plan will be revised to include the additional waste management units. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. If other waste management units are permitted during the Disposal Phase, this Closure Plan will be revised to include the additional waste management units. At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste for disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
<td>The maximum extent of operations during the term of this permit is expected to be Panels 1 through 10 as shown on Figure G-1, the WHB Container Storage Unit, and the Parking Area Container Storage Unit. Note that panels Panel 9 and 10 are not authorized for waste emplacement under this permit. (If authorized in the future for TRU mixed waste disposal and Panel 10 is not authorized for waste emplacement under this permit, this Closure Plan will be revised to include the additional waste management units.) At any given time during disposal operations, it is possible that multiple rooms may be receiving TRU mixed waste disposal at the same time. Underground HWDUs in which disposal has been completed (i.e., in which CH and RH TRU mixed waste emplacement activities have ceased) will undergo panel closure.</td>
</tr>
</tbody>
</table>

The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. In order to merge with the current Permit, the blue shaded text was not carried forward.
2020 Permit Renewal Application [Attachment G]

<table>
<thead>
<tr>
<th>Class 3 Permit Modification Request for Construction and Use of HWDUs 11 & 12</th>
<th>Current Permit [as of March 2022]</th>
<th>2022 Updated Redline/Strikeout Renewal Consolidation</th>
<th>Rationale / Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1e(1) Panel Closure Following completion of waste emplacement in each underground HWDU, the HWDU will be closed. A WIPP Panel Closure (WPC) will be emplaced in the panel access drifts, in accordance with the design in Permit Attachment G1 and the schedule in Figure G-2 and Table G-1. Alternatively, panels may be closed simultaneously by placing panel closures in the north-south mains (E-300, E-140, W-30, and W-170), as shown in Figure M-43G-1. If this alternative is used to close Panels 3, 4, 5, and 6, then Panel 9 will not be used for TRU mixed waste disposal. The panel closure system is designed to meet the following requirements that were established by the DOE for the design to comply with 20.4.1.500 NMAC (incorporating 40 CFR §264.601(a)):</td>
<td>G-1e(1) Panel Closure Following completion of waste emplacement in each underground HWDU, the HWDU will be closed. A WIPP Panel Closure (WPC) will be emplaced in the panel access drifts, in accordance with the design in Permit Attachment G1 and the schedule in Figure G-2 and Table G-1. Alternatively, panels may be closed simultaneously by placing panel closures in the north-south mains (E-300, E-140, W-30, and W-170), as shown in Figure G-1. If this alternative is used to close Panels 3, 4, 5, and 6, then Panel 9 will not be used for TRU mixed waste disposal. The panel closure system is designed to meet the following requirements that were established by the DOE for the design to comply with 20.4.1.500 NMAC (incorporating 40 CFR §264.601(a)):</td>
<td>G-1e(1) Panel Closure Following completion of waste emplacement in each underground HWDU, the HWDU will be closed. A WIPP Panel Closure (WPC) will be emplaced in the panel access drifts, in accordance with the design in Permit Attachment G1 and the schedule in Figure G-2 and Table G-1. Alternatively, panels may be closed simultaneously by placing panel closures in the north-south mains (E-300, E-140, W-30, and W-170), as shown in Figure G-1. If this alternative is used to close Panels 3, 4, 5, and 6, then Panel 9 will not be used for TRU mixed waste disposal. The panel closure system is designed to meet the following requirements that were established by the DOE for the design to comply with 20.4.1.500 NMAC (incorporating 40 CFR §264.601(a)):</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. Note that due to both the Class 3 PMR (Replacement Panels 11 & 12) and the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits), adjustments were needed to Attachment M (the new “Figure only” section of the 2020 Permit Renewal Application). Therefore, Figure M-60, in the 2020 Permit Renewal Application needed to be updated to Figure M-61.</td>
</tr>
</tbody>
</table>

G-1e(1) Panel Closure

Following completion of waste emplacement in each underground HWDU, the HWDU will be closed. A WIPP Panel Closure (WPC) will be emplaced in the panel access drifts, in accordance with the design in Permit Attachment G1 and the schedule in Figure G-2 and Table G-1. Alternatively, panels may be closed simultaneously by placing panel closures in the north-south mains (E-300, E-140, W-30, and W-170), as shown in Figure G-1. If this alternative is used to close Panels 3, 4, 5, and 6, then Panel 9 will not be used for TRU mixed waste disposal. The panel closure system is designed to meet the following requirements that were established by the DOE for the design to comply with 20.4.1.500 NMAC (incorporating 40 CFR §264.601(a)):
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Operations End column]</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</td>
</tr>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure Start column]</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</td>
</tr>
<tr>
<td>8/218/21</td>
<td>8/216/22</td>
<td>8/21</td>
<td>6/228/21</td>
<td></td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 7 row; Closure End column]</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</td>
</tr>
<tr>
<td>2/21/22</td>
<td>1/22</td>
<td>1/22</td>
<td>1/22</td>
<td></td>
</tr>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations Start column]</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</td>
</tr>
<tr>
<td>8/21/21</td>
<td>7/21</td>
<td>7/21</td>
<td>7/21</td>
<td></td>
</tr>
</tbody>
</table>

Page 35 of 66
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Operations End column]</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</td>
</tr>
<tr>
<td>8/25 8/24</td>
<td>8/24 8/25</td>
<td>8/24</td>
<td>8/25 8/24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure Start column]</th>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure Start column]</th>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure Start column]</th>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure Start column]</th>
<th>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 8 row; Closure End column]</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has a more current date than the 2020 Permit Renewal Application; therefore, the 2022 updated RLSO Renewal language is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is longer needed.</td>
</tr>
<tr>
<td>2/25 2/26</td>
<td>2/25 2/26</td>
<td>2/25</td>
<td>2/26 2/25</td>
<td></td>
</tr>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Operations Start column]</td>
<td>The 2020 Permit Renewal Application is current. Because there were no changes to the Panel 10 row in the Class 3 PMR (Replacement Panels 11 & 12), the 2020 Permit Renewal Application change is carried forward.</td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 10 row; Closure End column]</td>
<td>See Note 1</td>
</tr>
<tr>
<td>3/31 See Note 2</td>
<td></td>
<td></td>
<td>3/31 See Note 1</td>
<td></td>
</tr>
</tbody>
</table>

After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. Because there were no changes to the Panel 10 row in the Class 3 PMR (Replacement Panels 11 & 12), the 2020 Permit Renewal Application change is carried forward.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Additional HWDUs row; Operations Start Column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Operations Start column]</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 8/25 date in the 2022 updated RLSO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
<tr>
<td>8/25</td>
<td></td>
<td>8/25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEE NOTE 2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Additional HWDUs row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Operations End column]</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 7/28 date in the 2022 updated RLRSO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
<tr>
<td>7/28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See NOTE 2
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Additional HWDUs row; Closure Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Closure Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Closure Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 11 row; Closure Start column]</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 8/28 date in the 2022 updated RLSO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
<tr>
<td>SEE NOTE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table G-1</td>
<td></td>
<td></td>
<td>8/28</td>
</tr>
</tbody>
</table>

SEE NOTE 2
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>[Panel 11 row; Closure End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 9/29 date in the 2022 updated RLSO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
<tr>
<td>[Additional HWDUs* row; Closure End column]</td>
<td>[no current language]</td>
<td>[Panel 11 row; Closure End column]</td>
<td>[Panel 11 row; Closure End column]</td>
<td>2/29</td>
</tr>
</tbody>
</table>

SEE NOTE 2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Additional HWDUs' row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations Start column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations Start column]</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 7/28 date in the 2022 updated RL/SO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
</tbody>
</table>

SEE NOTE 2

| 7/28 |
| 7/28 |

Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations Start column]

After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 7/28 date in the 2022 updated RL/SO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Additional HWDUs row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations End column]</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Operations End column]</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 6/31 date in the 2022 updated RLSO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
</tbody>
</table>

SEE NOTE 2

Table G-1

Anticipated Earliest Closure Dates for the Underground HWDUs

| 6/31 |

SEE NOTE 2
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1
Anticipated Earliest Closure Dates for the Underground HWDUs
[Additional HWDUs row; Closure Start column]</td>
<td>Table G-1
Anticipated Earliest Closure Dates for the Underground HWDUs
[Panel 12 row; Closure Start column]</td>
<td>Table G-1
Anticipated Earliest Closure Dates for the Underground HWDUs
[Panel 12 row; Closure Start column]</td>
<td>Table G-1
Anticipated Earliest Closure Dates for the Underground HWDUs
[Panel 12 row; Closure Start column]</td>
<td>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 7/31 date in the 2022 updated RLSO Renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</td>
</tr>
</tbody>
</table>

SEE NOTE 2

<p>| 7/31 | 7/31 |
|---|---|---------------------------------|---|----------------------------------|</p>
<table>
<thead>
<tr>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Additional HWDUs row; Closure End column]</th>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Closure End column]</th>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Closure End column]</th>
<th>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs [Panel 12 row; Closure End column]</th>
<th>After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN, including changes to the NOTES. The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the 1/32 date in the 2022 updated RLSO renewal is the same as the Class 3 PMR. The 2020 Permit Renewal Application change is no longer needed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEE NOTE 2</td>
<td>1/32</td>
<td>[no current language]</td>
<td>1/32</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Table G-1</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>The Class 3 PMR (Replacement Panels 11 & 12) has current information; therefore, the footnote highlighted in blue in the 2020 Permit Renewal Application is no longer needed.</td>
</tr>
<tr>
<td>[Footnote c]</td>
<td>[Footnote c]</td>
<td>[Footnote c]</td>
<td>[Footnote c]</td>
<td>[Footnote c not included]</td>
</tr>
<tr>
<td></td>
<td>[Footnote c not included]</td>
<td>[no current language]</td>
<td>[Footnote c not included]</td>
<td></td>
</tr>
</tbody>
</table>
Table G-1 | Anticipated Earliest Closure Dates for the Underground HWDUs

[Note 1]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
<td>Table G-1 Anticipated Earliest Closure Dates for the Underground HWDUs</td>
</tr>
<tr>
<td>[Note 2]</td>
<td>[Note 1]</td>
<td>[Note 1]</td>
<td>[Note 1]</td>
</tr>
<tr>
<td>[no changes]</td>
<td>[no changes]</td>
<td>[no changes]</td>
<td>[no changes]</td>
</tr>
</tbody>
</table>

NOTE 2: The time to close these areas may be extended depending on the nature and extent of the disturbed rock zone. The excavations that constitute these panels will have been opened for as many as 40 years so that the preparation for closure may take longer than the time allotted in Figure G-2. If this extension is needed, it will be requested as an amendment to the Closure Plan. **NOTE 1:** The time to close these areas may be extended depending on the nature and extent of the disturbed rock zone. The excavations that constitute these panels will have been opened for as many as 40 years so that the preparation for closure may take longer than the time allotted in Figure G-2. If this extension is needed, it will be requested as an amendment to the Closure Plan.

After submittal of the 2020 Permit Renewal Application, Table G-1 was updated in a subsequent Class 1 PMN including changes to the NOTES. In order to merge with the current Permit, the blue highlighted text in the 2020 Permit Renewal Application was not carried forward onto the 2022 updated RLSO Renewal.
The 2022 updated RLSO Renewal Table G-2, Anticipated Overall Schedule for Final Facility Closure Activities, includes the same changes as both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Note that due to both the Class 3 PMR (Replacement Panels 11 & 12) and the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits), adjustments were needed to Attachment M (the new "Figure only" section of the 2020 Permit Renewal Application). Therefore, Figure M-61, in the 2020 Permit Renewal application needed to be updated to Figure M-62.</td>
</tr>
<tr>
<td>[Table Notes]</td>
<td>[Table Notes]</td>
<td>[Table Notes]</td>
<td>[Table Notes]</td>
<td></td>
</tr>
<tr>
<td>Refer to Figures M-61G-3 and Permit Attachment G1, Appendix G1-BG-4 for precise activity titles.</td>
<td>Refer to Figures G-3 and G-4 for precise activity titles.</td>
<td>Refer to Figures G-3 and G-4 for precise activity titles.</td>
<td>Refer to Figures M-62G-3 and Permit Attachment G1, Appendix G1-BG-4 for precise activity titles.</td>
<td></td>
</tr>
<tr>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td>Table G-2 Anticipated Overall Schedule for Final Facility Closure Activities</td>
<td></td>
</tr>
<tr>
<td>[Table Notes]</td>
<td>[Table Notes]</td>
<td>[Table Notes]</td>
<td>[Table Notes]</td>
<td></td>
</tr>
<tr>
<td>This assumes the final waste is placed in this unit in January 2032 and notification of closure for this HWDU is submitted to the NMED in December 2031.</td>
<td>This assumes the final waste is placed in this unit in January 2032 and notification of closure for this HWDU is submitted to the NMED in December 2031.</td>
<td>This assumes the final waste is placed in this unit in January 2032 and notification of closure for this HWDU is submitted to the NMED in December 2031.</td>
<td>This assumes the final waste is placed in this unit in January 2032 and notification of closure for this HWDU is submitted to the NMED in December 2031.</td>
<td></td>
</tr>
</tbody>
</table>

The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure G-1 Location of Underground HWDUs and WPC Locations</td>
<td>Figure G-1 Location of Underground HWDUs and WPC Locations</td>
<td>Figure G-1 Location of Underground HWDUs and WPC Locations</td>
<td>Figure G-1 Location of Underground HWDUs and WPC Locations</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>Figure G-1 was combined with Figures A2-1, A4-4a, A4-4, and G-6 moved into a new Permit Attachment M. Figure G-1 maps to Figure M-43.</td>
<td></td>
<td></td>
<td></td>
<td>The current figure G-1 in Permit Attachment G is merged as Figure M-43 in the 2022 updated RLSO Renewal.</td>
</tr>
</tbody>
</table>

Figure M-43, Repository Horizon and Underground Waste Transport Routes
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure G-5 Typical Disposal Panel</td>
<td>Figure G-5 Typical Disposal Panel</td>
<td>Figure G-5a and G-5b Typical Disposal Panel</td>
<td>Figure M-42 Typical Disposal Panel</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. The current figures G-5a and G-5b in Permit Attachment G are merged as Figure M-42 in the 2022 updated RLSO Renewal.</td>
</tr>
<tr>
<td>Figure G-5 has been deleted. It has been consolidated into a new Permit Attachment M. The cross-walk for figure alignment is provided below. Figure G-5 → Figure M-42</td>
<td>[The current Permit split the "Typical Disposal Panel" into two figures based on the adjudication of the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits)].</td>
<td>Figure G-5a, Typical Disposal Panel Dimensions for Panels 1-7. This depicts a room height of 13 feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure G5-b, Typical Disposal Panel Dimensions for Panel 8. This depicts a room height of 16 feet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Figure M-42, Typical Disposal Panel</td>
<td></td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure G-6 Approximate Locations of Boreholes in Relation to the WIPP Underground</td>
<td>Figure G-6 Approximate Locations of Boreholes in Relation to the WIPP Underground</td>
<td>Figure G-6 Approximate Locations of Boreholes in Relation to the WIPP Underground</td>
<td>Figure G-6 Approximate Locations of Boreholes in Relation to the WIPP Underground</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. The current figure G-6 in Permit Attachment G is merged as Figure M-43 in the 2022 updated RLSO Renewal.</td>
</tr>
</tbody>
</table>

Figure G-6 was combined with Figures A2-1, A4-4a, A4-4, and G-1 moved into a new Permit Attachment M. Figure G-6 maps to Figure M-43.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-1 Introduction</td>
<td>G1-1 Introduction</td>
<td>G1-1 Introduction</td>
<td>G1-1 Introduction</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>An important aspect of repository operations at the Waste Isolation Pilot Plant (WIPP) facility is the closure of waste disposal panels, also referred to as Hazardous Waste Disposal Units (HWDUs), under the Resource Conservation and Recovery Act (RCRA). Each of Panels 1 through 8 consists of a panel air-intake drift, a panel air-exhaust drift, and seven rooms. Panels 9 and 10 consist of the main entries (North to South) and cross entries (East to West). The closure of individual panels shall meet the closure requirements described in Attachment G and shall be built in accordance with the specifications in this attachment. This attachment describes the panel closure design and presents the applicable specifications and requirements for fabrication, installation, and maintenance of the WIPP Panel Closure (WPC).</td>
<td>An important aspect of repository operations at the Waste Isolation Pilot Plant (WIPP) facility is the closure of waste disposal panels, also referred to as Hazardous Waste Disposal Units (HWDUs), under the Resource Conservation and Recovery Act (RCRA). Each of Panels 1 through 8 consists of a panel air-intake drift, a panel air-exhaust drift, and seven rooms. Panels 9 and 10 consist of the main entries (North to South) and cross entries (East to West). The closure of individual panels shall meet the closure requirements described in Attachment G and shall be built in accordance with the specifications in this attachment. This attachment describes the panel closure design and presents the applicable specifications and requirements for fabrication, installation, and maintenance of the WIPP Panel Closure (WPC).</td>
<td>An important aspect of repository operations at the Waste Isolation Pilot Plant (WIPP) facility is the closure of waste disposal panels, also referred to as Hazardous Waste Disposal Units (HWDUs), under the Resource Conservation and Recovery Act (RCRA). Each of Panels 1 through 8 consists of a panel air-intake drift, a panel air-exhaust drift, and seven rooms. Panels 9 and 10 consist of the main entries (North to South) and cross entries (East to West). The closure of individual panels shall meet the closure requirements described in Attachment G and shall be built in accordance with the specifications in this attachment. This attachment describes the panel closure design and presents the applicable specifications and requirements for fabrication, installation, and maintenance of the WIPP Panel Closure (WPC).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>G1-2 WPC Description</td>
<td>The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A with ROM salt is also installed in Panel 9 in the main entries between S-2750 and S-2520 as the closures for Panels 3 through 6. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Figure G1-1.</td>
<td>G1-2 WPC Description</td>
<td>The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A with ROM salt is also installed in Panel 9 in the main entries between S-2750 and S-2520 as the closures for Panels 3 through 6. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Figure G1-1.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>G1-2 WPC Description</td>
<td>The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A is also installed in Panel 9 in the main entries between S-2750 and S-2520. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Figure G1-1.</td>
<td>G1-2 WPC Description</td>
<td>The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A is also installed in Panel 9 in the main entries between S-2750 and S-2520. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Figure G1-1.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>G1-2 WPC Description</td>
<td>The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A is also installed in Panel 9 in the main entries between S-2750 and S-2520. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Figure G1-1.</td>
<td>G1-2 WPC Description</td>
<td>The WPC consists of WPC-A and WPC-B. The WPC-A is the design for Panels 1 through 8. They shall be closed using out-bye bulkheads in the panel intake and exhaust drifts. The WPC-A with ROM salt is also installed in Panel 9 in the main entries between S-2750 and S-2520 as the closures for Panels 3 through 6. The WPC-B is the closure design for Panel 10. It consists of a combination of in-bye and out-bye bulkheads and a length of ROM salt placed in the main entries north of S-1600. The WPC locations are depicted in Figure G1-1.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
</tbody>
</table>

Consolidation Matrix
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-2b Design Component Description</td>
<td>The WPC-A consists of a standard steel bulkhead in the panel access drifts for Panels 1 through 8, near the intersection with the main entries or relocated to the main north-south drifts as determined by the geotechnical engineer. This bulkhead is referred to as the closure/out-bye bulkhead and it will be maintained for as long as it is accessible. Additional ventilation barriers may remain in the panels as part of the operational controls prior to WPC installation. These ventilation barriers include steel bulkheads, brattice cloth and chain link, as well as concrete block walls in Panels 1, 2, and 5. These ventilation barriers are not part of the WPC design and will not impact the WPC-A bulkheads nor will they impede construction and maintenance of closure bulkheads. WPC-A with ROM salt has been will also be emplaced in the main entries between Panels 9 and 10 (between S-2520 and S-2750).</td>
<td>The WPC-A consists of a standard steel bulkhead in the panel access drifts for Panels 1 through 8, near the intersection with the main entries or relocated to the main north-south drifts as determined by the geotechnical engineer. This bulkhead is referred to as the closure/out-bye bulkhead and it will be maintained for as long as it is accessible. Additional ventilation barriers may remain in the panels as part of the operational controls prior to WPC installation. These ventilation barriers include steel bulkheads, brattice cloth and chain link, as well as concrete block walls in Panels 1, 2, and 5. These ventilation barriers are not part of the WPC design and will not impact the WPC-A bulkheads nor will they impede construction and maintenance of closure bulkheads. WPC-A with ROM salt has been will also be emplaced in the main entries between Panels 9 and 10 (between S-2520 and S-2750).</td>
<td>Did not merge the Class 3 PMR change (Replacement Panels 11 &12), because the 2020 Permit Renewal Application captured the essence of this change.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Figure G2-1, View of the WIPP Underground Facility</td>
<td>The Class 3 PMR (Replacement Panels 11 and 12) figure change is carried over onto the current Permit.</td>
</tr>
<tr>
<td>[no change]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed Figure G2-1 to include Panels 11 and 12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>H1.1 Active Institutional Controls</td>
<td>H1.1 Active Institutional Controls</td>
<td>H1.1 Active Institutional Controls</td>
<td>H1.1 Active Institutional Controls</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
<tr>
<td>1. A fence line will be established to control access to the repository footprint area on the surface. A standard four-strand (three barbed and one unbarbed, in accordance with the Bureau of Land Management specifications) wire fence will be erected along the perimeter of the repository footprint. To provide access to the repository footprint during construction of the berm (which may be built in multiple sections simultaneously), the fence will have gates placed approximately midway along each of the four sides. These gates will remain locked with access controlled by the Permittees. The western gate will be 20 feet (6 meters) wide. The remaining three gates will each be 16 feet (4.9 meters) wide. Additional fencing will be constructed where appropriate for remote locations that are used for disposal system monitoring. Such fences will meet the same construction specifications as the repository footprint perimeter fence.</td>
<td>1. A fence line will be established to control access to the repository footprint area on the surface. A standard four-strand (three barbed and one unbarbed, in accordance with the Bureau of Land Management specifications) wire fence will be erected along the perimeter of the repository footprint. To provide access to the repository footprint during construction of the berm (which may be built in multiple sections simultaneously), the fence will have gates placed approximately midway along each of the four sides. These gates will remain locked with access controlled by the Permittees. The western gate will be 20 feet (6 meters) wide. The remaining three gates will each be 16 feet (4.9 meters) wide. Additional fencing will be constructed where appropriate for remote locations that are used for disposal system monitoring. Such fences will meet the same construction specifications as the repository footprint perimeter fence.</td>
<td>1. A fence line will be established to control access to the repository footprint area on the surface. A standard four-strand (three barbed and one unbarbed, in accordance with the Bureau of Land Management specifications) wire fence will be erected along the perimeter of the repository footprint. To provide access to the repository footprint during construction of the berm (which may be built in multiple sections simultaneously), the fence will have gates placed approximately midway along each of the four sides. These gates will remain locked with access controlled by the Permittees. The western gate will be 20 feet (6 meters) wide. The remaining three gates will each be 16 feet (4.9 meters) wide. Additional fencing will be constructed where appropriate for remote locations that are used for disposal system monitoring. Such fences will meet the same construction specifications as the repository footprint perimeter fence.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit.</td>
<td></td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H1.1.1 Repository Footprint Fencing</td>
<td>H1.1.1 Repository Footprint Fencing</td>
<td>H1.1.1 Repository Footprint Fencing</td>
<td>H1.1.1 Repository Footprint Fencing</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. Note that due to both the Class 3 PMR (Replacement Panels 11 & 12) and the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits), adjustments were needed to Attachment M (the new “Figure only” section of the 2020 Permit Renewal Application). Therefore, Figure M-64, in the 2020 Permit Renewal Application needed to be updated to Figure M-65.</td>
</tr>
<tr>
<td>Access to an area approximately 2,780 feet by 2,360 feet (875 meters by 720 meters) will be controlled by a four-strand barbed wire fence. A single gate will be included along each side of the fence for access. These gates will remain locked with access controlled by the Permittees. Around the perimeter of the fence, an unpaved roadway 16 feet (4.9 meters) wide will be cut to allow for patrolling of the perimeter. Figure M-64 is an illustration of the fence line in relation to the repository footprint. Patrolling of the perimeter is based upon the need to ensure that no mining or well drilling activity is initiated that could threaten the integrity of the repository.</td>
<td>Access to an area approximately 2,780 feet by 2,360 feet (875 meters by 720 meters) will be controlled by a four-strand barbed wire fence. A single gate will be included along each side of the fence for access. These gates will remain locked with access controlled by the Permittees. Around the perimeter of the fence, an unpaved roadway 16 feet (4.9 meters) wide will be cut to allow for patrolling of the perimeter. Figure M-64 is an illustration of the fence line in relation to the repository footprint. Patrolling of the perimeter is based upon the need to ensure that no mining or well drilling activity is initiated that could threaten the integrity of the repository.</td>
<td>Access to an area approximately 2,780 feet by 2,360 feet (875 meters by 720 meters) will be controlled by a four-strand barbed wire fence. A single gate will be included along each side of the fence for access. These gates will remain locked with access controlled by the Permittees. Around the perimeter of the fence, an unpaved roadway 16 feet (4.9 meters) wide will be cut to allow for patrolling of the perimeter. Figure M-64 is an illustration of the fence line in relation to the repository footprint. Patrolling of the perimeter is based upon the need to ensure that no mining or well drilling activity is initiated that could threaten the integrity of the repository.</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 PMR (Replacement Panels 11 & 12) and the 2020 Permit Renewal Application onto the current Permit. Note that due to both the Class 3 PMR (Replacement Panels 11 & 12) and the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits), adjustments were needed to Attachment M (the new “Figure only” section of the 2020 Permit Renewal Application). Therefore, Figure M-64, in the 2020 Permit Renewal Application needed to be updated to Figure M-65.</td>
<td></td>
</tr>
</tbody>
</table>
Table J-3
Underground Hazardous Waste Disposal Units

<table>
<thead>
<tr>
<th>Panel</th>
<th>Waste Type</th>
<th>Maximum Capacity</th>
<th>Container Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH TRU</td>
<td>636,000 a 18,000 m³</td>
<td>86,500 55-Gallon Drums</td>
</tr>
<tr>
<td>2</td>
<td>CH TRU</td>
<td>636,000 a 18,000 m³</td>
<td>86,500 55-Gallon Drums</td>
</tr>
<tr>
<td>3</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>4</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>5</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>6</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>7</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>8</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>11</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>12</td>
<td>CH TRU</td>
<td>622,150 b 18,750 m³</td>
<td>90,150 55-Gallon Drums</td>
</tr>
<tr>
<td>Total</td>
<td>CH TRU</td>
<td>$5,244,999 1,503,300 m³ 148,000 55-Gallon Drums</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RH TRU</td>
<td>$93,050 2,075 m³ 341,601 55-Gallon Drums</td>
<td>2,400 RH TRU Canisters</td>
</tr>
</tbody>
</table>

Rationale / Description of Changes
[Reserved]

Current Permit [as of March 2022]

- Panel 1: CH TRU 636,000 a 18,000 m³ 86,500 55-Gallon Drums
- Panel 2: CH TRU 636,000 a 18,000 m³ 86,500 55-Gallon Drums
- Panel 3: CH TRU 622,150 b 18,750 m³ 90,150 55-Gallon Drums
- Panel 4: CH TRU 622,150 b 18,750 m³ 90,150 55-Gallon Drums
- Panel 5: CH TRU 622,150 b 18,750 m³ 90,150 55-Gallon Drums
- Panel 6: CH TRU 622,150 b 18,750 m³ 90,150 55-Gallon Drums
- Panel 7: CH TRU 622,150 b 18,750 m³ 90,150 55-Gallon Drums
- Panel 8: CH TRU 622,150 b 18,750 m³ 90,150 55-Gallon Drums
- Total: CH TRU 5,244,999 1,503,300 m³ 148,000 55-Gallon Drums
- RH TRU 93,050 2,075 m³ 341,601 55-Gallon Drums

[2,400 RH TRU Canisters]
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table L-4 List of Culebra Wells in the WLMP, Current as of January 2020</td>
<td>Table L-4 List of Culebra Wells in the WLMP, Current as of January 2022</td>
<td>Table L-4 List of Culebra Wells in the WLMP, Current as of January 2022</td>
<td>Table L-4 List of Culebra Wells in the WLMP, Current as of January 2022</td>
<td>The 2020 Permit Renewal Application changes are no longer needed because the changes to Table L-4 were addressed in a subsequent Class 1 PMN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>WELL ID</th>
<th>WELL ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC-7R</td>
<td>IMC-461</td>
<td>SNL-15</td>
</tr>
<tr>
<td>C-2737</td>
<td>IMC-461</td>
<td>SNL-16</td>
</tr>
<tr>
<td>H-8R</td>
<td>SNL-2</td>
<td>SNL-17</td>
</tr>
<tr>
<td>H-5R</td>
<td>SNL-3</td>
<td>SNL-18</td>
</tr>
<tr>
<td>H-5R</td>
<td>SNL-5</td>
<td>SNL-19</td>
</tr>
<tr>
<td>H-5R</td>
<td>SNL-6</td>
<td>WQSP-1</td>
</tr>
<tr>
<td>H-10R</td>
<td>SNL-6</td>
<td>WQSP-2</td>
</tr>
<tr>
<td>H-11bR</td>
<td>SNL-9</td>
<td>WQSP-3</td>
</tr>
<tr>
<td>H-12R</td>
<td>SNL-10</td>
<td>WQSP-4</td>
</tr>
<tr>
<td>H-15R</td>
<td>SNL-12</td>
<td>WQSP-5</td>
</tr>
<tr>
<td>H-15</td>
<td>SNL-13</td>
<td>WQSP-6</td>
</tr>
<tr>
<td>H-19 pad*</td>
<td>SNL-14</td>
<td>WPP-11R</td>
</tr>
</tbody>
</table>

Table L-4 List of Culebra Wells in the WLMP, Current as of January 2020

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Indicator Parameters:
- pH
- SC
- TOC

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Table L-6 Analytical Parameters and Sample Requirements [PARAMETERS column; second row]

Note: Unless otherwise indicated, data are from DOE Procedure WP 02-EM1006 methods and are provided as information only.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N-1 Introduction</td>
<td>N-1 Introduction</td>
<td>N-1 Introduction</td>
<td>N-1 Introduction</td>
<td>The 2022 updated RLPO Renewal carries forward the 2020 Permit Renewal Application changes onto the current Permit.</td>
</tr>
<tr>
<td>This Permit Attachment N describes the monitoring plan for volatile organic compound (VOC) emissions from transuranic (TRU) mixed waste that may be entrained in the exhaust air from the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Underground Hazardous Waste Disposal Units (HWDUs) during the disposal phase at the facility. The purpose of VOC monitoring is to ensure compliance with the VOC action levels and limits specified in Permit Part 4. This VOC monitoring plan consists of two programs: (1) the Repository VOC Monitoring Program (RVMP), which assesses compliance with the action levels in Permit Part 4, Section 4.6.2.3; and (2) the Disposal Room VOC Monitoring Program (DRVMP) (includes ongoing disposal room VOC monitoring), which assesses compliance with the disposal room action levels and limits in Permit Part 4, Tables 4.4.1, 4.4.2, 4.6.3.2, and 4.6.3.3. This plan includes the monitoring design, a description of sampling and analysis procedures, quality assurance (QA) objectives, and reporting activities.</td>
<td>This Permit Attachment N describes the monitoring plan for volatile organic compound (VOC) emissions from transuranic (TRU) mixed waste that may be entrained in the exhaust air from the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Underground Hazardous Waste Disposal Units (HWDUs) during the disposal phase at the facility. The purpose of VOC monitoring is to ensure compliance with the VOC action levels and limits specified in Permit Part 4. This VOC monitoring plan consists of two programs: (1) the Repository VOC Monitoring Program (RVMP), which assesses compliance with the action levels in Permit Part 4, Section 4.6.2.3; and (2) the Disposal Room VOC Monitoring Program (DRVMP) (includes ongoing disposal room VOC monitoring), which assesses compliance with the disposal room action levels and limits in Permit Part 4, Tables 4.4.1, 4.4.2, 4.6.3.2, and 4.6.3.3. This plan includes the monitoring design, a description of sampling and analysis procedures, quality assurance (QA) objectives, and reporting activities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>N-1a Background</td>
<td>N-1a Background</td>
<td>N-1a Background</td>
<td>N-1a Background</td>
<td>The 2022 updated RLSO Renewal merges the changes from both the Class 3 (Replacement Panels 11 & 12) PMR and the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
</tbody>
</table>

The Underground HWDUs are located 2,150 feet (ft) (655 meters [m]) below ground surface, at the WIPP facility, in the WIPP underground. As defined for this Permit, an Underground HWDU is a single excavated panel consisting of seven rooms and two access drifts designated for disposal of contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste. Each room in Panels 1-7 is approximately 300 ft (91 m) long, 33 ft (10 m) wide, and 13 ft (4 m) high. Access drifts connect the rooms and have the same cross section. The Permittees shall dispose of TRU mixed waste in Underground HWDUs designated as Panels 1 through 8. **11, and 12.**

The Underground HWDUs are located 2,150 feet (ft) (655 meters [m]) below ground surface, in the WIPP underground. As defined for this Permit, an Underground HWDU is a single excavated panel consisting of seven rooms and two access drifts designated for disposal of contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste. Each room is approximately 300 ft (91 m) long, 33 ft (10 m) wide, and 13 ft (4 m) high. Access drifts connect the rooms and have the same cross section. The Permittees shall dispose of TRU mixed waste in Underground HWDUs designated as Panels 1 through 8. **11, and 12.**

The Underground HWDUs are located 2,150 feet (ft) (655 meters [m]) below ground surface, at the WIPP facility, in the WIPP underground. As defined for this Permit, an Underground HWDU is a single excavated panel consisting of seven rooms and two access drifts designated for disposal of contact-handled (CH) and remote-handled (RH) transuranic (TRU) mixed waste. Each room in Panels 1-7 is approximately 300 ft (91 m) long, 33 ft (10 m) wide, and 13 ft (4 m) high. Access drifts connect the rooms and have the same cross section. The Permittees shall dispose of TRU mixed waste in Underground HWDUs designated as Panels 1 through 8. **11, and 12.**

The 2022 updated RLSO Renewal**: Due to the Class 2 PMR change, the "or 14 ft (4.3 m)" language highlighted in blue text from the Class 3 is not carried forward onto the current Permit.
N-3(a)(1) Sampling Locations for Repository VOC Monitoring

Mine ventilation air, which could potentially be impacted by VOC emissions from the Underground HWDUs identified as Panels 1 through 8, will exit the underground through the Exhaust Shaft. Building 489 has been identified as the location of the maximum non-waste surface worker exposure. Air samples will be collected from Station VOC-C located at the west air intake for Building 489 (Figure M-77N-1) to quantify VOCs in the ambient air. Background VOCs will be measured by sampling from Station VOC-D located at groundwater pad WQSP-4 (Figure M-77N-1). This pad is located approximately one mile southeast (upwind based on the predominant wind direction) of the Exhaust Shaft within the WIPP facility boundary.

N-3(a)(1) Sampling Locations for Repository VOC Monitoring

Mine ventilation air, which could potentially be impacted by VOC emissions from the Underground HWDUs identified as Panels 1 through 8, will exit the underground through the Exhaust Shaft. Building 489 has been identified as the location of the maximum non-waste surface worker exposure. Air samples will be collected from Station VOC-C located at the west air intake for Building 489 (Figure M-77N-1) to quantify VOCs in the ambient air. Background VOCs will be measured by sampling from Station VOC-D located at groundwater pad WQSP-4 (Figure M-77N-1). This pad is located approximately one mile southeast (upwind based on the predominant wind direction) of the Exhaust Shaft within the WIPP facility boundary.

N-3(a)(1) Sampling Locations for Repository VOC Monitoring

Mine ventilation air, which could potentially be impacted by VOC emissions from the Underground HWDUs identified as Panels 1 through 8, will exit the underground through the Exhaust Shaft. Building 489 has been identified as the location of the maximum non-waste surface worker exposure. Air samples will be collected from Station VOC-C located at the west air intake for Building 489 (Figure M-77N-1) to quantify VOCs in the ambient air. Background VOCs will be measured by sampling from Station VOC-D located at groundwater pad WQSP-4 (Figure M-77N-1). This pad is located approximately one mile southeast (upwind based on the predominant wind direction) of the Exhaust Shaft within the WIPP facility boundary.

The 2022 updated RLSO Renewal merges the changes from both the Class 3 (Replacement Panels 11 & 12) PMR and the 2020 Permit Renewal Application onto the current Permit. Note that due to both the Class 3 PMR (Replacement Panels 11 & 12) and the Class 2 PMR (Updates to Panel 8 VOC Room-Based Limits), adjustments were needed to Attachment M (the new “Figure only” section of the 2020 Permit Renewal Application). Therefore, Figure M-77, in the 2020 Permit Renewal Application needed to be updated to Figure M-78.
Consolidation Matrix

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N-3e(2) Data Evaluation and Reporting for Disposal Room VOC Monitoring</td>
<td>When the Permittees receive laboratory analytical data from an air sampling event, the data will be validated as specified in Section N-5d. The validated data will be evaluated to determine whether the VOC concentrations in the air of any closed room, the active open room, or the immediately adjacent closed room exceeded the Action Levels action levels for DRVMP specified in Permit Part 4, Table 4.6.3.2.</td>
<td>N-3e(2) Data Evaluation and Reporting for Disposal Room VOC Monitoring</td>
<td>When the Permittees receive laboratory analytical data from an air sampling event, the data will be validated as specified in Section N-5d. The validated data will be evaluated to determine whether the VOC concentrations in the air of any closed room, the active open room, or the immediately adjacent closed room exceeded the Action Levels action levels for DRVMP specified in Permit Part 4, Table 4.6.3.2 or Table 4.6.3.3, as appropriate.</td>
<td>The 2022 updated RLSO Renewal merges the changes from the 2020 Permit Renewal Application onto the current Permit.</td>
</tr>
</tbody>
</table>
Consolidation Matrix

<table>
<thead>
<tr>
<th>2020 Permit Renewal Application Attachment M</th>
<th>Class 3 Permit Modification Request for Construction and Use of HWDUs 11 & 12</th>
<th>Current Permit [as of March 2022]</th>
<th>2022 Updated Redline/Strikeout Renewal Consolidation</th>
<th>Rationale / Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures</td>
<td>N/A</td>
<td>N/A</td>
<td>2022 Updated RLSO Renewal Attachment M</td>
<td>Figures from Permit Attachments A1, A2, A3, G, H1, L, and N were consolidated into a 2020 Permit Renewal Application Attachment M. Because one new figure was added as a result of the Class 3 PMR (Excavation of New Shaft and Associated Connecting Drifts), Figures M-51 to M-81 in the 2020 Permit Renewal Application Attachment M were renumbered as M-52 to M-82 in the 2022 updated RLSO Renewal Attachment M.</td>
</tr>
</tbody>
</table>

Blue Highlight: Changes from either the 2020 Permit Renewal Application or the Class 3 PMR (Replacement Panels 11 and 12) that are not carried forward into the 2022 updated RLSO Renewal. Due to subsequent Class 1 and Class 2 modifications, informed language was added to the current Permit, which makes these changes not applicable.

Yellow Highlight: Changes from the Class 3 PMR (Replacement Panels 11 and 12). The same changes may exist in the 2020 Permit Renewal Application as well.