Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

DOE/CBFO-01-1006

Revision 8

Effective: May 24, 2022

This document supersedes Revision 7 of DOE/CBFO-01-1006

U.S. Department of Energy
Carlsbad Field Office
Office of National TRU Program Waste Certification & Disposal
This document has been submitted as required to:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(865) 576-8401

Additional information about this document may be obtained by calling 1-800-336-9477.

Unlimited, publicly available full-text scientific and technical reports produced since 1991 are available online at Information Bridge (www.osti.gov/bridge).

U.S. Department of Energy and its contractors may obtain full-text reports produced prior to 1991 in paper form, for a processing fee, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Phone: (865) 576-1188
Fax: (865) 576-2865
Email: reports@osti.gov

Available for sale to the public from:

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
Phone: (800) 553-6847 or (703) 605-6000
Fax: (703) 605-6880
Email: info@ntis.gov
Performance Demonstration Program Plan
for Nondestructive Assay of Boxed Wastes for
the TRU Waste Characterization Program

DOE/CBFO-01-1006
Revision 8
Effective: May 24, 2022

U.S. Department of Energy
Carlsbad Field Office
Office of National TRU Program Waste Certification & Disposal

Approved by: /Signature on File/ 5/17/2022
Kenneth E. Princen
Assistant Manager
Office of the National TRU Program
Waste Certification & Disposal

Concurred by: /Signature on File/ 5/17/2022
Darren Jolley
Director
Quality Assurance Division

Prepared by: /Signature on File/ 5/17/2022
DaBrisha Smith
PDP Appointee
Office of the National TRU Program
Waste Certification & Disposal
This page intentionally blank
TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONS .. 7

CHANGE HISTORY SUMMARY ... 8

1.0 INTRODUCTION TO THE PERFORMANCE DEMONSTRATION PROGRAM .. 11
 1.1 Purpose of the NDA Box PDP ... 11
 1.2 Scope and Frequency of the NDA Box PDP ... 12
 1.3 NDA Box PDP Cycle Description .. 13

2.0 ORGANIZATION AND RESPONSIBILITIES .. 15
 2.1 Carlsbad Field Office .. 16
 2.1.1 CBFO PDP Appointee .. 18
 2.2 PDP Program Coordinator ... 18
 2.2.1 PDP Manager ... 18
 2.2.2 NDA PDP Coordinator ... 18
 2.3 Custodial Facility ... 20
 2.3.1 Custodial Facility Assay Coordinator (CFAC) .. 21
 2.3.2 Sample Components Custodian ... 21
 2.3.3 Sample Preparation Team (SPT) ... 22
 2.4 Measurement Organization .. 25

3.0 EVALUATION OF PERFORMANCE DATA .. 28
 3.1 General Criteria ... 28
 3.2 Scoring the Test Data Precision ... 29
 3.3 Scoring the Test Data Bias .. 29

4.0 WIPP QUALIFICATION BASED ON NDA PDP TEST PERFORMANCE .. 30
 4.1 General Considerations .. 30
 4.2 Pass or Fail Approval Status ... 31
 4.3 Approval, Disapproval, or Conditional Approval .. 32
 4.4 Approval Status ... 33
 4.5 Scoring Report .. 33

5.0 NDA PDP MATERIAL COMPONENTS ... 34
 5.1 General .. 34
 5.2 NTP Working Reference Material (WRM) Standards of the NDA PDP ... 34

6.0 PROCUREMENT ... 35

7.0 TRAINING .. 35

8.0 QA RECORDS .. 36
9.0 GLOSSARY ... 39
10.0 REFERENCES ... 42
Appendix A ... 45
Appendix B .. 55
Appendix C .. 59
Appendix D .. 65
Appendix E .. 73
Appendix F .. 77

LIST OF TABLES
Table 1. NDA PDP Activity Ranges and Associated Scoring Acceptance Criteria 28
Table 2. NDA PDP Standard Inventory ... 35
Table D-1. NDA PDP Performance Criteria .. 67

LIST OF FIGURES
Figure 1. Event Timeline for a Primary Cycle of the NDA PDP ... 15
Figure 2. Organization and Communication Flowchart for the NDA PDP 17
Figure E-1. PDP Standard Inner and Outer Cylinders, Elevation View .. 75
Figure E-2. PDP Standard Encapsulation Assembly, Elevation View ... 76
Figure F-1. Cutaway Isometric of SWB Matrix Surrogate ... 81
Figure F-2. Center Type SWB Matrix Module .. 82
Figure F-3. End Type SWB Matrix Module ... 83
Figure F-4. SWB Matrix Surrogate PDP Standard Insert Fixture .. 84
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%R</td>
<td>percent recovery</td>
</tr>
<tr>
<td>%RSD</td>
<td>percent relative standard deviation</td>
</tr>
<tr>
<td>AK</td>
<td>acceptable knowledge</td>
</tr>
<tr>
<td>ANSI/HPS</td>
<td>American National Standards Institute/Health Physics Society</td>
</tr>
<tr>
<td>CAP</td>
<td>corrective action plan</td>
</tr>
<tr>
<td>CAR</td>
<td>corrective action report</td>
</tr>
<tr>
<td>CBFO</td>
<td>Carlsbad Field Office</td>
</tr>
<tr>
<td>CFAC</td>
<td>custodial facility assay coordinator</td>
</tr>
<tr>
<td>CH</td>
<td>contact-handled</td>
</tr>
<tr>
<td>CTAC</td>
<td>CBFO Technical Assistance Contractor</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>EA</td>
<td>expert analyst</td>
</tr>
<tr>
<td>FGE</td>
<td>fissile gram equivalent</td>
</tr>
<tr>
<td>LLW</td>
<td>low-level waste</td>
</tr>
<tr>
<td>MDC</td>
<td>minimum detectable concentration</td>
</tr>
<tr>
<td>nCi/g</td>
<td>nanocuries per gram</td>
</tr>
<tr>
<td>NDA</td>
<td>nondestructive assay</td>
</tr>
<tr>
<td>NTP</td>
<td>National TRU Program</td>
</tr>
<tr>
<td>ONTPWC&D</td>
<td>Office of National TRU Program Waste Certification & Disposal</td>
</tr>
<tr>
<td>PDP</td>
<td>Performance Demonstration Program</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QAPD</td>
<td>Quality Assurance Program Document</td>
</tr>
<tr>
<td>SNM</td>
<td>special nuclear material</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>SPT</td>
<td>sample preparation team</td>
</tr>
<tr>
<td>SWB</td>
<td>standard waste box</td>
</tr>
<tr>
<td>TID</td>
<td>tamper indicating device</td>
</tr>
<tr>
<td>TIG</td>
<td>tungsten inert gas</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>WAC</td>
<td>Waste Acceptance Criteria</td>
</tr>
<tr>
<td>WG Pu</td>
<td>weapons-grade plutonium</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WRM</td>
<td>working reference material</td>
</tr>
</tbody>
</table>
CHANGE HISTORY SUMMARY

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This revision is a complete rewrite of the document. The document was rewritten to:</td>
</tr>
<tr>
<td></td>
<td>1. Better represent current practices and documents utilized by the Carlsbad Field Office (CBFO).</td>
</tr>
<tr>
<td></td>
<td>2. Eliminate concept and protocol for identical systems.</td>
</tr>
<tr>
<td></td>
<td>3. Simplify and clarify the scoring section (section 6).</td>
</tr>
<tr>
<td></td>
<td>4. Clarify the explanation of the derivation of scoring criteria – Appendix E.</td>
</tr>
<tr>
<td></td>
<td>5. Update the NDA Box PDP Plan to be consistent with the current revision of the NDA Drum PDP Plan.</td>
</tr>
<tr>
<td></td>
<td>6. Incorporate changes in the CBFO organizational chart.</td>
</tr>
<tr>
<td>2</td>
<td>This revision is a complete rewrite of the document. The document was rewritten to:</td>
</tr>
<tr>
<td></td>
<td>1. Reorganize the format to emphasize and consolidate cycle participant responsibilities.</td>
</tr>
<tr>
<td></td>
<td>2. Better define the process to address failures of the tested NDA systems to meet NDA PDP criteria.</td>
</tr>
<tr>
<td></td>
<td>3. Single out the non-interfering matrix SWB as distinct from the other matrix SWBs and to define its use for specialized circumstances.</td>
</tr>
<tr>
<td></td>
<td>4. Place information that is not relevant to normal NDA PDP cycle activities in the appendices.</td>
</tr>
<tr>
<td>3</td>
<td>The document is revised to:</td>
</tr>
<tr>
<td></td>
<td>1. Simplify sample preparation team requirements and instructions.</td>
</tr>
<tr>
<td></td>
<td>2. Provide general information regarding NDA PDP components and inventory of materials.</td>
</tr>
<tr>
<td></td>
<td>3. Eliminate Measurement Organization Assay Coordinator since the measurement duties are the responsibility of multiple personnel across the country. Requirements exist for the organization and the position is not required.</td>
</tr>
<tr>
<td></td>
<td>4. Eliminate inventory specifics of PDP components so that acquisition of new components do not require a change to the plan.</td>
</tr>
</tbody>
</table>
CHANGE HISTORY SUMMARY

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The document is revised to:</td>
</tr>
<tr>
<td></td>
<td>1. Remove all references to the Performance Demonstration Program Plans for Analysis of Simulated Headspace Gases and RCRA Constituent Analysis of Solidified Wastes in accordance with the March 13, 2013, modifications to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit.</td>
</tr>
<tr>
<td></td>
<td>2. Improve the “PDP SWB Matrix Configuration Form.”</td>
</tr>
<tr>
<td></td>
<td>3. Incorporate editorial changes to improve technical clarity.</td>
</tr>
<tr>
<td>5</td>
<td>The document is revised to:</td>
</tr>
<tr>
<td></td>
<td>1. Incorporate updates to the Carlsbad Field Office organizational structure.</td>
</tr>
<tr>
<td></td>
<td>2. Incorporate editorial changes to improve technical clarity.</td>
</tr>
<tr>
<td></td>
<td>3. Add a complete Change History section.</td>
</tr>
<tr>
<td>6</td>
<td>The document is revised to:</td>
</tr>
<tr>
<td></td>
<td>1. Incorporate updates to the Carlsbad Field Office organizational structure.</td>
</tr>
<tr>
<td></td>
<td>2. Incorporate List of Figures and List of Tables in the Table of Contents.</td>
</tr>
<tr>
<td></td>
<td>3. Incorporate editorial changes to improve technical clarity.</td>
</tr>
<tr>
<td>7</td>
<td>The document is revised to:</td>
</tr>
<tr>
<td></td>
<td>1. Provide instruction to include tailgate briefings.</td>
</tr>
<tr>
<td></td>
<td>2. Incorporate changes to forms. Change bars were accepted/removed from forms for clarity and ease of review.</td>
</tr>
<tr>
<td></td>
<td>3. Incorporate editorial changes to improve technical clarity.</td>
</tr>
<tr>
<td>8</td>
<td>The document is revised to:</td>
</tr>
<tr>
<td></td>
<td>1. Incorporate updates to the Carlsbad Field Office organizational structure.</td>
</tr>
<tr>
<td></td>
<td>2. Remove non-interfering matrix standard waste box and the associated scoring criteria.</td>
</tr>
<tr>
<td></td>
<td>3. Incorporate reference to PDP Plan for criticality control overpacks.</td>
</tr>
<tr>
<td></td>
<td>4. Incorporate editorial changes to improve technical clarity.</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION TO THE PERFORMANCE DEMONSTRATION PROGRAM

The U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) is permitted for the disposal of transuranic (TRU) waste. All TRU waste shipped to WIPP must be characterized by a WIPP-certified program in compliance with WIPP's disposal, packaging, and transportation requirements, as outlined in DOE/WIPP-02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC). Prior to achieving WIPP certification, Carlsbad Field Office (CBFO) designated TRU waste programs must develop and implement a quality assurance program that meets all applicable requirements of DOE/CBFO-94-1012, Quality Assurance Program Document (QAPD). When implementing the WAC, radiological characterization requirements for contact-handled TRU waste include the successful participation in the Performance Demonstration Program (PDP). The PDP serves as a measurement comparison program and quality control check for data generated in the characterization of waste destined for the WIPP. Single blind audit samples assembled at each characterization site are used to evaluate analyses of alpha-emitting transuranic (TRU) radionuclides by nondestructive assay (NDA) techniques.

Within the DOE Carlsbad Field Office (CBFO), the Office of National TRU Program Waste Certification & Disposal oversees and is the review and approval authority for all PDP activities. The overall management of the PDP is described in DOE/CBFO-01-3107, Performance Demonstration Program Management Plan. Separate NDA PDP Plans describe the activities associated with the NDA PDP elements. The PDP includes the following plans:

- DOE/CBFO-01-1006, Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program (NDA Box PDP Plan)
- DOE/CBFO-21-3630, Performance Demonstration Program Plan for Nondestructive Assay of Criticality Control Overpacks for the TRU Waste Characterization Program

This NDA Box PDP Plan specifically addresses the purpose, design, management, coordination, and conduct of the NDA PDP that applies to contact-handled TRU (CH-TRU) waste packaged in standard waste boxes (SWBs).

1.1 Purpose of the NDA Box PDP

The NDA Box PDP is designed to test participating generator sites measurement organizations’ NDA measurement systems by evaluating TRU alpha-emitting radionuclide data from NDA measurements of simulated CH-TRU waste. This plan does not address calorimetry, another NDA technique utilized for WIPP waste characterization. The relevant CH-TRU wastes addressed by this plan are those generated and packaged in SWBs within the DOE complex. The NDA PDP tests provide a mechanism for the independent and objective assessment of NDA
system performance and capability relative to the radiological characterization objectives and
criteria of the Office of National TRU Program Waste Certification & Disposal (ONTPWC&D).

To ensure the NDA PDP test samples are representative of the prevalent waste types and
characteristics in actual waste destined for disposal at the WIPP, the design of the PDP matrixes
were based on evaluation of baseline information provided in the *Waste Isolation Pilot Plant
Transuranic Waste Baseline Inventory Report* (CAO-94-1005). The nuclear material type, mass,
and associated alpha activity of the NDA PDP radioactive standards have been specified and
fabricated to allow assembly of NDA Box PDP samples that simulate TRU alpha activity
concentrations, radionuclide/isotope distributions, and physical forms typical of the DOE TRU
waste inventory.

1.2 Scope and Frequency of the NDA Box PDP

The CBFO uses the NDA PDP as part of the assessment and approval process for measurement
organizations and NDA measurement systems used to characterize waste for disposal at the
WIPP. Generator site measurement organizations are required to analyze the NDA Box PDP
samples using the same procedures approved and implemented for routine operational WIPP
waste characterization activities. The NDA PDP is not designed for testing method or
procedural changes unless those changes have already been accepted by the CBFO. The CBFO
approval for changes to testing methods or procedures is evaluated outside of the PDP based
upon approved protocol for demonstration of the method validity for the targeted wastes. The
NDA PDP is designed to annually “spot check” capabilities for radioassay of one or more
specific combinations of:

- matrix type (i.e., combustible, or metals matrix)
- activity type (i.e., 238Pu, 239Pu, 240Pu, 241Am, 233U, 234U, 238U)
- activity level (i.e., range of sample activity in α-curies)
- activity distribution (i.e., activity location within the box).

Thus, the NDA PDP provides insufficient rigor for testing as a method validation program.

This NDA Box PDP Plan describes the elements comprising the test program, including test
apparatus, test sample configuration, and required sample analyses. The Plan further identifies
and defines the responsibilities of the program entities, including the PDP Manager, NDA PDP
Coordinator, custodial facility, the custodial facility assay coordinator (CFAC), the sample
preparation team (SPT), and the measurement organization.

All participating generator sites measurement organizations and NDA measurement systems
must demonstrate acceptable performance in the NDA Box PDP before the SWB waste assays
can be WIPP-certified. NDA measurement systems that have not obtained the CBFO approval
may choose to proceed with waste characterization on an “at risk” basis. The participating
generator sites and measurement organization should recognize that waste characterization data
acquired "at risk" and prior to the CBFO approval of the measurement organization, NDA
measurement systems, and procedures, may be found to be unacceptable to the CBFO.
After the initial PDP approval, each generator site measurement organization and NDA measurement system shall be evaluated annually, as specified in the WAC. The primary cycle for NDA Box PDP participation will be conducted annually (i.e., every 12 months, with a one-month grace period).

In addition to the primary test cycle, the NDA PDP Coordinator may schedule a supplemental cycle prior to the next annual cycle. A supplemental NDA PDP cycle can be requested by measurement organizations for the following:

- NDA measurement systems that have failed one or more NDA PDP samples,
- for newly implemented NDA measurement systems, or
- for NDA measurement systems that have been inactive, or have undergone changes that could impact the NDA PDP approval status.

Requests for a supplemental cycle must be submitted in writing or by email to the CBFO for evaluation. Timing and selection of NDA measurement systems for participation in supplemental cycles will be at the discretion of the CBFO. At the discretion of the CBFO, costs associated with the administration of supplemental cycles may be borne by the requesting generator site measurement organization. The amount and transfer of funds to the PDP Program Coordinator will be determined on a case-by-case basis.

1.3 NDA Box PDP Cycle Description

The NDA Box PDP cycle is a process that implements a sequence of documented activities designed to produce, evaluate, and report NDA measurement results. The scored results are used as evidence indicating the generator site measurement organization’s NDA measurement system and procedural capabilities to produce data of sufficient quality for WIPP certification.

Sequentially, the NDA PDP cycle is described by the following major activities:

- Approximately 2 months prior to cycle initiation, the NDA PDP Coordinator communicates with the generator sites and measurement organizations to establish a schedule and identify the NDA measurement systems that will participate in the cycle. The CBFO PDP Appointee must approve the schedule and cycle participants.
- In the case of a supplemental cycle, the participating generator site and measurement organization are documented in the CBFO PDP Appointee’s approval letter of the requested supplemental cycle.
- Approximately 2 weeks prior to the scheduled start of the cycle, sealed instructions and materials are mailed to the participating generator sites’ CFAC for the assembly and verification of the cycle’s PDP samples (activity type, position, quantity, and matrix module type(s) and positioning. The sealed envelope is not to be opened upon receiving. During the tailgate briefing, the PDP Manager or NDA PDP Coordinator will request the PDP source custodian to open the sealed envelope. These instructions are confidential.
information; to ensure cycle integrity, these instructions must not be shared with the measurement organization.

- Prior to sample assembly by the Sample Preparation Team (SPT), a tailgate briefing is held to review and discuss the contents of the mailed sealed envelope. The meeting consists of the NDA PDP Coordinator (or the PDP Manager), PDP standards custodian, and a PDP standards configuration attestant, at a minimum, to review the instructions and materials, resolve any questions, and identify all necessary components to assemble the sample as outlined in the upcoming cycle. The tailgate briefing may be conducted by teleconference.

- Upon commencement of the cycle, the participating measurement organizations perform nondestructive radioassay of each sample utilizing the NDA measurement systems and procedures authorized by the CBFO on a cycle-specific basis. Each matrix sample is counted six (6) times. The results are sent by the generator site measurement organization to the NDA PDP Coordinator within 28 calendar days after the cycle start date.

- The NDA PDP Coordinator scores the results against criteria set forth in Section 3 the NDA Box PDP Plan.

- Approximately 2 weeks after receiving the results, the NDA PDP Coordinator makes NDA measurement system approval recommendations to the CBFO PDP Appointee based on performance of each of the participating NDA measurement systems relative to NDA PDP criteria.

- The CBFO PDP Appointee combines the recommendations of the NDA PDP Coordinator with other quality assurance (QA) information gathered from onsite assessments to approve, conditionally approve, or disapprove each of the participating NDA measurement systems on an individual basis.

- If not approved, or if conditionally approved, a measurement organization may enter a corrective action process to obtain a higher approval status from the CBFO for one or more of their NDA measurement system(s).

- Upon completion of the SPT, assay activities, and receipt of all of the completed SPT documentation and the results from all the participating generating sites measurement organizations, a scoring report is generated that includes:

 o the values reported by all generator site measurement organizations;

 o the reference activity values;

 o the acceptance ranges;

 o the pass-fail status of each individual measurement system relative to the NDA PDP pass-fail criteria; and

 o the CBFO approval status of each participating NDA measurement system.
The report is generated by the NDA PDP Coordinator and distributed by the CBFO.

An approximate timeline schedule of PDP cycle activities is shown in Figure 1.

An NDA PDP cycle is considered initiated on the date specified in the letter transmitting the NDA PDP sample configuration instructions to the CFAC. A cycle is concluded upon issuance of the scoring report for the cycle. **For compliance with required annual participation, an NDA measurement system must participate in a PDP cycle within 12 months (plus a one-month grace period) from the date results for the cycle are received by the NDA PDP Coordinator (see section 4.2).**

Figure 1. Event Timeline for a Primary Cycle of the NDA PDP

2.0 ORGANIZATION AND RESPONSIBILITIES

This section discusses the organizations involved in the NDA PDP and the responsibilities of each of these organizations. Figure 2 depicts the organizational flow of communications for the NDA PDP. Other responsibilities of the organizations involved in the NDA Box PDP are provided in the following sections.
2.1 Carlsbad Field Office

The CBFO is the review and approval authority for the NDA Box PDP. Programmatic direction and oversight of the PDP are performed by the ONTPWC&D, the CBFO organization responsible for managing the PDP on behalf of the CBFO. The CBFO ONTPWC&D Assistant Manager designates a CBFO ONTPWC&D employee to be the PDP Appointee.

The CBFO implements the PDP by providing program oversight and designating a Program Coordinator (currently the Carlsbad Field Office Technical Assistance Contractor [CTAC]). The CBFO is responsible for the specification and procurement of NDA PDP standards (sources). An NDA PDP standard is defined as a radioactive source specifically designed, prepared (or acquired), and certified for the NDA PDP. The NDA PDP standards have pedigrees traceable to nationally recognized reference bases such as the National Institute of Standards and Technology. To date, all standards used in the NDA PDP have been manufactured at the Los Alamos National Laboratory. The types of radioactive NDA PDP standards presently in the NDA PDP inventory are listed in section 5.2, Table 2. However, sources with appropriate traceability and certification from other programs or commercial sources may be used with the CBFO approval. Written requests to substitute or supplement PDP test samples with other source materials must include sufficient technical justification and will be considered at the discretion of the CBFO on a case-by-case basis.

The CBFO is also responsible for the specification and procurement of PDP matrix modules, boxes, and associated components for use in the NDA Box PDP. A PDP matrix box is a modified SWB containing a set of 60 matrix modules that are installed into the box in a specified manner. The installed array of matrix modules contains 24 vertical pass-through holes to allow insertion of PDP standards at known coordinates. Details regarding the design and intended use of the NDA PDP matrix boxes can be found in the specification document associated with each matrix type (INEEL/EXT-02-01271, INEEL/EXT-02-01272, INEEL/EXT-02-01273, INEEL/EXT-02-01274, INEEL/EXT-03-00535). The procurement process for when a manufacturer of a matrix surrogate or manufacturer of a container is needed/required is also represented in Figure 2. For quality affecting items and services, the procurement process includes the development of a statement of work to communicate the requirements with the manufacturer. The procurement process is described and controlled in the procurement implementing procedure.

The NDA PDP is routinely assessed for utility and effectiveness by the CBFO through several interrelated activities. These activities include:

- the CBFO review of the test results for each NDA PDP cycle;
- approval of this plan;
- consideration of the reports and observations of the Program Coordinator, PDP Manager, and NDA PDP Coordinator;
- feedback from program participants; and
- comments from other parties such as independent QA assessors.

Records of comments, decisions, or proposed actions resulting from the CBFO assessment may take any documented form, including routine program correspondence, meeting minutes, action items, formal review of program documents, assessment reports, and corrective actions.

Figure 2. Organization and Communication Flowchart for the NDA PDP
2.1.1 CBFO PDP Appointee

The CBFO PDP Appointee is a CBFO ONTPWC&D Federal employee responsible for the oversight designated with review and approval authority for the PDP. The CBFO PDP Appointee is responsible for ensuring the implementation of each of the PDP plans providing technical oversight and coordination for the program and concurring with the designation of the Program Coordinator.

2.2 PDP Program Coordinator

CTAC is a CBFO-designated organization that functions as the PDP Program Coordinator and technical advisor to the CBFO. The Program Coordinator designates the PDP Manager.

2.2.1 PDP Manager

The PDP Manager is responsible for overall management of the PDP and ensures that all PDP responsibilities identified in the PDP Plans and those implemented through the *Performance Demonstration Program Management Plan* (DOE/CBFO-01-3107) and the applicable CBFO and CTAC procedures are met. The PDP Manager assigns the NDA PDP Coordinator to administer and coordinate the NDA PDP functions such as PDP sample component preparation, subcontractor oversight, scheduling, scoring, preparation of PDP cycle scoring reports for CBFO approval, and generating draft approval status notification memoranda for CBFO signature.

2.2.2 NDA PDP Coordinator

The NDA PDP Coordinator must comply with the responsibilities stipulated in this plan and in accordance with the *Performance Demonstration Program Management Plan* (DOE/CBFO-01-3107). The NDA PDP Coordinator is responsible for the following activities:

- Distributing and tracking PDP standards and matrix SWBs and components as appropriate to implement the program and to safeguard and secure the PDP materials.
- Maintaining documentation and reconciled inventories on all NDA PDP standards, matrix SWBs, and associated components.
- Confirming with the CBFO and the prospective participants the schedule of a primary NDA PDP cycle approximately 2 weeks before the planned start date.
- Ensuring training for the on-site SPT members is in accordance with the NDA PDP Plan.
- Distributing NDA PDP sample preparation instructions and associated materials to each participating CFAC.
- Conducting a tailgate briefing meeting with the PDP standards custodian and PDP standards configuration attestant, at a minimum, to review the instructions, and materials, resolve any questions, and identify all necessary materials to assemble the sample as outlined.
- Collecting and scoring NDA PDP sample data reports from the generator site measurement organizations.

- Drafting the CBFO approval status notification memo for CBFO authorization of WIPP waste characterization by NDA measurement systems. Approval is based on their measurement organization's performance in an NDA PDP cycle.

- Drafting the CBFO approval memo for CBFO authorization of use of (or revisions to) NDA measurement procedures prepared by the participating measurement organizations (when the new procedure or revision potentially impacts the PDP approval at the generator sites).

- Preparing cycle-specific scoring reports that provide NDA measurement system-specific and NDA sample-specific scoring results for generator site measurement organizations participating in a cycle.

- Ensuring that records of participation and results of all NDA PDP cycles are adequately maintained in a retrievable condition and meet appropriate QA requirements.

- Reviewing changes in the QAPD and WAC that may potentially affect this plan, and providing recommendations for revising the plan as appropriate, with the CBFO direction and approval.

- Assisting in the resolution of disputes related to NDA PDP measurement results, test sample configuration, operational restrictions, and any other issues that may arise during an NDA PDP test cycle.

- Developing technical recommendations to the CBFO regarding conditional NDA characterization approvals, when warranted, based upon a system’s NDA PDP performance.

- Maintaining a current register of participating generator sites measurement organizations and their NDA measurement system registrations. The registration documentation identifies the associated operating procedure(s) and contains information on each assay system including a unique identity, measurement principles and modes, the NDA PDP test combinations permitted under facility-specific or measurement organization/system-specific calibration, and administrative limits.

- Ensuring the NDA PDP test material inventory at each generator site is sufficient to support cycle implementation.

- Initiating and orchestrating, through the Program Coordinator, the procurement of NDA PDP components to meet programmatic requirements and to replace lost or damaged parts as necessary.

- Ensuring the responsible parties from each participating generator site and other NDA PDP stakeholders are notified in writing when revisions to this plan are available on the National TRU Program Documents area of the WIPP website http://www.wipp.energy.gov/Documents_NTP.htm.
2.3 Custodial Facility

The custodial facility is the physical and organizational entity responsible for NDA PDP activities at the participating DOE generator site associated with the conduct of the NDA PDP cycles and the storage, care, and proper handling of NDA PDP materials before, during, and after cycle activities. It is essential that close contact be maintained between appropriate custodial facility personnel and the NDA PDP Coordinator. The NDA PDP Participating Facility Contacts Form, found in Appendix A, must be provided to the NDA PDP Coordinator by an appropriate custodial facility manager. The form must be updated and forwarded to the NDA PDP Coordinator when contact information changes.

Each custodial facility is required to provide the NDA PDP Coordinator, in writing or by e-mail, with the name, telephone number, and address of a CFAC responsible for on-site administration and conduct of the NDA PDP (e.g., execution of cycle-specific schedules and instructions). The CFAC must be a full-time employee or subcontractor stationed at the facility where the NDA measurement system(s) to be assessed is/are located. The CFAC may be part of the SPT if he/she meets the qualifications described below. The CFAC must complete NDA Box PDP training as indicated in section 7.0, Training.

The custodial facility is also required to provide the NDA PDP Coordinator with contact information (e.g., name, telephone number, and address) for a PDP sample components custodian. The address provided must be suitable for freight and package delivery of the NDA PDP components and replacement parts. This information shall be supplied in writing or by e-mail every time the contact information changes. The PDP sample components custodian may be part of the SPT if the individual meets the qualifications below, or may remain separate, with responsibility for the proper care and storage of non-radioactive NDA PDP components.

A two-person SPT consisting of a PDP standards custodian and a PDP standards configuration attestant shall be assigned by each custodial facility organization. The SPT members must, at a minimum, meet the following requirements:

1. Full-time employees or subcontractors of the facility where NDA PDP materials are stored and maintained.
2. Independent of the measurement organization. That is, the individual does not participate in assay measurements, reduction or analysis of the assay data, data validation activities, or data reporting. In addition, the individual must not report through the same management chain or work organization structure.
3. Trained to applicable site QA requirements in accordance with the training provided in section 7.0 of this plan.
4. Qualified to handle radioactive materials (PDP standards custodian only).
2.3.1 Custodial Facility Assay Coordinator (CFAC)

The CFAC is responsible for the following NDA PDP cycle activities throughout the year:

- Ensuring timely completion of necessary and requested communication, verbal and written, with the NDA PDP Coordinator regarding all aspects of the conduct of a given NDA PDP cycle.
- Overseeing and managing schedules and PDP sample transfers between the various measurement systems at the site.
- Receiving and distributing cycle materials and documents to the SPT in a timely manner.

NOTE: The proper approval of NDA measurement systems cannot be completed without the SPT documents (i.e., properly signed Sample Configuration Forms and Sample Custody Forms) being in the possession of the NDA PDP Coordinator. The completed Sample Custody Forms and Sample Configuration Forms are QA records.

- Ensuring properly executed SPT documentation, including completed configuration and chain of custody forms, is submitted to the NDA PDP Coordinator within 2 weeks of the return of the final cycle sample to the SPT.
- Providing notice and contact information for changes in personnel as soon as possible when changes have occurred.
- Coordinating the training needs of the SPT with the NDA PDP Coordinator.
- Ensuring that the NDA PDP Coordinator is provided, in writing or by email, the documented inventory, condition, and location of all PDP materials (standards, configuration box, storage box, matrix modules, and parts) annually and as requested.
- Disseminating information from revisions to this plan to all affected members of the SPT and affected managers of those members.

NOTE: The NDA PDP Coordinator will notify the CFAC when revisions to this plan have been posted to the National TRU Program Documents area of the WIPP website.

- Forwarding all relevant communications originating from the SPT to the NDA PDP Coordinator.

2.3.2 Sample Components Custodian

The designated PDP sample components custodian has the following NDA PDP responsibilities:

NOTE: PDP SWBs are only to be used for NDA PDP purposes unless written permission has been granted by the CBFO for other purposes. Questions concerning permissible use shall be directed to the CBFO PDP Appointee or the NDA PDP Coordinator.
• Ensuring all NDA PDP components are properly stored and controlled to prevent unauthorized use, loss, or damage. Proper storage is defined as indoor protection from exposure to water, and protection from physical damage (e.g., stacking on top of other SWBs, unnecessary exposure to forklifts). The components must be maintained in the same condition as when they were provided to the participant. The SWBs and components must be kept within the DOE free release limits for radioactive contamination.

NOTE: The NDA PDP Coordinator will request the inventory from the PDP sample components custodian annually. Digital images of the NDA PDP sample components can be submitted in addition to condition descriptions.

• Conducting an inspection and accounting that identifies, in writing or by e-mail, the quantity, location, and description of the condition of all PDP materials in their inventory (standards, SWBs, and parts) annually and as requested.

• Notifying the NDA PDP Coordinator of the need for replacement or repair of any NDA PDP components. If minor repairs to SWBs and related materials are needed, the facility may make those repairs with NDA PDP Coordinator approval. This notification must be in writing, and approved in writing prior to work being performed. Written notification and approval is preferably by e-mail.

• Returning the SWB or components in accordance with instructions provided by the NDA PDP Coordinator when requested. Replacement parts will be provided by the NDA PDP Coordinator.

• Ensuring proper loading, securing, and packaging of the PDP SWBs and components prior to shipping (see Appendix B for information on shipping and receiving of NDA PDP components).

2.3.3 Sample Preparation Team (SPT)

The SPT is a two-person team consisting of a PDP Standards Custodian and a PDP Standards Configuration Attestant with the following NDA PDP responsibilities:

• Upon initiation of sample preparation for an NDA PDP cycle, participate in a tailgate briefing meeting (or teleconference) with the NDA PDP Coordinator or PDP Manager to review instructions, resolve any questions, and identify all required PDP sample components (e.g., insert fixtures, locating pins, PDP standards, matrix modules, and matrix spacers) listed on the PDP SWB Matrix Configuration Form and the PDP Standard Configuration Form for SWB (found in Appendix A) prepared by the NDA PDP Coordinator. The purpose of the pre-load examination is to determine if any components are missing or damaged.

• Notifying the NDA PDP Coordinator of any PDP component loss or damage. If the component is a consumable item (such as a tamper indicating device [TID], form, or matrix spacer), determining if a spare component is available from the site inventory. If so, replacing the missing or damaged component with the spare, documenting the replacement as appropriate, and notifying the NDA PDP Coordinator of the replacement.
If no spare is available, contacting the NDA PDP Coordinator for a replacement. Notification must be made in writing, preferably by e-mail. The notification may be made directly to the NDA PDP Coordinator or through direct communication to the CFAC, who will then communicate the notification to the NDA PDP Coordinator.

- Selecting the proper reinforced bottom, configuration SWB for installation of NDA PDP matrix modules, standards, and matrix spacers. The PDP Standards Configuration Attestant shall verify that the proper SWB is selected for PDP matrix module and radioactive standard loading.

- Identifying each matrix module that will be used to assemble the SWB matrix array, including void modules, per the sample PDP SWB Matrix Configuration Form (found in Appendix A). The PDP Standards Configuration Attestant independently verifies that the proper SWB matrix modules and insert fixture matrix spacers were selected for PDP standard loading and documents the correct positioning of each module by initialing each position and signing the configuration form. The empty SWB sample is produced by installing NDA PDP standards into a configuration box using the source insert fixtures and internal support structure, with no matrix modules.

- Identifying the correct NDA PDP standards using the applicable PDP Standard Configuration Form for SWB. The form provides the SPT with details for placement/positioning of the PDP standard within the sample.

- Coordinating the placement of the PDP configuration SWB, matrix modules, matrix spacers, NDA PDP standards, and related equipment (such as TIDs) into a designated sample preparation area.

- Assembling the matrix module array of the SWB sample following the instructions of the PDP SWB Matrix Configuration Form.

- Emplacing the PDP standards (Source Custodian) and then independently verifying (Attestant) that the source positioning is correct by initialing the PDP Standard Configuration Form for an SWB. If a PDP sample component is damaged, missing, or misplaced, this information must be reported to the assay coordinator, who will notify the NDA PDP Coordinator.

- Completing the installation of the Cycle components and securing the lid to the SWB.

- Placing a copy of the configuration form inside the imprinted manila envelope and sealing it with a tamper-indicating security seal, inserting the manila envelope into the provided transparent plastic envelope; affixing the plastic envelope to the PDP SWB with one of the provided TIDs; and recording the TID number on the NDA Box PDP Sample Custody Form (found in Appendix A).

- Completing the NDA Box PDP Excess Standards Form (found in Appendix A) (Source Custodian) and verifying (Attestant) the sources that remain are in storage and are not used as part of the PDP SWB sample.

- Sealing the Excess Standards Form inside the imprinted manila envelope enhanced with a tamper-indicating security seal; inserting the manila envelope into the provided transparent plastic envelope; securing the plastic envelope at the storage location with...
one of the provided TIDs; and recording the TID number on the Excess Standards Form. The envelope can be affixed to the outside of the storage location, or inside with the sources depending on facility protocol. A site-specific security system may be used in place of the supplied TID as long as the prevention of unauthorized access to the unused standards or storage-related documentation can be ensured and documented. The site-specific security system must be approved by the CBFO.

- Affixing (Source Custodian) and then independently verifying (Attestant) the appropriate serialized TIDs on the SWB configuration box lids, thereby sealing and securing the test sample for the measurement process.

- **Maintaining the integrity of each prepared NDA PDP sample from the time it is sealed until disassembly.** Other than the SPT, no observers are permitted during the PDP sample preparation process without the prior permission of the NDA PDP Coordinator. The SPT and any observers shall not divulge any information regarding the loading and configuration of the PDP matrix SWB test samples until the measurement results are released by the CBFO, or as indicated by the NDA PDP Coordinator.

- Preparing an NDA Box PDP Sample Custody Form (found in Appendix A) for transfer of the sample to the facility measurement organization.

- Returning in a free release condition any unused Box PDP materials to storage and securing the NDA PDP standards storage area with a TID. A site-specific security system may be used in place of the supplied TID as long as the prevention of unauthorized access to the unused standards or storage-related documentation can be ensured and documented. The site-specific security system must be approved by the CBFO.

- Maintaining all records of PDP sample preparation in strict confidence until the CBFO distributes a final report, or as notified by the NDA PDP Coordinator.

- Retrieving the appropriate NDA Box PDP Sample Custody Form for each PDP sample to be disassembled from the measurement facility at the time the PDP samples are returned for disassembly.

- Checking the condition of all TIDs when the sample is returned from the measurement organization. The SPT members are responsible to ensure TIDs used to seal the SWB lids and attach the copy of the PDP Standard Configuration Form for SWB are secure, undamaged, and do not indicate unauthorized access.

- Disassembling the PDP samples as soon as possible after the return of the samples from the measurement organization, or as instructed by the NDA PDP Coordinator.

- Documenting the sample integrity and correct positioning of matrix modules and PDP standards utilizing the NDA Box PDP Sample Disassembly Form (found in Appendix A) during disassembly of the sample.

- Submitting completed SPT documents to the CFAC. The CFAC should receive the documents and materials returned within 2 weeks of the SPT’s receipt of the last NDA PDP sample from the measurement organization. Submission of these documents is a QA records requirement essential to the successful completion of the cycle.
• Ensuring that under no circumstances are any modifications performed on the NDA PDP standards or associated equipment.

2.4 Measurement Organization

The measurement organization must interface with the NDA PDP Coordinator for all measurement and reporting activities of an NDA PDP cycle in which that organization is involved.

The measurement organization has the following NDA PDP responsibilities:

• Completing initial, or updating any existing PDP registration forms for each NDA measurement system to be tested in an upcoming NDA PDP cycle and sending the form(s) to the NDA PDP Coordinator. The form will include the system name, calibration range, operational limits, and other administrative information affecting NDA PDP testing. Appendix C contains the System Registration Form and instructions for registering a system for the NDA PDP.

• Responding in writing or by e-mail to requests from the NDA PDP Coordinator regarding measurement systems that will be participating in upcoming NDA PDP cycles.

• Accepting PDP samples, ensuring that the sample is in a PDP SWB configuration box, ensuring adherence to chain-of-custody protocols, and confirming the accuracy of each Sample Custody Form during transfer of the PDP samples from the SPT of the custodial facility.

• Inspecting the condition of the sample seals by checking the TIDs and ensuring they are intact. If a problem exists with the integrity of a TID, the measurement organization shall not accept the sample from the SPT member.

• Reviewing, signing, and dating each Sample Custody Form provided to confirm that the TIDs are intact and the Sample Custody Forms are properly completed. This custodial signature means that the measurement organization accepts the PDP sample for analysis.

• Documenting on the PDP Sample Custody Form accompanying the PDP sample all subsequent transfers of the PDP sample within the measurement group and the return of the sample to the SPT.

• Ensuring that the final signature on the Sample Custody Form is made by the SPT when the PDP sample is accepted by the SPT from the measurement organization for disassembly at the conclusion of assay system measurements.

NOTE: A qualified measurement is one that would be determined by the NDA operator to meet the specifications of the approved procedure and would thereby be accepted for review by the expert analyst (EA) as if the measurement were a single measurement obtained on a WIPP-bound waste sample. It is not permissible to select six (6) qualified measurements from a larger set of qualified measurements and submit them as the NDA PDP cycle measurement replicate set. If, during review of results by the EA or other data reviewing personnel, a measurement or other data problem is determined, one of the following must occur: 1) follow a general procedure
(not one specified for NDA PDP samples only) that would also be followed for actual waste sample data to address the identified problem, or 2) the measurement organization notifies the NDA PDP Coordinator in writing about the problem for further determination of how to proceed.

Use of a secondary or additional measurement mode for obtaining isotopic or other necessary data as prescribed by approved procedure is a part of the overall measurement. Thus, any measurement of this type must follow the same requirements noted above.

- Ensuring that the generator sites measurement organization performs **six (6) qualified measurements** of each PDP sample using the assay procedures that are implemented for routine waste assays, and approved for use in the WIPP waste characterization program. These procedures must have been reviewed and approved by the CBFO.

- Ensuring the PDP sample is completely removed and replaced between each sequential measurement.

- Completing and reporting analyses as soon as possible, except in cases where one or more of the six (6) measurements is judged by the NDA analyst to be non-compliant as a WIPP waste qualified measurement.

- Ensuring PDP equipment is returned in a clean condition that meets DOE free-release standards. In the event PDP equipment is contaminated, the NDA PDP Coordinator must be notified in writing immediately. The expectation is that facility decontamination procedures will be followed allowing the PDP components to be returned to free-release condition. In such case that affected PDP components are not returned to free-release condition, the facility or responsible organizations are obligated to provide for the cost of replacement PDP components.

NOTE: If a measurement is determined to be inadequate, contact the NDA PDP Coordinator. It is not acceptable to evaluate for measurement failure by reviewing NDA PDP data and determining the existence of precision problems. If instrument failure or operator error can be identified in accordance with approved procedures, the NDA PDP Coordinator is to be notified and a written summary of the causal factors and corrective actions must be submitted. Based on circumstances, the NDA PDP Coordinator may give permission to repeat one or more of the six-replicate measurements in the set prior to submitting data on the Nondestructive Assay Performance Demonstration Program Report Form (found in Appendix A).

- Identifying instrument failure or operator error in accordance with the same procedure used when analyzing WIPP samples.

- Ensuring that a signed measurement report for each replicate analysis of each PDP sample is forwarded directly to the NDA PDP Coordinator. The Nondestructive Assay Performance Demonstration Program Report Form (found in Appendix A) shall be used to report the data to the NDA PDP Coordinator. Continuation sheets may be used if facility measurement organization comments exceed the allotted space. Completed forms shall be signed by a facility measurement organization staff member, generally the EA. Reports should contain any other sample measurement information deemed relevant by
the facility measurement organization. Corrections to data, or data inadvertently omitted from the report form, will be accepted, with adequate justification, if the NDA PDP Coordinator is notified before the CBFO approval status notification memorandum (see section 4.2) is issued.

- Ensuring that all analytical reports are received by the NDA PDP Coordinator within 28 calendar days after the cycle start date or a request for extension has been submitted prior to the due date. The start date is provided in the cycle initiation letter sent to the CFAC by the NDA PDP Coordinator. The NDA PDP Coordinator will send a courtesy copy of the cycle initiation letter to the measurement organization at the same time the letter is sent to the CFAC.

- Completing and reporting analyses as soon as possible following all reviews called for in routine operating procedures. Should these reviews indicate the need for data manipulation commonly allowed by the routine operating procedure that could result in a delay in reporting the results of the analyses, the measurement organization should notify the NDA PDP Coordinator of the cause and duration of any delay. The notification must be followed by a written request for extension of the due date with a proposed, new due date. If granted by the CBFO, the extension approval will designate a new due date.

- Ensuring that each NDA PDP report form contains, at a minimum, the following information for each determination:
 - the reporting generator sites measurement organization
 - system ID designated during the NDA PDP registration process
 - PDP cycle for which the data are being reported
 - SWB serial number
 - NDA PDP Sample ID from the NDA Box PDP Sample Custody Form
 - measurement system and method (including software/hardware configuration version) used for each isotope (NDA measurement systems using constant isotope ratios are to be indicated on the report form)
 - NDA PDP sample measurement replicate number corresponding to the analytical data
 - activity in curies for each isotope identified and quantified from the list in section 5.2
 - total uncertainty for each identified isotope at one standard deviation
 - total ^{239}Pu fissile gram equivalent (FGE) (g) and associated total uncertainty at one standard deviation
 - total TRU alpha activity and associated total uncertainty (curies) at one standard deviation
 - thermal power and associated uncertainty at one standard deviation (W)
 - elapsed counting time
 - date and time of sample analysis
 - the reason for no value when not reported (e.g., < minimum detectable concentration [MDC])
• Maintaining in a traceable and auditable condition all records generated by the measurement organization during the conduct of an NDA PDP cycle. All such records are QA records that must be maintained in storage conditions and for durations as required by the QAPD and other implementing QA documents and procedures.

3.0 EVALUATION OF PERFORMANCE DATA

The data reported for six replicates of each PDP sample are evaluated by the NDA PDP Coordinator against the scoring criteria described for precision and bias in the following subsections.

3.1 General Criteria

In the NDA PDP, measurement system performance is evaluated using the measurement data precision and bias. Precision is defined as the percent relative standard deviation (%RSD); the standard deviation of the six sequential replicate measurements divided by the known value times 100%. Bias is the systematic error component of the total measurement uncertainty determined as the ratio of the mean of the measurement replicate set to the known value times 100%, or the percent recovery (%R).

The precision acceptance criteria vary as a function of the activity range of the sample. The bias acceptance range does not vary as a function of sample alpha (α) activity. Categorized α activity ranges that apply to the NDA PDP data acceptance criteria are listed in Table 1. See Appendix D for an explanation of the origins and statistical basis for the precision and bias acceptance criteria.

Table 1. NDA PDP Activity Ranges and Associated Scoring Acceptance Criteria

<table>
<thead>
<tr>
<th>Activity range</th>
<th>Range of sample activity in α-curies(^a)</th>
<th>Maximum Measured Precision(^b) (%RSD)</th>
<th>Lower (%R(_L))</th>
<th>Upper (%R(_U))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>> 0 to 0.02</td>
<td>16</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>Mid-Low</td>
<td>> 0.02 to 0.2</td>
<td>12</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>Mid-High</td>
<td>> 0.2 to 2.0</td>
<td>12</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>High</td>
<td>> 2.0</td>
<td>6</td>
<td>40</td>
<td>160</td>
</tr>
</tbody>
</table>

\(^a\) Applicable range of TRU activity contained in a PDP sample; units are curies of alpha-emitting TRU isotopes with half-lives greater than 20 years.

\(^b\) Measured precision that must be met to satisfy the precision criteria at the 95% upper confidence bound, based on six replicates. The values are one relative standard deviation referenced to the known value for the test.

\(^c\) %R\(_L\) and %R\(_U\) values used in Equation 3 to determine the 95% confidence bound for the ratio of the mean of the measured values to the known value, expressed as a percent.
3.2 Scoring the Test Data Precision

Purpose: To demonstrate compliance with the NDA PDP data acceptance criteria for precision, NDA measurement results from six replicate analyses of an NDA PDP sample of known total TRU α-activity are used to determine measurement system precision.

Criteria: The results reported for total TRU α-activity from the six replicate measurements of an NDA PDP sample shall not exceed the allowable %RSD of Table 1.

Method: The analytical results from the six replicate measurements of an NDA PDP sample are used to calculate the %RSD:

\[
\%\text{RSD} = 100\% \times \frac{1}{\mu_0} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

(Equation 1)

where:

- \(x_i = \) replicate sample value
- \(n = \) number of replicate measurements
- \(\mu_0 = \) actual known PDP sample value
- \(\bar{x} = \) replicate sample mean, defined by

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

(Equation 2)

The measured %RSD is compared with the applicable limits listed in Table 1. If the %RSD value determined from the measurement data is less than or equal to the total TRU α-activity range-specific value in Table 1, the measurement system passes the precision test for that sample.

Actions: Any sample for which results exceed the appropriate acceptance criterion for precision will be scored as failed. The impact of failing an acceptance criterion is given in section 4.1. In accordance with section 4.1, the measurement organization is responsible for ensuring that appropriate corrective actions are taken.

3.3 Scoring the Test Data Bias

Purpose: NDA results for replicate analyses for NDA PDP samples of known TRU α-activity are used to determine the bias associated with measurement system determinations of total TRU α-activity. In the NDA PDP, the total bias determined using the six replicate measurement results includes components attributable to both variance and bias, including effects due to sample matrix configuration and nuclear material characteristics.

Criteria: The results reported for total TRU α-activity must make true Equation 3.
Method: Measurement system bias shall be evaluated by calculating the sample mean of the six sequential replicate measurements of the NDA PDP sample.

For evaluation of sample-specific measurement system bias limits, the Student's *t*-distribution *t* 0.975 percentile value is used in conjunction with the sample mean (\(\bar{x} \) as defined in Equation 2), the percent relative standard deviation (%RSD of the sample replicates as defined in Equation 1), and the appropriate lower and upper bounds (%RL and %RU) in columns 4 and 5 of Table 1. The equation that establishes the bias acceptance criteria is expressed as:

\[
(%R_L + 1.049 \times %\text{RSD}) < \left(100\% \times \frac{\bar{x}}{\mu_0} \right) < (%R_U - 1.049 \times %\text{RSD})
\]

(Equation 3)

where:

- %RL = low percent recovery limit, specified in Table 1
- %RU = upper percent recovery limit, specified in Table 1
- \(\bar{x} \) = replicate set average (sample mean), defined in Equation 2
- \(\mu_0 \) = actual known PDP sample value

The measurement will pass the bias acceptance criterion if Equation 3 is satisfied and will fail if Equation 3 is not satisfied.

Actions: If any measurement system produces results that do not satisfy the appropriate acceptance criterion for bias, then that NDA system will be scored as failed for that sample. The impact of failing an acceptance criterion is given in section 4.1. In accordance with section 4.1, the measurement organization is responsible for ensuring that appropriate corrective actions are taken, if deemed necessary, initially by the measurement organization or subsequently by the CBFO.

4.0 WIPP QUALIFICATION BASED ON NDA PDP TEST PERFORMANCE

4.1 General Considerations

The primary purpose of the NDA PDP is to independently evaluate a generator site measurement organization’s capability to produce data that meet the quality requirements for the WIPP. The assay of single-blind PDP samples by generator site measurement organizations allows for the evaluation of the NDA measurement system and can reveal any technical or QA-related deficiencies that may negatively impact the characterization of WIPP wastes. Through NDA PDP evaluations, information is gathered on system performance; NDA measurement organization management of quality processes; NDA procedural adequacy; effectiveness and implementation; corrective action effectiveness; and overall data quality assurance. Finally, the NDA PDP functions to provide technical justification to the CBFO for approving (conditionally or without condition) or disapproving NDA measurement systems, procedures, and organizations for making qualified WIPP waste NDA measurements.

The procedures and measurement system parameters used to analyze NDA PDP samples are to be the same as those used in the analysis of WIPP wastes. Due to the fact that NDA PDP
samples are analyzed six separate times (unlike WIPP waste samples), the procedure for conducting these replicates will be unique to the NDA PDP. Because count time determinations for NDA PDP samples are directly related to the precision of the results and are scored against NDA PDP criteria, the NDA PDP sample count times must have a direct, procedural correlation with count time determinations for WIPP waste samples. Acceptable Knowledge (AK) does exist with respect to NDA PDP samples (e.g., matrix type, nominal density, and fill height). Thus, when the PDP sample AK corresponds to actual waste AK, in which count time protocol is specified or formulated, the count time protocol must also be applied to the NDA PDP samples. Any deviations from such protocol must either have a real waste sample procedural justification or specific and documented approval from the CBFO.

4.2 Pass or Fail Approval Status

The CBFO determines the approval status of a measurement organization’s NDA measurement capability for any individual measurement system based on passing or failing NDA PDP scoring criteria. A passing or failing score for a given criterion of the NDA PDP is related to the characteristics of the PDP sample analyzed and is therefore subject to evaluation based upon all of the following specifics of the test: 1) the NDA system; 2) the sample matrix; 3) the activity type; 4) the activity range; and 5) the particular scored parameter (bias or precision). Thus, a pass or fail in the NDA PDP has specific, though potentially broad technical and programmatic ramifications.

Obtaining a passing score on all criteria for all samples presented to an NDA measurement system within an NDA PDP cycle provides the CBFO with the evidence and justification for not imposing any restrictions upon WIPP measurements made by that NDA measurement system during the approval period. Any restrictions that have not been addressed by the measurement organization through the CBFO-approved corrective action, recalibration, etc., continue as restrictions upon the system through the subject cycle approval period. Approval is based upon the use of the measurement organization’s CBFO-approved procedures for samples that exhibit characteristics within the approved system’s various parameter calibration ranges.

A failure of an NDA measurement system to meet one or more of the scoring criteria may require investigation of the cause of that failure. It is the responsibility of the affected measurement organization, with assistance and oversight by the NDA PDP Coordinator to establish the most likely causes for its failure. Causal analysis must be conducted in accordance with procedure and entered into relevant issues management database to track through closure. Once the cause is reviewed and concurred upon by the CBFO, it must be evaluated for potential effect upon WIPP waste analyses. It is incumbent upon the participating measurement organization to demonstrate through technical justification, the impact that an NDA PDP criterion failure has on WIPP waste measurements. The CBFO is the final authority on establishing this impact determination.

If the measurement organization can demonstrate that the cause of an NDA PDP criteria failure has no impact on routine WIPP waste analyses, no restrictions will be placed upon the system. Based on the cause of failure, the CBFO may determine that multiple measurement systems within the organization should be restricted. Restrictions may include disapproval of all measurements made by the system(s) or may involve conditional approval restricting the
system(s) from performing measurements for WIPP based on certain waste parameters such as waste types, activity types, activity levels, waste densities, measurement modes within an NDA system, or any other reasonable restriction that is determined. The root cause process will be used to determine restrictions that are technically justified for prevention of unacceptable data quality for meeting the WIPP waste acceptance criteria.

4.3 Approval, Disapproval, or Conditional Approval

As specified in section 4.2, the CBFO will provide a written approval status notification memorandum documenting approval, disapproval, or conditional approval. The approval status notification memorandum will provide the basis for any restrictions. For conditional approvals, the approval status notification memorandum will specify the restrictions that are imposed by the CBFO.

If a system has been conditionally approved or not approved, the measurement organization may choose to take one of the following courses of action:

NOTE: Accepting disapproval will require the measurement organization to halt the use of the system for performing qualified NDA measurements on WIPP waste until the system can be approved or conditionally approved. Likewise, accepting conditional approval limits the system to making qualified WIPP measurements only on samples meeting the specified conditions of the approval.

- Accept the conditional approval or disapproval with no further action;
- Challenge the conditional approval or disapproval with additional data and other technical justifications for a change in the CBFO approval status;
- Initiate a corrective action to eliminate the causes for the condition adverse to quality that resulted in the NDA PDP failure and, if necessary, request a supplemental cycle.

If the measurement organization chooses to initiate corrective actions, it must:

1. Identify the basis of the failure that addresses all contributing components, technical and/or administrative, and submit them in a corrective action plan (CAP).
2. Obtain CBFO approval of the CAP.
3. Implement the CBFO-approved CAP and provide evidence that the plan effectively addresses the deficiency and the actions are completed in a corrective action report (CAR).
4. Obtain final CBFO approval, conditional or otherwise, to process WIPP wastes after completion of the CAR.

The CBFO or the measurement organization may require, through the CAP, analysis or additional measurements of NDA PDP test samples as part of the verification that the corrective actions are effective.
If the CBFO determines that the measurement organization is not responsive or is not adequately addressing a condition adverse to quality that has been determined through its participation in the NDA PDP, the CBFO may formally request a corrective action.

4.4 Approval Status

Once the CBFO has determined a measurement organization’s NDA measurement systems and procedure(s) status as “approved,” “conditionally approved,” or “not approved,” such status shall remain in effect until the CBFO is presented justification to change that status. All NDA measurement systems must participate in the PDP cycle annually in order to remain qualified to perform WIPP analyses. NDA measurement systems obtaining approval status through a supplemental cycle must participate in the next regular primary cycle for reevaluation of their approval status. This participation could change the approval status of a system and will reset the 13-month approval period as stated below.

The approval period for an NDA measurement system begins with the date that the NDA PDP Coordinator receives the signed data reports from an NDA PDP cycle. At the end of the 13th month, a system that has not yet successfully completed the analyses of NDA PDP samples to requalify may choose to proceed at risk with WIPP analyses, or to cease operations. **Data generated at risk cannot be used for certifying waste for shipment to WIPP until:**

1. The system and procedures used to collect and process the data satisfy the CBFO through successful NDA PDP sample measurement performance, and
2. The data obtained during the “at risk” period have been reconciled through the disposition of a nonconformance report.

CBFO approval status notification memoranda are sent to the corresponding DOE Operations Office involved, the participant measurement organization, the U.S. Environmental Protection Agency, and other relevant stakeholders as deemed appropriate by the CBFO.

4.5 Scoring Report

The NDA PDP Coordinator shall review, evaluate, and score the reported data results for all generator sites measurement organizations and participating NDA measurement systems and compile the results into a scoring report. The cycle-specific scoring report is normally scheduled for delivery to the CBFO within approximately 4 weeks after the final data are received from all participants in the cycle, including receipt of revised data as a result of corrective actions. The report shall include the values reported by the measurement organization, the reference activity values, the acceptance ranges, the pass-fail status of each individual NDA measurement system, and the CBFO approval status of each participating NDA system.

Copies of the scoring report are distributed to each of the DOE Operations Offices involved in the NDA PDP cycle being reported, each of the participating measurement organizations, and other individuals and organizations deemed appropriate by the CBFO. Distribution will be in an electronic format.
5.0 **NDA PDP MATERIAL COMPONENTS**

5.1 General

Without written CBFO permission, NDA PDP matrix modules, SWBs, or National TRU Program (NTP) standards are not to be used for any activity other than the performance of the NDA PDP. Written requests for any other uses must be submitted to the CBFO, specifying each use requested or requesting an ongoing protocol for usage after approval by the CBFO. If the request is for ongoing usage, a system for accountability of nuclear material must be submitted for the CBFO approval. The CBFO will provide written approval or disapproval of the request.

Under no circumstances are the NDA PDP standards to be used for measurement system calibration. Under no circumstances are any modifications to be performed on the NDA PDP standards (see section 2.2 for custodial facility responsibilities regarding the non-radioactive NDA Box PDP components).

The custodial facility is responsible for assigning a secure storage area for all NDA PDP components and meeting applicable safeguards, security, and safety requirements (see section 2.2 for custodial facility responsibilities regarding the non-radioactive NDA Box PDP components). In addition, Appendices B and F contain details about the non-radioactive NDA Box PDP components and provide details regarding shipment, receipt, and use of NDA materials.

5.2 NTP Working Reference Material (WRM) Standards of the NDA PDP

The following primary isotopes are evaluated under the NDA PDP Plans. Of these, the first four are the most significant in terms of WIPP inventory parameters and limits, and are subject to scoring as specified in this plan.

- ^{238}Pu
- ^{239}Pu
- ^{240}Pu
- ^{241}Am
- ^{233}U
- ^{234}U
- ^{238}U

The uranium isotopes comprise a significant fraction of the DOE inventory and must be accounted for in the repository assessments, but are not subject to NDA PDP scoring. Only transuranic alpha emitting isotopes are considered when scoring NDA PDP data. NTP PDP standards containing plutonium (powder and granular forms), americium, and depleted and enriched uranium have been specified, fabricated, and distributed to select sites to support the NDA PDP.
Refer to Appendix E for the general specifications of the NTP working reference material (WRM) standards (also referred to as PDP standards) in the current NTP WRM inventory. Detailed information and data concerning the specification, design, fabrication, and traceability for each standard manufactured in each NTP WRM production phase is provided in its respective production plan document (LAUR-96-2277, LAUR-98-213, LA-CP-00-54, LA-CP-00-110, LA-CP-01-208, LA-CP-03-0072, LA-CP-03-0763). The production reports are considered proprietary information for the NDA PDP. As indicated in Table 2, seven different PDP standard production campaigns were completed. Each campaign produced NDA PDP standards with differing nuclear material content.

Table 2. NDA PDP Standard Inventory

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Production Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weapons-grade plutonium (low mass set)</td>
<td>Phase I</td>
</tr>
<tr>
<td>2. Weapons-grade plutonium (high mass set)</td>
<td>Phase II.A</td>
</tr>
<tr>
<td>3. Large particle size weapons-grade plutonium</td>
<td>Phase II.B</td>
</tr>
<tr>
<td>4. Enriched uranium</td>
<td>Phase II.C</td>
</tr>
<tr>
<td>5. Depleted uranium</td>
<td>Phase II.D</td>
</tr>
<tr>
<td>6. Increased Am/Pu ratio (relative to the native quantity in weapons-grade plutonium)</td>
<td>Phase III.A</td>
</tr>
<tr>
<td>7. Heat source plutonium</td>
<td>Phase III.B</td>
</tr>
</tbody>
</table>

6.0 PROCUREMENT

Procurement activities necessary for conducting the NDA PDP must comply with the QAPD. In accordance with the QAPD, the responsible purchasing organization maintains all procurement documents and performs all procurement activities.

7.0 TRAINING

Each organization at the generator site (SPT and measurement organizations) involved in the implementation of the NDA Box PDP shall meet the training requirements of the QAPD. Organizations shall retain on file evidence that: 1) personnel have the necessary program documents (controlled or uncontrolled, as applicable) for their use, and 2) personnel have read and understand program-governing documents pertinent to their duties in support of the NDA Box PDP. At a minimum, these documents include applicable portions of the QAPD, the WAC, and this plan.

Training for the NDA PDP SPT will be conducted for each of the participating facilities prior to their involvement. The training will be conducted using a CBFO-approved training plan. Successful completion of the training will result in issuance of a Certificate of Qualification by the NDA PDP Coordinator that indicates the NDA PDP qualifications of the trained individual. The essential training elements for the SPT are as follows:
• Overview of the NDA PDP
• NDA PDP Program Coordination
• NDA PDP Participating Site Responsibilities
• NDA PDP Test Sample Description and Assembly
• NDA PDP Sample Control
• NDA PDP Sample Preparation Responsibilities
• NDA PDP Sample Preparation
• NDA PDP Test Sample Custody
• NDA PDP Test Sample Analysis and Reporting
• NDA PDP Test Sample Return and Disassembly
• NDA PDP Records

Reading material is provided for the initial training through correspondence with the NDA PDP Coordinator. A test is integrated into the training module and must be passed with a proficiency of 90% or better before proceeding. The NDA PDP coordinator provides the custodial facility assay coordinator (CFAC) with the reading material for the initial training. The CFAC is responsible for ensuring that the training material has been reviewed and the test completed by the trainee. The test and record of required reading shall be returned to the NDA PDP coordinator for scoring and recording.

Upon successful completion of the initial training, the trainee will participate in hands-on cycle activity training at the respective site. This hands-on training is presented by the custodial facility PDP standards custodian or another individual who has successfully completed the training and has performed the function of an SPT member on a previous cycle. Otherwise, the NDA PDP coordinator shall conduct the hands-on training at the custodial facility. Once the hands-on training is successfully accomplished, the certificate is completed and signed by the NDA PDP Coordinator. Copies of the training certificate are distributed as QA records. Once the certificate is completed and signed by the NDA PDP Coordinator, the individual is qualified to conduct the NDA PDP activities indicated on the certificate. **Refresher training is required, at a minimum, for sample prep team members who have not participated in a PDP cycle in over two years.**

8.0 **QA RECORDS**

Records generated by the NDA PDP and participating sites during the conduct of a PDP cycle are QA records. All NDA PDP cycle documentation must be maintained in a traceable and auditable condition. Storage conditions and duration must meet the requirements of the QAPD and other implementing QA documents and procedures. The records generated during an NDA PDP cycle are submitted to CBFO for retention in the records repository after completion of the cycle. A working copy of files may be maintained for reference.

The minimum QA records for the NDA PDP are identified and listed below in accordance with the QAPD requirements. In addition, the CBFO and/or the NDA PDP Coordinator may
determine that records of other program activities are QA records and enter them into the QA records system with the same level of control and maintenance.

These QA records may be organized by NDA PDP Plan revision, by NDA PDP cycle, or by other principle, as applicable. These records are nonpermanent records and shall be maintained in accordance with the QAPD requirements. Records disposition, when applicable, will be in accordance with CBFO requirements, approved procedures, and work plans.

All QA records identified in this plan shall be stored in accordance with records storage requirements in the QAPD. Access to QA records will be limited to personnel involved in the program or having related QA or records custodian responsibilities.

The following documents will be maintained as QA records for the NDA PDP:

- PDP plans (all revisions)
- Procurement records
- Radioactive standard and matrix SWB design and production records (each SWB and PDP standard production phase)
- SPT training (training materials, test records, certificates)
- Assay System Registration Forms
- Records of cycle set-up (notification letters, shipping records, and other correspondence)
- Participant assay reports and supporting forms (assay data report forms, chain-of-custody records, and configuration forms)
- Scoring reports
- Reviews of corrective actions and supporting data and recommendations made to the CBFO

The following matrix of QA records provides a more detailed listing of records and designates responsibility for maintenance.
NDA PDP Documentation/Records List

<table>
<thead>
<tr>
<th>Document(s)</th>
<th>QA Record</th>
<th>Storage Location</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PDP Plan revisions</td>
<td>Yes</td>
<td>CBFO</td>
<td>For each revision.</td>
</tr>
<tr>
<td>2. PDP Plan revisions — comments and resolutions</td>
<td>Yes</td>
<td>CBFO</td>
<td>For each revision.</td>
</tr>
<tr>
<td>3. SPT training documentation</td>
<td>Yes</td>
<td>CBFO</td>
<td>Formally transmitted to the CBFO by NDA PDP Coordinator on completion of all cycle-specific activities.</td>
</tr>
<tr>
<td>– Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Qualification certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Approval from the CBFO for schedule and participants</td>
<td>Yes</td>
<td>CBFO</td>
<td>Letter or hard copy of e-mail(s).</td>
</tr>
<tr>
<td>5. Participant NDA PDP program documentation</td>
<td>Yes</td>
<td>Participant</td>
<td>These should be exactly the same as are maintained/generated in waste characterization activities; required by the WAC and PDP Plans.</td>
</tr>
<tr>
<td>– Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Raw data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Calibration records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Training records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Correspondence to participants providing instructions for execution of an NDA PDP cycle</td>
<td>Yes</td>
<td>CBFO</td>
<td>Copies to the CBFO and CTAC.</td>
</tr>
<tr>
<td>7. Sample configuration instructions accompanying notification</td>
<td>Yes</td>
<td>CBFO</td>
<td>Developed by the NDA PDP Coordinator. Confidential until completion of cycle.</td>
</tr>
<tr>
<td>8. Documentation of tailgate briefing meeting</td>
<td>Yes</td>
<td>CBFO</td>
<td>Developed by the NDA PDP Coordinator or PDP Manager.</td>
</tr>
<tr>
<td>9. Participant correspondence requesting time extension for submitting results</td>
<td>Yes</td>
<td>CBFO</td>
<td>As required by PDP Plans, printed copies of e-mails to the NDA PDP Coordinator.</td>
</tr>
<tr>
<td>10. Responses to extension requests</td>
<td>Yes</td>
<td>CBFO</td>
<td>Responses issued by the CBFO.</td>
</tr>
<tr>
<td>11. Participant data packages with cover letters (including any revisions and corrections to data)</td>
<td>Yes</td>
<td>CBFO</td>
<td>Formally transmitted to the CBFO by NDA PDP Coordinator on completion of all cycle-specific activities.</td>
</tr>
<tr>
<td>– Assay data report forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Chain-of-custody records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Configuration forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Disassembly forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Scoring report</td>
<td>Yes</td>
<td>CBFO</td>
<td>Formally transmitted to the CBFO for issuance. CTAC maintains a file copy.</td>
</tr>
<tr>
<td>13. Records of QA review of scoring report</td>
<td>Yes</td>
<td>CBFO</td>
<td>Formally transmitted to the CBFO/CTAC file copy.</td>
</tr>
<tr>
<td>14. Memoranda issued by the CBFO to provide status notification to participants</td>
<td>Yes</td>
<td>CBFO</td>
<td>CTAC maintains a file copy.</td>
</tr>
<tr>
<td>Document(s)</td>
<td>QA Record</td>
<td>Storage Location</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>15. Transmittal letter with cycle-specific records</td>
<td>Yes</td>
<td>CBFO</td>
<td>Transmitted upon completion and receipt of all cycle records.</td>
</tr>
<tr>
<td>16. Current document, software revision list, and software verification and validation documentation</td>
<td>Yes</td>
<td>CBFO</td>
<td>Required by the CBFO QAPD.</td>
</tr>
<tr>
<td>17. Program Coordinator conduct of the NDA PDP procedure(s)</td>
<td>Yes</td>
<td>CTAC</td>
<td>The CBFO reviews to ensure procedure meets CBFO requirements.</td>
</tr>
<tr>
<td>18. Participants' reports of corrective actions</td>
<td>Yes</td>
<td>CBFO</td>
<td>Submitted to the CBFO.</td>
</tr>
</tbody>
</table>

9.0 GLOSSARY

BIAS – The systematic error component of the total uncertainty, that is, a constant positive or negative deviation of the method average from the correct value or an accepted reference value under specific measurement conditions. The percent recovery (%R) in the NDA PDP summary report includes both systematic (bias) and non-systematic (precision) uncertainty.

CONDITIONAL APPROVAL – Based on circumstances during a PDP cycle, CBFO may grant a "conditional approval" which stipulates conditions to be addressed. Measurement organizations with a conditional approval are at risk of being not approved if they fail to meet any of the conditions laid out by the CBFO.

CORRECTIVE ACTION – Measures taken to rectify conditions adverse to quality and, where necessary, to preclude their recurrence.

CUSTODIAL FACILITY – The physical and organizational entity responsible for the storage, care, and proper handling of NDA PDP materials during cycle activities and when not in use for NDA PDP activities.

CUSTODIAL FACILITY ASSAY COORDINATOR (CFAC) – The facility point-of-contact responsible for receipt of the cycle notification letter, proper sample preparation team (SPT) documentation, and return of the SPT documentation to the NDA PDP Coordinator in a timely manner. A CFAC can be an active participant in the NDA PDP cycle as an SPT member.

INACTIVE SYSTEM – A CBFO-approved and operational NDA system not being used to characterize TRU wastes for disposal at the WIPP at the time a primary NDA PDP cycle is conducted.

MATRIX SWB – A steel standard waste box (SWB), serial-numbered for the PDP, designed and fabricated with custom reinforcement to contain surrogate waste matrix modules representative of a specified population of the actual DOE waste inventory. Additionally, the matrix SWB has an internal structure for insertion and positioning of PDP radioactive standards.

MEASUREMENT ORGANIZATION – The entity responsible for the assay of NDA PDP samples and TRU waste for disposal at the WIPP. Frequently this entity is not the same company or entity that functions as the custodial facility or generator site contractor.
MEASUREMENT SYSTEM – The individual NDA instrument that has received a unique NDA PDP registration number. A measurement system may function with various independent modes of assay.

NDA PDP COORDINATOR – An individual responsible for coordinating the technical operations of the NDA PDP, including designation of NDA PDP cycle-specific sample component configuration, procurement of materials and services required for replacement and/or manufacture of new NDA PDP sample components (i.e., NDA PDP matrix SWBs, and consumables), SPT oversight, scheduling NDA PDP cycles, scoring NDA PDP data received from participants, summary report generation, and preparation of other NDA PDP-related CBFO documents as directed by and for approval of the CBFO PDP Appointee.

NDA PDP SAMPLE – A blind sample prepared and sealed by the SPT for subsequent analysis by a measurement system for qualification under the PDP. A PDP sample for the NDA Box PDP is comprised of matrix modules, a configuration SWB, and PDP standards installed in accordance with instructions received from the NDA PDP Coordinator. Sample matrix and source characteristics will representatively span nominal WIPP waste characteristics expected to be received for characterization by the measurement organization including, but not limited to, isotopics, plutonium concentration, \((\alpha, n)\) reactions, interfering matrices, and source distribution.

NDA PDP STANDARD – A radioactive source specifically designed, prepared, or acquired and certified for the NDA PDP. Also referred to as a Working Reference Material (WRM).

NONDESTRUCTIVE ASSAY (NDA) – Assay methods for waste items that do not affect the physical or chemical form of the material. NDA is a non-invasive technique relying on a measurement or series of measurements of emitted radiations from the waste container which are then correlated through calibrations or dynamic efficiency to provide a measure of the radionuclides present in the waste. Typical examples of NDA methodologies include gamma spectroscopy, passive/active neutron measurements, multiplicity or coincidence counting, dose-to-curie, and calorimetry. NDA for the PDP includes gamma and neutron techniques only.

PDP APPOINTEE – An individual within the CBFO designated for the oversight of the PDP and assigned individual review and approval authority for the PDP.

PDP MANAGER – An individual within the Program Coordinator organization responsible for overall performance of the PDP.

PDP STANDARDS CONFIGURATION ATTESTANT – A member of the two-person SPT responsible for verifying the proper configuration of the NDA PDP sample, including emplacement of NDA PDP standards and sample security-related procedures.

PDP STANDARDS CUSTODIAN – The lead member of the SPT responsible for coordination of on-site NDA PDP sample preparation activities and handling of PDP standards during sample assembly and disassembly.

PRECISION – A measure of the variance among individual measurements of the same property made under prescribed conditions. Precision is represented in NDA PDP summary reports as a percent relative standard deviation (%RSD).
PRIMARY CYCLE – The annual NDA PDP cycle. The primary cycle is included in the Program Coordinator’s master project schedules for the NDA PDP and occurs at approximately the same time each year to ensure a site receives the opportunity to gain NDA PDP approval every 12 months.

PROGRAM COORDINATOR – A CBFO-designated organization that administers and coordinates PDP functions. The program coordinator will designate the PDP manager.

SAMPLE PREPARATION INSTRUCTIONS – Paperwork generated by the NDA PDP Coordinator for each generator sites measurement organization for each NDA PDP cycle that provides instructions to the SPT on configuration of the NDA PDP sample (i.e., emplacement of matrix modules and NDA PDP standards within a specified configuration NDA PDP SWB).

SAMPLE PREPARATION TEAM (SPT) – A two-person team, consisting of an NDA PDP Standards Custodian and PDP Standards Configuration Attestant that prepares and certifies NDA PDP samples for a given custodial facility. The SPT is responsible for participating in a tailgate briefing prior to PDP sample assembly, ensuring that each NDA PDP sample is prepared according to the NDA PDP sample preparation procedures provided by the NDA PDP Coordinator. In addition, the SPT ensures proper disassembly and return to storage of all NDA PDP components after analysis by the generator site measurement organization. The SPT completes and returns cycle documents as QA records.

SUPPLEMENTAL CYCLE – An NDA PDP cycle in addition to the annual primary NDA PDP cycle. Reasons that a supplemental cycle may be necessary include accommodation of measurement facilities unable to participate in the primary cycle, to support implementation of new or modified measurement systems, or to perform specific testing as directed by the CBFO. Additional supplemental cycles may be conducted on an as-needed basis at the CBFO direction.

TOTAL MEASUREMENT UNCERTAINTY – The propagated measurement error potential from all bias and precision sources including interference effects such as variable matrices, isotopic compositions, spatial distributions, contaminating radionuclides, and others.
REFERENCES

Appendix A

NDA Performance Demonstration Program Forms
Appendix A
NDA Performance Demonstration Program Forms

This appendix contains seven forms that are essential to the conduct and quality assurance records of the NDA Box PDP cycles. The purpose of each form is described below. The forms are to be completed while performing the associated activities during the PDP cycle. Each of the forms is called out in this plan under section 2.0, Organization and Responsibilities.

1. The **PDP SWB Matrix Configuration Form** is the instruction document provided to the SPT by the NDA PDP Coordinator for the purpose of assembly and documented disassembly of the test sample matrix module array. This form is initiated by the NDA PDP Coordinator for instruction purposes, but becomes one of the primary QA record documents as it is completed by the SPT during the assembly of the PDP sample for the NDA Box PDP cycle. The signatures on the form confirm the correct source and positioning by the PDP Source Custodian and Standards Configuration Attestant. The PDP Standards Custodian confirms the correct module and positioning and signs the configuration form. The PDP standards configuration attestant independently verifies that the proper SWB matrix modules were selected and documents the correct positioning of each module by indicating at each location within the SWB the matrix type (combustibles as CMB or metals as MET), position, number and initialing each location and signing the configuration form. The documentation on this form provides essential evidence that the proper matrix modules were placed in position as originally designated on the form. Any discrepancies from the original instruction discovered during disassembly must be documented for quality assurance purposes. The completed form is a QA record that must be returned to the NDA PDP Coordinator upon disassembly of the sample as soon after the sample is returned to the SPT as is reasonable.

2. The **PDP Standard Configuration Form for SWB** is the instruction document provided to the SPT by the NDA PDP Coordinator for the purpose of assembly and documented disassembly test sample PDP standard positioning. This form is initiated by the NDA PDP Coordinator for instruction purposes, but becomes one of the primary QA record documents as it is completed by the SPT during stages of the NDA Box PDP cycle. The signatures on the form confirm the correct source and positioning by the PDP Standards Custodian and Standards Configuration Attestant. The PDP Standards Custodian confirms the correct positioning and signs the configuration form. The PDP Standards Configuration Attestant independently verifies that the proper sources were selected and documents the correct positioning of each by initialing each location and signing the configuration form. The documentation on this form provides essential evidence that the proper PDP standards were placed in the position as originally designated on the form. Any discrepancies from the original instruction discovered during disassembly must be documented for quality assurance purposes. The completed form is a QA record that must be returned to the NDA PDP Coordinator upon disassembly of the sample as soon after the sample is returned to the SPT as is reasonable.

3. The **Nondestructive Assay Box PDP Excess Standards Form** is the form used to identify the NTP sources that are not being used as part of the designated matrix sample involved in the PDP measurement cycle and to account for that portion of the source inventory that must be secured in order to maintain the integrity of the sample. The documentation on this form provides essential evidence that the excess NDA PDP standards are secured. The completed form is a QA record that must be returned to the NDA PDP Coordinator upon disassembly of the sample as soon after the sample is returned to the SPT as is reasonable.

4. The **Nondestructive Assay Box PDP Sample Custody Form** is utilized by the SPT and the measurement organization to indicate the time during which each entity is in control of the sample. This document is initiated by the SPT and completed by the SPT upon disassembly. The measurement organization is responsible for the integrity of the NDA PDP samples during the time that the samples are in their
possession. The custody form is to be signed and dated by a representative of the measurement organization for that period of sample possession. The completed form is a QA record that must be returned to the NDA PDP Coordinator upon disassembly of the sample as soon after the sample is returned to the SPT as is reasonable.

5. The **NDA Box PDP Sample Disassembly Form** must be completed by the SPT. The completed form provides evidence that the sample was prepared and maintained in accordance with the instruction throughout the duration of the NDA testing process. The completed form is a QA record that must be returned to the NDA PDP Coordinator upon disassembly of the sample as soon after the sample is returned to the SPT as is reasonable.

6. The **Nondestructive Assay PDP Report Form** contains the headings and spaces for the essential information required by the NDA PDP for each measurement of a test sample. This form must be utilized by the measurement organization to present the information to the NDA PDP Coordinator once all data review by the measurement organization is complete. One Nondestructive Assay PDP Report Form is required for each NDA Box PDP sample analyzed and for each NDA measurement system used to analyze the sample. The completed forms, signed and dated, are QA records of the NDA PDP cycle.

7. The **NDA PDP Participating Facility Contacts Form** is provided for convenience, to be utilized by the CFAC or supervisor thereof, to supply the NDA PDP Coordinator with the names and contact information of those individuals who have responsibility for the conduct and management of the NDA PDP at the WIPP waste packaging and generator site measurement facility. Section 2.0, Organization and Responsibilities, in the NDA Box PDP Plan provides the activity expectations of the personnel assigned to the NDA PDP functional titles. In some cases, one individual could function in more than one titled capacity. Though this contact information is essential to the conduct of the NDA PDP, the completed document is not an NDA PDP QA record.
NDA Box PDP Matrix Configuration Form

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>SWB Number:</th>
<th>of</th>
<th>in this Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDP Cycle No.:</td>
<td>PDP Distribution Date (Mo/Yr):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWB Serial No.:</td>
<td>Matrix Type: Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tier Number:</td>
<td>of 3</td>
<td></td>
</tr>
</tbody>
</table>

Authorized: __

NDA PDP Coordinator ___________________________ Date: ____________

Signatures:

PDP Standards
Attestant: __ Date: __________________

PDP Standards
Custodian: __ Date: __________________
NDA Box PDP Standard Configuration Form

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>SWB No.: of in this Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDP Cycle No.:</td>
<td>PDP Distribution (Mo/Yr.):</td>
</tr>
<tr>
<td>SWB Serial No.:</td>
<td>Matrix Type:</td>
</tr>
<tr>
<td>PDP Sample ID:</td>
<td>TID No(s.):</td>
</tr>
</tbody>
</table>

| Authorized: | NDA PDP Coordinator | Date: |

Contents of Standard

<table>
<thead>
<tr>
<th>PDP Standard ID</th>
<th>Primary Nuclear Materials</th>
<th>Mass (g)</th>
<th>Units</th>
<th>SWB Position</th>
<th>Rod Position</th>
<th>Attestant Initials</th>
</tr>
</thead>
</table>

Example of source position

(Rod Position #5)

Signatures:

- **PDP Standards Attestant:**
 - Printed Name / Signature
 - Date

- **PDP Standards Custodian:**
 - Printed Name / Signature
 - Date
NDA Box PDP Excess Standards Form

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>PDP Sample ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDP Cycle No.:</td>
<td>PDP Distribution (Mo/Yr):</td>
</tr>
<tr>
<td></td>
<td>TID No.:</td>
</tr>
</tbody>
</table>

PDP Standard ID

<table>
<thead>
<tr>
<th>Primary Nuclear Materials</th>
<th>Mass (g)</th>
<th>Units</th>
<th>SPT Attestant Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SWB Total:

Signatures:

- **PDP Standards Attestant:**
 - Printed Name / Signature: ____________________
 - Date: ____________________

- **PDP Standards Custodian:**
 - Printed Name / Signature: ____________________
 - Date: ____________________
NDA Box PDP Sample Custody Form

SWB Serial No.: __________________________ Facility Name: __________________________
PDP Sample No.: __________________________ TID Serial Number(s): __________________________
Distribution Cycle Number: __________________________
Comments: __

Sample Preparation

____________________________ __________________________
PDP Standards Custodian Date

Attestant Initials

Standards properly placed: __________________________

Matrix SWB TID properly sealed: __________________________

Sample information form attached and sealed: __________________________

____________________________ __________________________
Standards Configuration Attestant Date

<table>
<thead>
<tr>
<th>Relinquished by:</th>
<th>Date/Time</th>
<th>Received by:</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final Disposition by: __________________________ Date/Time Disposition: Disassembled

____________________________ __________________________ __________________________
Signature Printed Name Disposition

White: NDA PDP coordinator copy on final disposition
Canary: SPT copy on final disposition
Pink: NDA PDP coordinator copy
Gold: SPT copy
NDA Box PDP Sample Disassembly Form

<table>
<thead>
<tr>
<th>PDP Cycle No.</th>
<th>PDP Sample ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWB Serial No.</td>
<td>TID Serial Numbers:</td>
</tr>
</tbody>
</table>

Sample Disassembly Record

Sample Disassembly Date:

Condition of Seals and Standards

- **Configuration Form attached and sealed:** [] Yes [] No []
- **Container TID(s) properly sealed:** [] Yes [] No []

Standards properly placed (Cross out if not applicable):

<table>
<thead>
<tr>
<th>Source</th>
<th>Yes</th>
<th>No</th>
<th>PDP Standard ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surrogate matrix modules properly placed:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Yes</th>
<th>No</th>
<th>Condition (Sat/Unsat):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

__
__
__

Signatures:

PDP Standards Attestant:

Printed Name / Signature: ___________________________ Date: __________

PDP Standards Custodian:

Printed Name / Signature: ___________________________ Date: __________
Nondestructive Assay Performance Demonstration Program Report Form

Assay Facility: _______________________________ NDA System ID: _____________________
PDP Cycle: _____________________ Replicate: _____ of _____
SWB Serial No.: __________________ PDP Sample ID: __________________

Final Result Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Final Result</th>
<th>Total Uncertainty (One Standard Deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 239Pu fissile gram equivalent (g)</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Total TRU alpha activity (curies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Power (W)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Summary

<table>
<thead>
<tr>
<th>Identification</th>
<th>Classification</th>
<th>Associated SOP Identification (Including Revision No.)</th>
<th>Count Time (min)</th>
<th>Analysis Date</th>
<th>Analysis Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual Isotope Data

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Activity Result</th>
<th>Uncertainty (1sd)</th>
<th>Quantification Method</th>
<th>Method Number (From Summary)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Count</td>
<td>Total</td>
<td>Ratio</td>
</tr>
<tr>
<td>238Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240Pu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241Am</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Approval: _______________________________ _____________________________________ ____________
Signature Title Date

Printed Name
NDA PDP Participating Facility Contacts

<table>
<thead>
<tr>
<th>NAME</th>
<th>MAIL ADDRESS</th>
<th>PHONE/ E-MAIL</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custodial Facility Management Contacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td></td>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>Special Nuclear Material Custodian</td>
<td></td>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>Custodial Facility NDA PDP Function Contacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay Coordinator</td>
<td></td>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>Components Custodian</td>
<td></td>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>PDP Standards Custodian</td>
<td></td>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>PDP Standards Configuration Attestant</td>
<td></td>
<td>Phone:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Shipment, Receipt, and Use of NDA Box PDP Materials
Appendix B
Shipment, Receipt, and Use of NDA Box PDP Materials

This appendix describes the policies and some processes for shipping and receiving NDA PDP materials. This appendix is not meant to be all inclusive of the requirements that will be encountered for movement of NDA PDP materials. In addition to these policies and process guidelines, the shipment and receipt of all NDA PDP materials must meet federal, state, and facility requirements for both the shipping facility and the receiving facility.

B.1 General

The NDA PDP Coordinator shall coordinate any transfers of NDA PDP materials between sites, and no transfers will occur without written approval from the CBFO. The NDA PDP Coordinator will provide the transferring facility with the necessary contact information (names, phone numbers, e-mails, and physical addresses) for the receiving facility. The current custodial facility will notify each receiving site contact prior to the shipping date for NDA PDP materials. The materials will be sent to the address and individual designated by the receiving facility.

The CFAC at each facility shall notify the NDA PDP Coordinator in writing (e-mail is acceptable) of any changes in contact personnel.

B.2 PDP Surrogate Waste Matrix Modules and SWBs

The NDA PDP SWB matrix inventory currently consists of two SWB box types, differentiated as: 1) the matrix configuration box, and 2) the matrix module storage box. The configuration box contains an elaborate SWB floor reinforcement structure that provides for the installation and correct positioning of the matrix module array and NDA PDP standard insert fixtures. The configuration box contains additional internal components to secure the matrix/source array in place to prevent configuration shifts during movement and measurement of the SWB PDP sample. The configuration box also has provisions for the attachment of TIDs to ensure the integrity of the sample during the test process. The matrix storage box has a plexi-glass floor with positioning plugs and plexi-glass bumpers at various positions around the outside of the box which serves to protect the matrix modules while they are in storage. The storage box cannot be utilized as a configuration box (i.e., PDP sample). The matrix modules are primarily grouped as either combustible or metals matrices. Each participating site should have a set of each matrix. The annual inventory will be used to track all PDP components.

Refer to Appendix F for general information on the PDP SWB matrix box design and configuration. Details regarding the design and intended use of the NDA PDP SWBs can be found in the specification documents associated with each matrix type as provided in Appendix F.

The NDA PDP Coordinator shall coordinate any transfers of NDA PDP SWBs and components between sites and no such movement will occur without written approval from the CBFO. See sections B.3 and B.4 for additional information on shipment and receipt of NDA PDP materials.
B.3 Receipt of NDA PDP Matrix Modules, SWBs, and Components

On receipt of NDA PDP matrix SWBs and components, the PDP sample components custodian shall:

- Verify that the serial numbers and physical descriptions of the NDA PDP matrix modules, SWBs, and associated components received match those listed on the shipping manifest.
- Verify that the matrix modules, SWBs, and/or ancillary components have not been damaged during shipping. Where shipping manifest discrepancies are noted or damage is found, the assay coordinator and/or the SPT shall secure the items and the assay coordinator and/or the SPT shall notify the NDA PDP Coordinator. If no discrepancy or damage is found, the assay coordinator shall notify the NDA PDP Coordinator in writing or by e-mail, that the shipment was received in acceptable condition.

B.4 Transfer of NTP Working Reference Material (WRM) Standards (PDP Standards)

All transfers of NTP WRM standards must have prior written approval from the CBFO.

Before shipment of PDP standards, each receiving custodial facility will make appropriate arrangements with the facility’s safeguards and radiation safety organizations for storage and accountability. Generally, the designated PDP standards custodian will coordinate with the site safeguards staff to comply with all site special nuclear material (SNM) requirements. All shipping details and arrangements will occur between the trained staff of the DOE facilities of both the shipping and receiving entities. The NDA PDP Coordinator will assist in facilitating the transfer and should remain informed by the shipping and receiving facilities of communications and significant activities associated with the transfer.

At the time of receipt, the PDP custodial facility assay coordinator and/or PDP Standards Custodian assigned by the custodial facility shall inspect, inventory, and secure the PDP standards. Documentation of these activities must then be provided to the NDA PDP Coordinator.
Appendix C

NDA Box PDP System Registration Form
Appendix C
NDA Box PDP System Registration Form

This appendix contains the registration form that must be completed by the measurement organization, and revised when the information is no longer correct, for an NDA system to be authorized by the CBFO to participate in the NDA Box PDP.

General Instructions

1. Registration forms are to be completed and returned to the NDA PDP Coordinator as soon as possible but at least one (1) month prior to participation in the PDP.
2. Separate registration is required for each NDA measurement system.
3. After initial submission, the forms need to be resubmitted only when a change is made in the registration information.
4. The NDA PDP Coordinator will acknowledge all registration requests and assign a tracking identifier to each registered system.
5. The NDA PDP Coordinator will maintain a current list of all registered measurement systems.

Instructions for Specific Questions

Section A

1. Enter the full formal name of the measurement system.
2. Enter the acronym by which the system should be referenced.
3. Enter a number associated with this unit (if applicable).
4. Check the appropriate descriptor. “Fixed, Permanent” indicates that the system was intended to be installed permanently at the current location. “Transportable, Nonpermanent” indicates a long-term installation that can be relocated. “Mobile, Trailer” indicates measurement systems intended for routine movement between sites for short-term contracts.
5. Enter the DOE site where the measurement system will be installed for NDA PDP cycle participation.
6. Enter the on-site location designator for the measurement system.
7. Enter the name of the institution/facility/company that owns the measurement system.
8. Enter the name of the institution/facility/company that operates the measurement system.
9. Enter the name of the person who should be contacted for information on the measurement system.
10. Enter the title of the person identified in Box 9.
11. Enter the affiliation of the person identified in Box 9.
12. Enter the mailing address for the person identified in Box 9.
13. Enter the express package delivery address (i.e., street address, not a P.O. Box) for the person identified in Box 9.
14. Enter the e-mail address for the person identified in Box 9.
15. Enter the office phone number for the person identified in Box 9.
16. Enter the cell number for the person identified in Box 9.
Section B

1. Enter a description of the system, its principles of operation, and optional modes for assay.

2. Enter the identifier(s) for the written standard operating procedures (SOPs) that are used to operate the system for waste assay.

3. For each measurement mode of the system that may be used, enter the measurement principle (gamma, neutron), mode identification (active neutron, etc.), the procedure documenting selection criteria for selecting the subject modes, and the source of isotopic data used for that mode. Sources of isotopic data may be coded:

\[P = \text{isotopic data are measured as an integral part of the primary quantitative assay (e.g., gamma spectrometric methods used for both the quantitative and isotopic data).} \]

\[S = \text{isotopic data are derived from a secondary method (e.g., the primary quantitation is by passive neutron assay, but isotopic ratios are obtained from an independent gamma spectrometric method).} \]

\[AK = \text{isotopic data are obtained from acceptable knowledge of the waste stream or container.} \]

Section C

1 through 5. Check “Yes” or “No” to each question. For each “Yes,” indicate the applicable mode(s) from section B.3.

6. Enter the possible mode(s) from section B.3 for each combination of activity range and waste type. Enter “NA” for combinations for which the system will not be used. If explanatory information is required, enter a number in the comments column and add the number and explanation to section D. For example, a system may have a calibration cut-off that falls at the midpoint of a test range. This may be indicated by accepting the range, but specifying a numerical limit in the comment.

7 through 9. Enter the values and units for any limits on NDA PDP tests that, if exceeded, would prevent the system from assaying an NDA PDP sample.

Section D

Add any comments necessary to explain answers in any prior sections or supplemental information useful to the NDA PDP Coordinator in planning effective NDA PDP tests for the system. Attach continuation sheets as needed.

Section E

Enter the requested information for the person submitting the registration form.

Sign and forward the original of the form to the NDA PDP Coordinator.
A. SYSTEM IDENTIFICATION

1. Official System Name:

2. Acronym

<table>
<thead>
<tr>
<th>Coordinator Use Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>System ID:</td>
</tr>
<tr>
<td>Group No.:</td>
</tr>
</tbody>
</table>

3. Unit No. (this system):

4. Mobility Type:

- Fixed, Permanent
- Transportable, Nonpermanent
- Mobile, Trailer

5. Current Facility Location:

6. On-Site Reference

7. System Owner:

8. System Operator:

9. Primary Contact Name:

10. Title:

11. Affiliation:

12. Postal Address:

13. Express Package Address:

14. E-Mail:

15. Phone:

16. Cell:

B. METHOD SUMMARY

1. Brief Description of Method:

2. Associated SOP Identification(s):

3. For each quantitative mode in which the system is used, complete the following:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Mode 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative Mode 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative Mode 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantitative Mode 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. SCOPE AND LIMITATIONS ON SYSTEM USE

1. Will the system be used to certify waste as TRU, for SWBs containing less than 0.01 curies of TRU isotopes?

2. Will the system be used for wastes containing weapons-grade plutonium?

3. Will the system be used for wastes containing heat-source plutonium?

4. Will the system be used for wastes containing unknown isotopic ratios?

5. Will the system be used for wastes containing uranium isotopes?

6. Indicate the ranges and waste types (with similar nuclear interaction characteristics) for which the system intends participation in the NDA PDP. For measurement systems with multiple quantitative modes, be sure to indicate the applicable mode(s) for each case.

<table>
<thead>
<tr>
<th>Activity range</th>
<th>Range in alpha-curies<sup>a</sup></th>
<th>Combustibles</th>
<th>Glass</th>
<th>Inorganic Sludge</th>
<th>Metals</th>
<th>Comment No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>> 0 to 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-Low</td>
<td>> 0.02 to 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-High</td>
<td>> 0.2 to 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>> 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Range of TRU activity in an SWB; units are curies of alpha-emitting TRU isotopes with half-lives greater than 20 years.

7. Indicate the maximum activity permissible (including units) for testing the system due to calibration, radiological safety, or administrative limits:

<table>
<thead>
<tr>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
</table>

8. Indicate the maximum weight permissible (including units) for testing the system due to calibration, safety, or administrative limits:

<table>
<thead>
<tr>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
</table>

9. Indicate any other limitations on system tests:

<table>
<thead>
<tr>
<th>Explanation in Comment No. ______.</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
</table>

D. COMMENTS (Please add any information relative to participation of this system in the NDA Box PDP)

E. Please register the system described in this application for participation in future cycles of the NDA Box PDP. It is understood that system tracking, test design, approval conditions, participation requirements, and audit follow-up may be based on the information supplied in this application.

Printed Name: Signature: Date:

Phone Number: E-Mail:

F. DISPOSITION (coordinator use only)
Appendix D

Statistical Basis of NDA PDP Scoring Criteria
Appendix D
Statistical Basis of NDA PDP Scoring Criteria

This appendix provides the basis for the Nondestructive Assay Performance Demonstration Program (NDA PDP) scoring criteria. It specifies how the criteria relate to the Transuranic Waste Acceptance Criteria [WAC] for the Waste Isolation Pilot Plant (DOE/WIPP-02-3122). It further explains the statistical derivation of the limits and bounds criteria of the precision and bias, respectively, for the NDA PDP scoring assessment.

D.1. Definitions

Limits and Bounds

This discussion describes two types of bounds or limits: (1) those that define the acceptable precision limits for a NDA measurement system, and (2) the allowable bias range defined by the bounds of the 95% confidence interval. While the terms “limits” and “bounds” can be used interchangeably, to avoid confusion, the term “limits” is used here only in reference to the PDP precision criteria. Similarly, the term “bounds” is used only to describe the endpoints or bounding values of calculated 95% confidence intervals for the percent recovery.

Point Estimate

A point estimate is the best single numerical value that is a good indicator of the underlying parameter of interest. Point estimates contrast with confidence bound estimates, which are interval estimates (since they delineate bounds on confidence intervals). For bias, the point estimate is the mean calculated percent recovery (%R), relative to the known value. For precision, the point estimate is the percent standard deviation relative to the known value (%RSD).

D.2. Performance Criteria

The NDA PDP criteria (Table D-1, column 2) specify acceptable limits for the measured precision of an NDA system based on 15 replicate assay measurements. The NDA PDP criteria are derived from the calibration confirmation criteria for NDA measurement systems in the WAC. The precision criterion, defined as the maximum allowable %RSD for a non-interfering matrix and given in Table A-2 of the WAC, is 20.0% for 15 replicate assay measurements. This same precision limit of 20% RSD is given in Table D-1, column 2, for the lowest TRU alpha activity range.

The measured precision, based on 15 replicates, is only an approximation of the true system precision. Implicit in each limit for the measured precision is a corresponding 95% upper confidence endpoint value on the true system precision. These upper limits are stated explicitly in Table D-1. Precision criteria for NDA PDP tests for six replicate assay measurements, derived in relation to the upper confidence limits for 15 replicate assay measurements, are given in Table D-1.

The accuracy criterion for calibration confirmation, as specified in the WAC, section A.3, Data Quality Objectives, is a maximum difference of 100% ± 10% recovery. The WAC requires documented justification for accuracy outside of the 90% -110% range. The WAC further stipulates that for gamma measurement systems, the accuracy shall be calculated for each useable gamma energy line over the calibration range, and the accuracy for each line shall be 100% ± 10%. The justification for not using certain gamma lines due to matrix density, filter density, or attenuation is required to be documented. The PDP criteria for bias for the interfering matrices, shown in Table D-1, are less restrictive in consideration of the complexities involved with matrix interferences.
Table D-1. NDA PDP Performance Criteria

<table>
<thead>
<tr>
<th>Activity Range in α-curies</th>
<th>Based on WAC %RSD UL<sup>a</sup> for Precision (15 Replicates)</th>
<th>Maximum Allowable %RSD (95% CB<sup>b</sup> of UL)</th>
<th>Criteria for Maximum Measured PDP Precision (%RSD) (Six Replicates)</th>
<th>Criteria for Bias (Values for %RL and %RU for use in Equation 11) (Six Replicates)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0 to 0.02</td>
<td>20</td>
<td>29.2</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>>0.02 to 0.2</td>
<td>15</td>
<td>21.9</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>>0.2 to 2.0</td>
<td>10</td>
<td>14.6</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>>2.0</td>
<td>5</td>
<td>7.3</td>
<td>6</td>
<td>40</td>
</tr>
</tbody>
</table>

^a – The WAC specifies an upper limit of 20%RSD based on 15 replicates in a non-interfering matrix. The UL values for the listed activity ranges were extrapolated on the basis of the capability of NDA measurement systems to meet these limits.

^b – Upper confidence bound for acceptable precision (expressed as %RSD) at the 95% one-sided upper confidence based on 15 replicate measurements.

Precision Criteria for Waste Matrices in SWBs

The true precision and bias of a measurement system are unknown. Estimates of the values of these parameters are acquired through the analysis of results of the total TRU α-activity parameter from a set of six replicate assay measurements of the same NDA PDP sample. The more measurements acquired, the better are the precision and bias estimates of the NDA system for a given NDA PDP sample configuration.

The NDA PDP limits for measured precision of a matrix in an SWB, determined from six replicate samples, are given in Table D-1. The values for six replicate measurements were derived from the upper confidence bounds for 15 replicate measurements. The derivation results in a downward adjustment of the acceptable measured precision values compared to that allowable for 15 replicate measurements, as shown in column 2.

For example, when six replicates are used, a measured value of 18% for the RSD of an assay system in the low activity range, even though less than the 20% allowable using 15 replicates, does not mean the implicit limit of an upper confidence bound of 29.2% has been met. In fact, the 95% one-sided upper confidence bound for this six-replicate example is approximately 38% — considerably higher than the allowable limit. Hence, the allowable measured precision with only six replicates is lower than that for 15 replicates for each α-activity range.

Because the 95% confidence limit for relative standard deviation depends only on the standard deviation itself, it is possible, with a pre-specified fixed sample size, to determine ahead of time exactly how large the calculated NDA PDP precision-point estimate value can be and still have an associated upper one-sided 95% confidence limit that meets the criteria in Table D-1. The fourth column of Table D-1 tabulates these maximum measured relative precision point estimate values using six replicates. The limits in columns 5 and 6 are used to compare the calculated NDA measurement system point estimate for relative standard deviation from six replicate measurements. (Exactly how the values for interfering matrices were obtained is described below). Note that comparing the non-interfering NDA measurement system point estimate to the value in column 4 is equivalent to comparing the associated upper one-sided 95% confidence limit to the value in column 3. That is, an NDA PDP point estimate of the value indicated in column 4 using six replicates will have a 95% upper one-sided confidence limit equal to the value in column 3.
Calculating Limits for Measured Relative Precision

The limits specified for the PDP sample relative precision (standard deviation divided by the known value) are derived from confidence interval calculations for the variance (i.e., the square of the standard deviation) of a distribution. The derivation is described below.

General Derivation

Let σ^2 equal the true variance and let $1 - \alpha$ equal the desired confidence value. Furthermore, let s^2 equal the sample variance, and $\chi^2_{\alpha,n-1}$ equal the critical value of a chi-square distribution with $n - 1$ degrees of freedom above which α% of the distribution lies; that is, the critical value for the upper α% tail of the distribution. Then, assuming a normal distribution, a two-sided α% confidence interval for the true variance is (e.g., Anderson 1987)

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$ \hfill (D-1)

Based on this formula for the two-sided interval, the upper one-sided $(1 - \alpha)$% confidence limit is

$$\sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}$$ \hfill (D-2)

and the corresponding upper limit for the true percent relative standard deviation is calculated as

$$\frac{\sigma}{\mu_0} \times 100\% < \sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}} \times 100\%$$ \hfill (D-3)

where μ_0 is the reference (or true) value of the NDA PDP sample.

For the NDA PDP tests, $n = 6$ and $\chi^2_{1-\alpha,n-1} = \chi^2_{0.05,5} = 1.145$ in Equation D-3. Substituting these values and the known value of the NDA PDP sample for μ_0 in this formula gives an approximate upper one-sided 95% confidence limit for the percent relative standard deviation for six replicates. If desired, this upper confidence limit can be directly compared to the numbers in column 3 of Table D-1 to determine if an assay system has met the relative precision criteria.

The numbers in column 4 of Table D-1 are derived by comparing the right portion of Equation D-3 to the appropriate number in column 3 of Table D-1 and solving for s/μ_0. As an example, for the low activity range this calculation begins with the required inequality

$$\sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}} \times 100\% < 29.2\%$$ \hfill (D-4)
Solving for \(s/\mu_0 \) gives

\[
\frac{s}{\mu_0} < 100\% \sqrt{\frac{(0.292)^2 \chi^2_{1-n,0.05}}{n-1}}
\]

(D-5)

which, for six samples and 95% confidence as specified in the PDP, gives

\[
\frac{s}{\mu_0} < 100\% \sqrt{\frac{(0.292)^2 (1.145)}{5}} = 14\%\]

(D-6)

Again, substituting the reference (or true) value of the NDA PDP sample for \(\mu_0 \) indicates that a calculated relative standard deviation of 14% or less meets the criterion for relative precision in the low activity range. Since the chi-square value and \(n \) are the same for all activity levels, the column 4 values for the other activity levels are obtained simply by substituting the appropriate value in place of 0.292 in Equation D-6.

Precision Criteria for Interfering Waste Matrices

The WAC limits (section A.3, *Data Quality Objectives*) are specified for a “non-interfering matrix”; in other words, a waste matrix that does not have attributes that manifest themselves in the NDA measurement system as significant complicating error elements. To determine rational precision scoring criteria for the interfering type waste form, it was desirable to establish some relationship to program objectives that can be used as a basis for the NDA PDP criteria for the interfering matrix SWBs. There are certain program-defined limits for which measurement systems are used to ensure compliance. In particular, there are the 200 fissile gram equivalent (FGE) material limits for 55-gallon containers and the TRU waste \(\alpha \)-activity definition used to discriminate TRU waste from low-level waste (LLW). At the high end, the precision of the assay system should be reasonable for waste containers approaching the 200 FGE limit to ensure that an excessive number of SWBs do not exceed the limit at the 95% confidence level. Similarly, the waste assay system should be sufficiently precise for containers of low TRU mass loading (i.e., in the vicinity of the 100 nanocuries per gram [nCi/g] \(\alpha \)-activity criterion) to ensure that an unacceptable number of containers of TRU waste are not classified as LLW.

As a convenient base for determining precision criteria for interfering type waste matrix SWBs, the non-interfering compliance points in Table D-1 are used. For the low activity range, the nominal compliance point for meeting the WAC precision and bias criteria is 100 mg of weapons-grade plutonium (WG Pu). An acceptable assay system should be capable of detecting and quantifying TRU waste in 55-gallon waste containers at a level of 35 mg WG Pu, approximately 75 nCi/g waste at 100 pounds of waste. When assaying a container at the compliance point of 100 mg WG Pu, we would like to be sure at the 95% confidence level that the assay system will not return a value less than 35 mg WG Pu. This provides reasonable protection against classifying TRU waste as LLW. Based on this rationale, two standard deviations would correspond to 65 mg (100 mg–35 mg). One relative standard deviation would therefore be 32.5mg/100 mg or 0.325. By substituting 0.325 in place of 0.292 in Equation D-6, we obtain a value of 0.155 (rounded up to 0.16) for the measured precision criterion for six replicate determinations of an interfering matrix SWB in the low activity range.

Using similar reasoning, a precision criterion can be assigned to the high-mass region. In this case, the nominal compliance point used is 160 g WG Pu. When assaying a container at the compliance point of 160 g WG Pu, we would like to be sure at the 95% confidence level that the assay system will not return a value greater than 200 g WG Pu. This provides reasonable protection against mistakenly classifying a TRU waste SWB as not shippable when, in fact, it does not exceed the limit. Based on this rationale, two
standard deviations would correspond to 40 g (200 g–160 g). One relative standard deviation would therefore be 20 g/160 g or 0.125. By substituting 0.125 in place of 0.292 in Equation D-6, we obtain a value of 0.0598 (rounded up to 0.06) for the measured precision criteria for six replicate determinations of an interfering matrix SWB in the high activity range.

No compelling programmatic objectives argue for specific precision limits for the low-middle and high-middle ranges, although some thermal limits will fall into these ranges for some waste forms. Therefore, it was felt that arbitrary limits based on consistency and continuity in the use of the measurement systems would be adequate for these ranges. The precision criteria for the low-middle and high-middle ranges were set at 0.12 for the RSD of six replicate determinations.

D.3 Calculating Confidence Bounds For Bias

The comparison of an assay system’s performance to the bias requirements for the non-interfering and interfering NDA PDP samples requires calculation of the 95% two-sided confidence bounds for the true value, using the replicate measurement data set. Based on a \(t \)-distribution, the \((1 - \alpha) \% \) two-sided confidence bounds for the true assay system mean are (assuming a normal distribution):

\[
\bar{x} - t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}} \leq \mu_0 \leq \bar{x} + t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}
\]

(D-7)

In terms of percent recovery, the bounds are

\[
\frac{\bar{x} - t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}}{\mu_0} \times 100\% < 100\% < \frac{\bar{x} + t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}}{\mu_0} \times 100\%,
\]

(D-8)

where \(\mu_0 \) is the known (or true) value. The lower and upper bounds, calculated per Equation D-8, must be greater than or equal to \(\%R_L \) and less than or equal to \(\%R_U \), respectively, where \(\%R_L \) and \(\%R_U \) are the appropriate lower and upper range-specific bounds from Table D-1. Equivalently, bounds for the point estimate, total TRU \(\alpha \)-activity percent recovery, can be obtained by solving the required inequalities for percent recovery. The required inequalities are:

\[
\frac{\bar{x} - t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}}{\mu_0} \times 100\% > \%R_L \quad \text{and} \quad \frac{\bar{x} + t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}}{\mu_0} \times 100\% \leq \%R_U
\]

(D-9)

which, on solving for percent recovery, gives

\[
\%R_L + \frac{t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}}{\mu_0} \times 100\% \leq \frac{\bar{x}}{\mu_0} \times 100\% \leq \%R_U - \frac{t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}}{\mu_0} \times 100\%
\]

(D-10)

With six samples, \(n = 6 \), and the corresponding \(t \) value (for 95% two-sided confidence bounds) is 2.571. Thus, the equation simplifies to:

\[
\%R_L + \frac{1.049s}{\mu_0} \times 100\% \leq \frac{\bar{x}}{\mu_0} \times 100\% < \%R_U - \frac{1.049s}{\mu_0} \times 100%
\]

(D-11)
D.4 References

Appendix E

NDA PDP Standard Encapsulation Design
Appendix E
NDA PDP Standard Encapsulation Design

This appendix provides information on the NDA PDP standard encapsulation design used to contain the radioactive material/substrate mixture that constitutes a standard. Seven separate NDA PDP standard production phases were conducted at the Los Alamos National Laboratory. Each production phase was designed to yield a set of standards with specific attributes reflecting the DOE radioactive material inventory. All NDA PDP standards use a dual cylinder encapsulation design and have identical internal and external dimensions. The encapsulation cylinders are fabricated from seamless, stainless steel tubing for all production phases except Phase III.A, which is fabricated from seamless zirconium tubing.

The PDP standard encapsulation is comprised of an inner and outer cylinder. The bottom end cap of each cylinder is laser-welded in place. The inner cylinder is then filled with the appropriate mixture of radioactive material and substrate. Once the mixture has been packed to a height specified in the production plan document (LAUR-96-2277, LAUR-98-213, LA-CP-00-54, LA-CP-00-110, LA-CP-01-208, LA-CP-03-0072, LA-CP-03-0763), a graphite-felt frit is installed, which presses the nuclear material/substrate assembly in place when the top cap is inserted and attached. The graphite frit also ensures that the radioactive material/substrate configuration does not change over time. The inner cylinder top cap is then welded in place using the tungsten inert gas (TIG) method. After the top cap is welded in place, the inner cylinder is inserted into the outer cylinder and the top outer cylinder cap is TIG-welded in place. An elevation view of both the inner and outer encapsulation cylinders is shown in Figure E-1. The final assembled NDA PDP standard encapsulation unit is shown in Figure E-2. Prepared assemblies of the stainless steel and zirconium dual encapsulation, complete with the substrate matrix (no radioactive material) and helium fill, have been tested in accordance with American National Standards Institute/Health Physics Society (ANSI/HPS) N43.6-1997 and comply with ANSI Classification 97C43323.

The dimensional and material properties of the NDA PDP standard were derived as a function of NDA PDP objectives, nondestructive waste assay system response characteristics, and practicalities of fabrication.

The as-specified PDP standard configuration complies with the following general requirements:

1. PDP standards must be physically stable and invariant with time in a defined geometry.
2. The PDP standard configuration must facilitate convenient loading of the standards into the PDP matrix drum or SWB.
3. The PDP standard dimensions must allow for the production of multiple-source spatial geometries within the PDP matrix drum or SWB.
4. The PDP standard encapsulation integrity must comply with all applicable standards and be acceptable for transportation to and storage at participating sites.
5. The PDP standard design must accommodate available fabrication technologies at a reasonable cost.
Figure E-1. PDP Standard Inner and Outer Cylinders, Elevation View
Figure E-2. PDP Standard Encapsulation Assembly, Elevation View
Appendix F

NDA PDP Matrix SWB Specifications and Descriptions
Appendix F
NDA PDP Matrix SWB Specifications and Descriptions

This appendix provides an overview of the NDA PDP matrix SWB set, general specifications, designs, and physical configurations. Additional technical detail on the design and fabrication of the NDA PDP matrix SWB set is provided in the following documents:

6. Letter of Transfer of Materials to the NDA PDP from Washington TRU Solutions, LLC – Central Characterization Project: CP:08:00361

Use of the waste matrix box surrogate in combination with the NDA PDP standards provides the CBFO with information useful in assessing the ability of DOE facility measurement organizations to meet requirements for NDA of wastes intended for disposal at WIPP. The CBFO uses data generated in the NDA PDP as part of the assessment and approval process for measurement facilities supplying services for the characterization of TRU waste for disposal at the WIPP.
An NDA PDP matrix SWB must nominally represent the attributes and properties of TRU wastes for disposal at the WIPP and packaged in the SWB container. The NDA PDP SWB surrogate waste matrix characteristics considered in the specification and design of the NDA PDP SWB include matrix homogeneity, elemental composition, density, and total mass. The establishment of realistic attributes and design in terms of actual SWB matrix inventories allows the CBFO to relate box assay system function and performance to WIPP waste matrix configurations. This allows statements regarding box assay system performance to be referenced to a specific, known, and documented boxed waste form configuration.

Multiple requirements define the design of the NDA PDP SWB waste matrix surrogate. These requirements range from ensuring a faithful replication of the nominal properties of the SWB waste types of interest to construction methods that result in robust long-lasting matrix modules and precise positioning of radioactive standards. The major matrix surrogate requirements are listed below.

1. Surrogate waste matrix properties must nominally represent specified DOE-generated waste forms as packaged in the SWB container. For the NDA Box PDP, three SWB matrix types were originally developed: mixed metals, dry combustibles, and concrete debris. These matrices were developed considering the expected properties of WIPP waste including matrix density, matrix elemental composition, matrix box fill height, and geometrical distribution. Two additional matrix types have since been acquired into the PDP: light metals and wet combustibles (references 7 and 8 above).

2. The matrix surrogate array consists of 60 modules that can be used to construct variations in the physical geometry of the waste matrix ranging from uniform matrix loading to extreme heterogeneous distributions.

3. The surrogate matrix modules must be of manageable size and weight to support routine manual handling of the surrogate box module configuration.

4. The surrogate matrix modules must be robust to withstand transportation and routine handling.

5. The design of the sample configuration SWB must have an internal support structure that provides a convenient means to externally introduce and locate radioactive standards into the interior SWB volume containing matrix modules.

6. The SWB internal support structure must allow for positioning of one or more radioactive standards at various X-Y box coordinates and vertical heights (Z) sufficient to produce radioactivity distributions useful in the assessment of NDA performance.

7. The radioactive standard insertion mechanism must allow for precise and reproducible positioning of NDA PDP standards.

8. The internal support structure design and materials must inherently minimize interferences arising from interaction with the characteristic radiations utilized for waste NDA measurements, be representative constituents, or have nearly equivalent properties of the waste form being simulated.

9. The matrix SWB design must allow consistent reproduction of matrix/standard configurations through time.

10. The matrix surrogate must include design provisions ensuring a stable, non-variable, and effectively inert matrix.
11. The matrix material must comply with health and safety considerations such that the materials are not hazardous, necessitating special handling and storage precautions.

12. The SWB surrogate must be readily distinguishable from the actual waste SWBs through a unique color and have a durable exterior alphanumeric identification.

13. A means to address void spaces introduced by surrogate configuration box fixtures must be provided.

14. Matrix modules must be of dimensions allowing interchangeability with matrix modules of different material type composition such as void, metals, or combustibles type modules.

15. The surrogate configuration shall not manifest systematic effects in commonly employed NDA measurement methods. Rather, the configuration must be random in attribute distribution.

In accordance with the general requirements listed above, the SWB waste matrix surrogate consists of a set of 60 modules that when combined, fill the interior volume of the SWB configuration box to a fill height of approximately 87% (1,538,744 cm³) of the interior box height. The multiple module design allows flexibility in configuration of the NDA PDP SWB sample.

The multiple module strategy provides for sample configurations ranging from a uniform matrix distribution throughout the box to a heterogeneous distribution assembled with void modules or modules of differing matrix types. Presently, five NDA PDP SWB matrix types are available: mixed metals, light metals, dry combustibles, wet combustibles, and concrete debris. The ability to mix and match matrix module types allows CBFO to create surrogate matrix configurations that span a range of test sample matrix configurations. An isometric of the SWB multi-module configuration as installed in an NDA PDP SWB configuration box is shown in figure F-1.

Each NDA PDP SWB matrix module set consists of two different module shapes, referred to as the center module and the end type module. The center modules are used in the rectangular midsection of the SWB box and the end modules are used to accommodate the curved ends of the SWB, as shown in figures F-2 and F-3, respectively.

The matrix modules have insert fixture pass-through holes to provide for the insertion and precise positioning of NDA PDP standards within the matrix. The SWB matrix module pass-through holes allow installation of aluminum NDA PDP standard insert fixtures for each of the 24 insert tube locations (figure F-4). If specified for a given matrix module, the NDA PDP standard(s) is positioned at a desired vertical location in the insert fixture through the use of locating pins. The insert fixture is then positioned into the SWB matrix module array. Matrix spacers are provided when appropriate, for use with the matrix surrogate to fill any void space within the insert fixture not occupied by NDA PDP standard(s), thus eliminating undesirable vertical void spaces.
Figure F-1. Cutaway Isometric of SWB Matrix Surrogate
Figure F-2. Center Type SWB Matrix Module
Figure F-3. End Type SWB Matrix Module
Figure F-4. SWB Matrix Surrogate PDP Standard Insert Fixture