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1 Introduction

This report documents the preparation of the 2013 potentiometric contour map and associated particle
tracks for the Culebra Member of the Rustler Formation in the vicinity of the Waste Isolation Pilot Plant
(WIPP). The driver for this analysis is the draft of the Stipulated Final Order sent to NMED on May 28,
2009 (Moody, 2009). This Analysis Report follows the procedure laid out in Sandia National Laboratories
procedure SP 9-9 (Kuhlman, 2009), which reflects this NMED driver. This report is similar to Kuhlman
{2013); the same analysis is performed on data from February 2013, rather than February 2012 data.
February 2013 data for contouring were obtained from the WIPP Management & Operations contractor
{Watterson, 2014).

Beginning with the ensemble of 100 calibrated MODFLOW transmissivity (7), horizontal anisotropy (A),
and areal recharge (R) fields (Hart et al., 2009) used in WIPP performance assessment (PA), average
parameter fields were used as input to MODFLOW to simulate equivalent freshwater heads within and
around the WIPP land withdrawal boundary (LWB). For 2013, PEST is used to adjust a subset of the
boundary conditions in the averaged MODFLOW model to improve the match between the observed
freshwater heads and the model-predicted heads at Culebra well locations. The output of the averaged,
PEST-calibrated MODFLOW model is both contoured and used to compute the 2013 advective particle
track forward from the WIPP waste-handling shaft.
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2 Scientific Approach

2.1 Modeling Overview
Steady-state groundwater flow simulations were carried out using similar software to what was used for
the WIPP Compliance Recertification Application 2009 Performance Assessment Baseline Calculation
(CRA-2009 PABC), as presented in the AP-114 Task 7 Analysis Report (Hart et al., 2009), and used in CRA-
2014 (DOE, 2014). This setup was used to create the input calibrated fields. See Table 1 for a summary
of software used in this analysis. The MODFLOW parameter fields (transmissivity (T}, anisotropy (A), and
recharge (R)) used in this analysis are ensemble averages of the 100 sets of Culebra parameter fields
used for WIPP PA for the CRA-2009 PABC and CRA-2014. To clearly distinguish between the two
MODFLOW models, the original MODFLOW model, which consists of 100 realizations of calibrated
parameter fields (Hart et al., 2009), will be referred to as the “PA MODFLOW model.” The model derived
here from the PA MODFLOW model, calibrated using PEST, and used to construct the resulting contour
map and particle track, is referred to as the “averaged MODFLOW model.” The PA MODFLOW model 7,
A and R input fields are appropriately averaged across 100 realizations, producing a single averaged
MODFLOW flow model. This averaged MODFLOW model was used to predict regional Culebra
groundwater flow across the WIPP site.

For CRA-2009 PABC, PEST was used to construct 100 calibrated model realizations of the PA MODFLOW
model by adjusting the spatial distribution of model parameters (T, A, and R); MODFLOW boundary
conditions were fixed. The calibration targets for PEST in the PA MODFLOW model were both May 2007
freshwater heads (excluding AEC-7) and transient drawdown to large-scale pumping tests. Hart et al.
(2009) described the calibration effort that went into the CRA-2009 PABC; DOE (2014) summarizes the
model development and calibration results. An analogous but much simpler process was used here for
the averaged MODFLOW model. PEST was used to modify a subset of the MODFLOW boundary
conditions (see red boundaries in Figure 1). For simplicity the boundary conditions were modified
(rather than the T, A, and R parameter fields), because re-calibrating the 100 T, A, and R parameter
fields would be a significant effort (thousands of hours of computer time). The PEST calibration targets
for the averaged MODFLOW model were the February 2013 measured annual freshwater heads at
Culebra monitoring wells. In the averaged MODFLOW model, boundary conditions were modified while
holding model parameters (T, A, and R) constant. In contrast to this, the PA MODFLOW model used fixed
boundary conditions and made adjustments to T, A, and R parameter fields.
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Software Version Description Platform Software QA status
Groundwater flow Acquired; qualified under NP 19-1
_@DFLQYV sl e model Recluster (Harbaugh et al., 2000)
Automatic parameter Developed; qualified under NP 19-1
i AL estimation code FRuclUSEer {Doherty, 2002)
DTRKMF 1.00 Particle tracker PA cluster Developed; qualified under NP 19-1
Python 234 Scrlp.tmg la.\nguage (fite PA cluster Commercial off the shelf
manipulation)
Python 2.7.3 Scrlpt.s nglanguage Linux desktop Commercial off the shelf
(plotting) = —
Bash 3.00.15 SeApting Janguage:{file PA cluster Commercial off the shelf

manipulation)
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Withdrawal Boundary

\ CRA2008 PABC .~

Active MODFLOW Boundary

3586000

NAD27 UTM Y {m)
2580000

3575000

3570000

Contour Map
Area

MODFLOW
Canstant Head Cells
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Figure 1. MODFLOW-2000 model domain, adjusted boundary conditions shown in red, contour area outlined in green.

The resulting heads from the PEST-calibrated averaged MODFLOW model were contoured over an area
surrounding the WIPP site using matplotlib (a Python plotting library). The figure covers a subset of the
complete MODFLOW model domain; see the green rectangle surrounding the WIPP LWB in Figure 1. We
compute the path taken through the Culebra by a conservative (i.e., non-dispersive and non-reactive)
particle from the waste-handling shaft to the WIPP LWB. The particle track is computed from the
MODFLOW flow field using DTRKMF, these results are also plotted using matplotlib. Scatter plot
statistics were computed using NumPy (a Python array-functionality library), which summarize the
quality of the fit between the averaged MODFLOW model and observed Culebra freshwater heads.
MODFLOW, PEST, DTRKMF, and the Bash and Python input files and scripts written for this work were
executed on the PA Linux cluster (alice . sandia.gov), while the creation of figures was done using
Python scripts on an Intel-Corei7-equipped desktop computer running Kubuntu Linux, version 12.04.

Information Only



Culebra Contour Map
Page 6 of 54

2.2 Creating Average MODFLOW Simulation
An averaged MODFLOW model is used to compute the equivalent freshwater head and cell-by-cell flow
solution. The computed heads are contoured and the flow solution is used to compute particle tracks.
The ensemble-averaged inputs are used to create a single average simulation that produces a single
averaged output, rather than averaging the 100 individual outputs of the Culebra flow model used for
WIPP PA. This average approach was taken to simplify the contouring process, and create a single
contour map that exhibits physically realistic patterns (i.e., its behavior is constrained by the physics
embodied in the MODFLOW simulator code). An alternative approach would average outputs from 100
models to produce a single average result, but average result may be physically unrealistic. The choice to
average inputs, rather than outputs, is a simplification (only one model must be calibrated using PEST,
rather than all 100 realizations). This simplification results in “smooth” freshwater head contours and
relatively faster particle tracks, compared to those predicted by the any one of the 100 fields calibrated
as part of AP114 Task 7 (Hart et al., 2009).

The MODFLOW model grid is a single 7.5-m thick layer, comprising 307 rows and 284 columns; each
model cell is a 100-meter square. The modeling area spans 601,700 to 630,000 meters in the east-west
direction, and 3,566,500 to 3,597,100 meters in the north-south direction, both in Universal Transverse
Mercator (UTM) North American Datum 1927 (NAD27) coordinates, zone 13 north.

The calibrated T, A, and R parameter fields from the PA MODFLOW model were checked out of the PA
version control repository using the checkout average run modflow.sh script (scripts are
listed completely in the Appendix; input and output files are available from the WIPP version control
system in the repository /nfs/data/CVSLIB/Analyses/SP9_9). Model inputs can be divided
into two groups. The first group includes model inputs that are common across all 100 calibrated
realizations; these include the model grid definition, the boundary conditions, and the model solver
parameters. The second group includes the T, A, and R fields, which are different for each of the 100
realizations. The constant model inputs in the first group are used directly in the averaged MODFLOW
model, while the inputs in the second group were averaged across all 100 calibrated model realizations
using the Python script average realizations.py. All three averaged parameters were
geometrically averaged (i.e., the arithmetic average was computed in log,, space), since they vary over
multiple orders of magnitude.

2.3 Boundary Conditions
The boundary conditions taken from the PA MODFLOW model are used as the initial condition from
which PEST boundary condition calibration proceeds. There are two types of boundary conditions in the
WIPP MODFLOW model. The first type of condition includes geologic or hydrologic boundaries, which
correspond to known physical features in the flow domain. The no-flow boundary along the axis of Nash
Draw is a hydrologic boundary (the boundary along the dark gray region in the upper left of Figure 1).
The constant-head boundary along the halite margin corresponds to a geologic boundary (the eastern
irregular boundary adjoining the light gray region in the right of Figure 1). Physical boundaries are
believed to be well known, and are not adjusted in this PEST calibration.
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The second type of boundary condition includes the constant-head cells along the rest of the model
domain. This type of boundary includes the straight-line southern, southwestern, and northern
boundaries that coincide with the primary compass directions and the rectangular frame surrounding
the model domain (shown as heavy red lines in Figure 1). The value of specified head assigned in
boundary cells corresponding this second boundary type is adjusted in the PEST calibration process.

The Python script boundary_types.py is used to distinguish between the two different types of
specified head boundary conditions based on the specified head value used in the PA MODFLOW model.
All constant-head cells (specified by a value of -1 in the MODFLOW IBOUND array from the PA
MODFLOW model) with a starting head value greater than 1000 meters above mean sea level {AMSL)
are left fixed and not adjusted in the PEST optimization, because they correspond to no-flow constant
head region to the east of WIPP. The remaining constant-head cells are distinguished by setting their
IBOUND array value to -2 (which is still interpreted as a constant-head value by MODFLOW, but allows
simpler discrimination between boundary conditions in Python scripts elsewhere in this analysis).

Using the output from boundary_ types.py, the Python script surface 02_extrapolate.py
computes the initial head at active model cells (IBOUND=1) and the specified constant-head at the
adjustable boundary condition cells (IBOUND=-2), given parameter values for the surface to extrapolate.

2.4 PEST Calibration of Averaged MODFLOW Model to Observations
There are two major types of inputs to PEST. The first input class is the “forward model”, which includes
the entire MODFLOW model setup derived from the PA MODFLOW model and described in the previous
section, along with any pre- or post-processing scripts or programs needed. These files comprise the
forward model PEST runs repeatedly to estimate sensitivities of model outputs to model inputs. The
second input type includes the PEST configuration files, which list parameter and observation groups,
observation weights, and indicate which parameters in the MODFLOW model will be adjusted in the
inverse simulation. Freshwater head values from February 2013 (H-09bR used a January freshwater
head, to avoid abnormally high water levels in February) used as targets for the PEST calibration from
Watterson (2014) are listed in Table 2, and specified along with weights in the PEST configuration files.
SNL-13 was indicated in Waterson (2014) as being an anomalous level, which should be excluded from
mapping. Excluding this datapoint from the analysis resulted in high predicted water levels in all the
wells on the southern portion of the WIPP site. Scientific judgment was used to include the well in the
contour map generation exercise.
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Table 2. Freshwater Head Calibration Targets used in PEST, from Watterson (2014).
E T —— Freshwater Head Culebra
Well Date Elevation Groundwatel;
{m AMSL) Density (g/cm’)

AEC-7 02/08/13 933.39 1.067
C-2737 02/12/13 | 920.45 1.023
ERDA-9 02/12/13 924.54 1.073
H-02b2 02/12/13 928.05 1.012
H-03b2 02/12/13 918.01 ~1.036
H-04bR 02/11/13 916.38 1.017
H-05b 02/08/13 939.65 1.095
H-06bR 02/11/13 935.97 1.038
H-07b1 02/07/13 913.92 1.007
H-09bR 01/07/13 912.99 1.000
H-10c 02/08/13 923.85 1.094
H-11b4R 02/11/13 916.61 1.076
H-12 02/11/13 918.46 1.113
H-15R 02/12/13 919.66 1.118
H-16 02/12/13 028.42 1.037
H-17 02/08/13 916.55 1.133 1
H-19b0 02/11/13 918.51 1.066
IMC-461 02/07/13 926.97 1.000
SNL-01 ~ 02/07/13 938.85 1.029
SNL-02 02/07/13 936.48 1.009
SNL-03 02/07/13 938.41 1.028
SNL-05 02/07/13 936.57 1.009

| SNL-08 02/08/13 930.75 B 1.094
SNL-09 02/07/13 930.82 1.018 ]
SNL-10 02/07/13 930.60 1.009
SNL-12 02/08/13 915.02 1.006
SNL-13 02/07/13 918.62 1.018
SNL-14 02/08/13 915.65 1.046
SNL-16 02/07/13 917.54 1.009
SNL-17 02/08/13 916.02 1.005
SNL-18 02/07/13 936.49 1.005
SNL-19 02/07/13 936.49 1.007
WIPP-11 02/12/13 939.03 1.038
WIPP-13 02/12/13 937.58 1.041
WIPP-19 02/12/13 933.54 1.052
WQSsP-1 02/12/13 937.42 1.051
WQSsP-2 02/12/13 939.53 1.048
WQSP-3 02/12/13 936.70 1.147
waQsP-4 02/11/13 919.07 1.077

| WQSP-5 02/12/13 918.27 1.027
WQSP-6 02/08/13 921.77 1.015

To minimize the number of estimable parameters, and to ensure a degree of smoothness in the
specified constant-head boundary condition values, a parametric surface is used to extrapolate the
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heads to the estimable boundary conditions. The surface is of the same form described in the analysis
report for AP-114 Task 7. The parametric surface is given by the following equation:

h(x,y)= A+ B(y + Dsign(y)abs(y)*)+ C(Ex> + Fx* — x) )

where abs(y) is absolute value and sign(y) is the function returning 1 for y >0, -1 for y < 0 and 0 for
y =0and x and y are coordinates scaled to the range —1 < {x, ¥} <1. In Hart et al. (2009), the values
A=928,B=8,C=1.2,D=1,E=1, F=-1and a = 0.5 are used with the above equation to assign the
boundary conditions in the PA MODFLOW model.

PEST was used to estimate the values of parameters A, B, C, D, E, F, and a given the observed heads in
Table 2. The Python script surface 02 extrapolate.py was used to compute the MODFLOW
starting head input file (which is also used to specify the constant-head values) from the parameters A-F
and a. Each forward run of the model corresponded to a call to the Bash script run_02_model. This
script called the surface 02 extrapolate.py script, the MODFLOW-2000 executable, and the
PEST utility mod2obs . exe, which is used to extract and interpolate model-predicted heads from the
MODFLOW output files at observation well locations.

The PEST-specific input files were generated from the observed heads using the Python script
create pest 02 input.py. The PEST input files include the instruction file (how to read the
MODFLOW output), the template files (how to write the MODFLOW input), and the PEST control file
(listing the ranges and initial values for the estimable parameters and the values and weights associated
with observations). The wells used in each year’s PEST calibration were separated into three groups.
Higher observation weights (2.5) were assigned to wells inside the LWB, and lower observation weights
(0.4) were assigned to wells distant to the WIPP site, while wells in the near the WIPP LWB were
assigned an intermediate weight (1.0). Additional observations representing the average heads north of
the LWB and south of the LWB were used to help prevent over-smoothing of the estimated results
across the LWB. The additional observations and weights were assigned to improve the fit in the area of
interest (inside the WIPP LWB), possibly at the expense of a somewhat poorer fit far from the WiPP LWB
and closer to the boundary conditions.

2.5 Figures Generated from Averaged MODFLOW Model
The MODFLOW model is run predictively using the averaged MODFLOW model parameters, along with
the PEST-calibrated boundary conditions. The resulting cell-by-cell flow budget is then used by DTRKMF
to compute a particle track from the waste-handling shaft to the WIPP LWB. Particle tracking stops
when the particle crosses the WIPP LWB. The Python script
convert_dtrkmf output_for surfer.py converts the MODFLOW cell-indexed results of
DTRKMF into a UTM x and y coordinate system, saving the results in the Surfer blanking file format to
facilitate plotting results. The heads in the binary MODFLOW output file are converted to an ASCI matrix
file format using the Python script head bin2ascii.py.
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The resulting particle track and contours of the model-predicted head are plotted using a matplotlib
Python script for an area including the WIPP LWB, corresponding to the region shown in previous
versions of the ASER (e.g., see Figure 6.11 in DOE (2008)), specifically the green box in Figure 1. The
modeled heads extracted from the MODFLOW output by mod2obs . exe are then merged into a
common file for plotting using the Python script merge_observed modeled heads.py.
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3 2013 Results

3.1 2013 Equivalent Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 2 and Figure 3. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region to the right of the purple line in the eastern part of the figures corresponds to the
portion of the Culebra that is located stratigraphically between halite in other members of the Rustler
Formation (Tamarisk Member above and Los Medafios Member below). This region east of the “halite
margin” has a high freshwater head but extremely low transmissivity, essentially serving as a no-flow

boundary in this area.

Freshwater Heads WIPP Area 2013
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Figure 2. Model-generated February 2013 freshwater head contours with observed head listed at each well (5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB. Purple curve is Rustler halite margin.
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Freshwater Heads Model Area 2013
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Figure 3. MODFLOW-modeled February 2013 heads for entire model domain (10-foot contour interval). Green rectangle
indicates region contoured in Figure 2, black square is WIPP LWB.

3.2 2013 Particle Track
The blue arrow in Figure 2 shows the DTRKMF-calculated path a water particle would take through the
Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path length
of 4073 m). Assuming the transmissive portion of the Culebra is only 4-m thick, and assuming a constant
porosity of 16%, the travel time to the WIPP LWB is 6234 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.65 m/yr.

3.3 2013 Measured vs. Modeled Fit
The scatter plot in Figure 4 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green ‘x’s, and other wells within the MODFLOW model domain but distant
from the WIPP site are indicated with blue stars. AEC-7 was give'n a low weight (0.01), to prevent its
large residual from dominating the optimization. Additional observations representing the average
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heads north of the LWB and south of the LWB were used to help prevent over-smoothing of the
estimated results across the LWB. This allowed PEST to improve the fit of the model to observed heads
inside the area contoured in Figure 2, at the expense of fitting wells closer to the boundary conditions
(i.e., wells not shown in Figure 2).

modeled vs. measured 2013
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Figure 4. Measured vs. modeled scatter plot for averaged MODFLOW model generated heads and February 2013 observed
freshwater heads

The central black diagonal line in Figure 4 represents a perfect model fit (1:1 or 45-degree slope); the
two green lines on either side of this represent a 1-m misfit above or below the perfect fit. Wells more
than 1.5 m from the 1:1 line are labeled. AEC-7 has a large misfit (13 m), for two reasons. First, this well
has historically had an anomalously low freshwater head elevation, lower than wells around it in all
directions. Secondly, it did not have a May 2007 observation (due to ongoing well reconfiguration
activities) and therefore was not included as a calibration target in the PA MODFLOW model calibration.
The ensemble-average T, A, and R fields used here were not calibrated to accommodate this
observation. This well is situated in a low-transmissivity region, and near the constant-head boundary
associated with the halite margin, therefore PEST will not be able to improve this fit solely through
adjustment of the boundary conditions indicated with red in Figure 1.
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The calibrated parameters (for equation 1) were A = 929.4, B =8.76, C=-1.036, D =0.7920, £=-0.8611,
F=-2.340, and a = -0.4502. The parameters a (exponent on y), C (coefficient on all x variability), and £
(coefficient on x> variability) had the largest relative change (~186-190%) compared to the starting
values. Parameter F (coefficient on x*) was within -134% of its original value, and D (coefficient on
exponentiated y term) was 21% away. All other parameters were <10% different from their original
values.

The squared correlation coefficient (R?) for the measured vs. modeled data is listed in Table 3. Figure 5
and Figure 6 show the distribution of errors resulting from the PEST-adjusted model fit to observed data.
The wells within and near the WIPP LWB have an R’ of greater than 98%, and the calibration decreased
the R? value very slightly when including all wells. The calibration improved the fit for the wells in and
near the WIPP LWB at the expense of fit to wells distant from the LWB. The distribution of residuals in
Figure 5 does not have a strong bias.

Table 3. 2013 Measured vs. Modeled correlation coefficients

dataset measured vs. modeled R?
wells inside WIPP LWB 0.985 -
Uncalibrated | wells <3km from WIPP LWB 0.983
all wells 0.942
wells inside WIPP LWB ~ 0.988
Calibrated wells <3km from WIPP LWB 0.985
) B all wells 0938

Histogram of Model Residuals 2013
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Figure 5. Histogram of Measured-Modeled errors for 2013
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Figure 6. Measured-Modeled errors at each well location for 2013

Aside from the poor fit at AEC-7, the model fit to the February 2013 observations is good. The residual at
SNL-18 is over 10 feet, because the observed water level at this well has seen significant fluctuations
due to oil and gas activity. PEST is not able to match these observed variations through changes to the
boundary conditions. The averaged MODFLOW model captures the bulk Culebra flow behavior, while
the PEST calibration improved the model fit to the specific February 2013 observations.
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5 Run Control Narrative
This section is a narrative describing the calculation process mentioned in the text, which produced the

figures given there.

Figure 7 gives an overview of the driver script checkout _average run modflow. sh (§A-4.1);
this script first exports the 3 parameter fields (transmissivity (T), anisotropy (A), and recharge (R}, and
storativity (S)) from CVS version control for each of the 100 realizations of MODFLOW, listed in the file
keepers (see lines 17-26 of script). Some of the realizations are inside the Update or Update2
subdirectories in CVS, which complicates the directory structure. An equivalent list keepers_short is
made from keepers, and the directories are moved to match the flat directory structure (lines 31-53).
At this point, the directory structure has been modified but the MODFLOW input files checked out from

CVS are unchanged.

Python script average realizations.py (§A-4.2)is called, which first reads in the

keepers_ short list, then reads in each of the 400 input files and computes the geometric average at
each cell across the 100 realizations. The 400 input files are each saved as flattened matrices, in row-
major order. The average result is saved into 4 parameter files, each with the extension . avg instead
of . mod. A single value from each file, corresponding to either the cell in the southeast corner of the
domain (input file row 87188 = model row 307, model column 284 for K and A) or on the west edge of
the domain (input file row 45157 = model row 161, model column 1 for R and S) is saved in the text file
parameter representative values.txt to allow checking the calculation in Excel,
comparing the results to the value given at the same row of the . avg file. The value in the right column
of Table 4 can be found by taking the geometric average of the values in the text file, which are the
values from the indicated line of each of the 100 realizations.

The input files used by this analysis, the output files from this analysis (including the plotting scripts) are
checked into the WIPP version control system (CVS) under the repository
$CVSLIB/Analyses/SP9 9.
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CVS: AP-114 Task 7
100 realizations T,A,R &S fields +
Other MF2K input files

average realizations.py boundary types.py

Compute log-space average T,A,R & S fields Determine which boundaries will be adjusted

surface_02_extrapolate.py

Compute parametric surface for starting head

create_average NS_residuals.py

Compute meta-observations regarding head

MODFLOW-2000
Binary head output

MODFLOW-2000 Binary flow
velocity output

head bin2ascii.py

Convert head field to Surfer
ASCl grid format for plotting

plot-results- plot-contour-
v rmr oty TONE convert_dtrkmf output for surfer.py

Plot scatter & bar Plot maps w/ COhVi'Er‘t IJ. DTRKMF output t(? XY Surfer ASCHl
figures w/ matplotlib matplotiib blanking file format for plotting

Figure 7. Process flowchart; dark gray indicates qualified programs, light gray are scripts written for this analysis

Table 4. Averaged values for representative model cells

Field Input file row Model row Model column Geometric average
K 87188 307 284 9.2583577E-09
A 87188 307 284 9.6317478E-01
R 45157 161 1 1.4970689E-19
s 45157 161 ’ T © 4.0388352E-03

Information Only




Culebra Contour Map
Page 19 of 54

Figure 8 shows plots of the average logy, parameters, which compare with similar figures in Hart et al.
(2009); inactive regions (< 10*°) were reset to 1 to improve the plotted color scale. The rest of the
calculations are done with these averaged fields.

average log,o(K) average log;o(4)
0 0.0 0 i

50 -1.5 50 0.45

100 I 100 -
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Figure 8. Plots of base-10 logarithms of average parameter fields; rows and columns are labeled on edges of figures.

Next, a subdirectory is created, and the averaged MODFLOW model is run without any modifications by
PEST. Subsequently, another directory will be created where PEST will be run to improve the fit of the
model to observed heads at well locations.

The next portion of the driving script checkout_average_run_modflow. sh links copies of the
input files needed to run MODFLOW-2000 and DTRKMF into the original average run directory.
Then MODFLOW-2000 is run with the name file m£2k head.nam, producing binary head

(modeled head.bin)and binary cell-by-cell flow budget (modeled_flow.bud) files, as well as a
text listing file (nodeled head.1lst). DTRKMEF is then run with the input files dtrkmf . in and
wippctrl. inp, which utilizes the celi-by-cell budget file written by MODFLOW to generate a particle
track output file, dtrk . out. The input file wippctrl . inp specifies the starting location of the
particle in DTRKMF face-centered cell coordinates, the porosity of the aquifer (here 16%), and the
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coordinates of the corners of the WIPP LWB, since the calculation stops when the particle reaches the
LWB.

The Python script head bin2ascii.py (§A-4.7) converts the MODFLOW binary head file, which
includes the steady-state head at every element in the flow model domain (307 rows x 284 columns)
into a Surfer ASCII grid file format. This file is simply contoured in Python using matplotlib, no
interpolation or gridding is needed. The Python script

convert dtrkmf output for surfer.py (§A-4.9) reads the DTRKMF output file dtrk. out
and does two things. First it converts the row, column format of this output file to an x, y format suitable
for plotting, and second it converts the effective thickness of the Culebra from 7.75 m to 4 m. The
following table shows the first 10 lines of the dtrk. out and the corresponding output of the Python
script dtrk output original average.bln. The first three columns of dtrk. out (top half of
Table 5) after the header are cumulative time (red), column (blue), and row (green). The three columns
in the blanking file (second half of Table 5) after the header are UTM NAD27 X (blue), UTM NAD27 Y
(green), and adjusted cumulative time (red, which is faster than the original cumulative travel time by
the factor 7.75/4=1.9375). The conversion from row, column to x, y is

X =601700+100* column
Y =3597100 —100*row

since the 1,J origin is the northwest corner of the model domain (601700, 3597100), while the X,Y origin
is the southwest corner of the domain. The blanking file is plotted directly in Python using matplotlib,
since it now has the same coordinates as the ASCII head file.

Table 5. Comparison of first 10 lines of DTRKMF output and converted Surfer blanking file for original_average

.59999996E-01
.59999996E-01

.00000000E+00
.00000000E+00

.85168267E-01
.85130032E-01

-00000000E+00
.02562574E+01

-18790000E+04
.18859872E+04

1.50210000E+04 0O 1 1. 1.

1.50285080E+04 1 1 1 1

.18929942E+04 1.50359947E+04 2.05104788E+01 1.85094756E-01 1.59999996E-01 1.0000000CE+00
.195000000E+04 1.50434379E+04 3.07321029E+01 1.85062532E-01 1.59999996E-01 1.00000000E+00
.19206651E+04 1.50624751E+04 5.88294962E+01 1.73534671E-01 1.59999996E-01 1.00000000E+00
.19415109E+04 1.50813473E+04 8.69490492E+01 1.73684593E-01 1.59999996E-01 1.00000000E+00
.19624759E+04 1.51000000E+04 1.15010608E+02 1.73860152E-01 1.59999996E-01 1.00000000E+00
.19749757E+04 1.51102419E+04 1 1 1 1
.19874963E+04 1.51204665E+04 1 1 1 1

.59999996E-01
.5999%996E-01

.00000000E+00
.00000000E+00

.31170520E+02
.47335525E+02

.81333000E-01

1
1
1
43 1
62 1
1
1
1
28 .B1390626E-01

The PEST utility script mod2obs . exe is run to extract and interpolate the model-predicted heads at
observation locations. The input files for mod2obs.exe were taken from AP-114 Task 7 in CVS. The
observed head file has the wells and freshwater heads, but is otherwise the same as that used in the
model calibration in AP-114. The Python script merge observed modeled heads.py (§A-4.9)
simply puts the results from mod2obs . exe and the original observed heads in a single file together for
easier plotting and later analysis.
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A similar process is carried out in a new directory called pest_ 02 (beginning line 146 of the driver
script). The PEST calibration is carried out there, to keep it separate from the original_ average
simulation. Now the Python script boundary types.py (§A-4.3) is also run, to create a new
MODFLOW IBOUND array, where the two different types of boundary conditions are differentiated. This
Python script uses the MODFLOW IBOUND array (init_bnds_orig. inf first % of Table 6) and the
initial head array (init_head orig.mod middle  of Table 6) as inputs, and writes a new
MODFLOW IBOUND array (init_ bnds. inf bottom % of Table 6) with constant-head nodes indicated
in red in Figure 1 marked as -2 and other constant-head nodes remaining as -1 as output. The script
differentiates between these two types of boundary conditions by checking if the starting head is
<1000m. Starting heads >1000m are associated with the constant-head areas to the east of the halite
margins (lighter gray areas in Figure 1).

Table 6. Input IBOUND, starting head, and output IBOUND array data corresponding to first row of MODFLOW model

0 0 O
0 0 O
0 0 =1
-1 -1
~3

0 0
0 0
0 0

3.

2 I
i

R
i
A

943 943
944 944

943
944

943
944

943 943
944 3944

944 9244
944 944
944 944

944 944
944 944
944 944

244
944
944

944
944
944

944 944

944

Table 6 shows the data corresponding to the northernmost row of the MODFLOW model domain (284
entries long) for the two input files and one output file. in the top IBOUND array, the values are either 0
or -1, indicating either inactive (the region northwest of the no-flow area shown in dark gray in Figure 1)
or constant head (both red and light gray cells in Figure 1). The first 284 values from the initial head file
(reformatted from scientific notation to integers to facilitate printing) show a jump from approximately
944 (in blue) to >1000 (in red). These same cells are colored in the output, showing how the initial head
value is used to distinguish between the two types of constant-head boundaries. MODFLOW treats any
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cells as constant head which have an IBOUND entry <0, so both -2 and -1 are the same to MODFLOW,
but allow distinguishing between them in the Python script which extrapolates the heads to the
boundaries.

The required PEST input files are created by the Python script create pest 02 input.py
(§A-4.4). This script writes 1) the PEST instruction file (modeled head. ins), which shows PEST how
to extract the model-predicted heads from the mod2obs . exe output; 2) the PEST template file
(surface par params.ptf), which shows PEST how to write the input file for the surface
extrapolation script; 3) the PEST parameter file (surface par params.par), which lists the
starting parameter values to use when checking the PEST input; 4) the PEST control file

(bc_adjust_ 2013ASER.pst), which has PEST-related parameters, definitions of extrapolation
surface parameters, and the observations and weights that PEST is adjusting the model inputs to fit. The
observed heads are read as an input file in the PEST borehole sample file format

(meas_head 2013ASER.smp), and the weights are read in from the input file

(obs_loc 2013ASER.dat).

PEST runs the “forward model” many times, adjusting inputs and reading the resulting outputs using the
instruction and template files created above. The forward model actually consists of a Bash shell script
(run 02 model) that simply calls a pre-processing Python script surface 02 extrapolate.py
(§A-4.5), the MODFLOW-2000 executable, the Python script

create_average NS residuals.py, and the PEST utility mod2obs . exe as a post-processing
step. The script redirects the output of each step to /dev/null to minimize screen output while
running PEST, since PEST will run the forward model many dozens of times.

The Python script create average NS residuals.py takes the output from the PEST utility
mod2obs . exe and creates a meta-observation that consists of the average residual between
measured and model-prediction, only averaged across the northern or southern WIPP wells (the wells in
the center of the WIPP site are not included in either group). This was done to minimize cancelation of
the errors north (where the model tended to underestimate heads) and south (where the model tended
to overestimate heads) of the WIPP. The results of this script are read directly by PEST and incorporated
as four additional observations (mean and median errors, both north and south of WIPP).

The pre-processing Python script surface 02 extrapolate.py reads the new IBOUND array
created in a previous step (with -2 now indicating which constant-head boundaries should be modified),
the initial head file used in AP-114 Task 7 (init_head orig.mod), two files listing the relative X and
Y coordinates of the model cells (rel {x,y} coord.dat), and an input file listing the coefficients of
the parametric equation used to define the initial head surface. This script then cycles over the elements
in the domain, writing the original starting head value if the IBOUND value is -1 or 0, and writing the
value corresponding to the parametric equation if the IBOUND value is -2 or 1. Using the parameters
corresponding to those used in AP-114 Task 7, the output starting head file should be identical to that
used in AP-114 Task 7.
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After PEST has converged to the optimum solution for the given observed heads and weights, it runs the
forward model one more time with the optimum parameters. The post-processing Python scripts for
creating the Surfer ASCII grid file and Surfer blanking file from the MODFLOW and DTRKMF output are
run and the results are plotted using additional Python scripts that utilize the plotting and map
coordinate projection functionality of the matplotlib Iibrary.

These two plotting scripts (plot -contour-maps.py and plot-results-bar-charts.py) are
included in the appendix for completeness, but only draw the figures included in this report, and passed
on to WRES for the ASER. These two scripts automate the plotting process and take the place of the
Microsoft Excel, USACE Corpscon, and Golden Software Surfer input files that were previously used.
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6 Files and Script Source Listings

6.1 Input Files

[‘bytes | file type | description file name
1.5K | Python script | average 100 realizations average realizations.py
2.1K | Python script | distinguish different BC types boundary_types.py
. main routine: checkout files, run MODFLOW
6.6K | Bash script vz, PEST, esll Pythion scepts checkout_average _run.modflow.sh
; convert DTRKMF 1J output
624 | Python script | to Sieter XY blanking for_mat convert.dtrkmf _output_for_surfer.py
2.8K | Python script | create meta observations of avg heat create_average NS_residuals.py
3.1K | Python script | create PEST input files {rom observed dala create_pest 02 input.py
48 | input listing responses to DTRKMF prompts dtrkmf.in
. convert MODFLOW binary . -
4.0K | Python script oubpth to: Suster ASCH prid format head_bin2ascii.py
1.1K | input listing of 100 realizations from CVS keepers
; observed February 2013 heads
AR | TR in mod2obs. exe bore sample file format meas_head_‘2013ASER. Sip
; paste observed head and model-generated
968 liy—t.hf)infcrlpt Tanda fita ona Gls merge_observed_modeled(.?leacf Py
76 | file listing files needed to run mod2obs.exe mod2obs_files.dat
139 | input listing responses to mod2obs . exe prompts mod2obs_head.in
| 372 | file listing files needed to run MODFLOW modflow files.dat N
393 | input listing of wells and geographic groupings  obs.1oc_2013ASER.dat
215 | file listing files needed to run PEST pest_02_files.dat
2.3M | input relative coordinate 1 < z < 1 rel _x_coord.dat
2.3M | input relative coordinate 1 <y <1 rel_y_coord.dat
389 | Bash script PEST model: execute MQDFLOW and run 09 model
B do pre- and post-processing B
26 | input mod2obs . exe input file settings.fig
47 | input | mod2obs . exe input file spec_domain.spc
1.8K | input mod2o0bs . exe input file spec_wells.crd
. compute starting head from
24K | Python script parameter and coordinate inputs surface_02_extrapolate.py
506 | input DTRKMF inputi file wippctrl.inp

Table 1: Input Files
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6.2 Output Files

bytes | file type description - file name
19K | DTRKMF output | particle track results dtrk.out o
16K | DTRKMF output | particle track debug dtrk.dbg
~ 2.0K | script output heads at well locations modeled._vs_observed_head_pest_02.txt
1.1IM | script output “formatted MODFLOW heads modeled head_pest_02.grd B
5.3K | script output formatted DTRKMF particle dtrk_output_pest_02.bln
16K | PEST output matrix condition numbers bc_adjust_2013ASER.cnd
2.7K | PEST output binary intermediate file bc_adjust_2013ASER.drf
7.4K | PEST output binary intermediate file bc_adjust_2013ASER. jac
7.5K | PEST output binary intermediate file bc_adjust_2013ASER. jco i
9.9K | PEST output binary intermediate file bc_adjust_2013ASER. jst
3.8K | PEST output parameter statistical matrices bc_adjust_2013ASER.mtt
477 | PEST output paramcter file bc_adjust_2013ASER.par -
62K | PEST output optimization record i bc_adjust_2013ASER.rec
4.6K | PEST output model outputs for last iteration | bc_adjust_2013ASER.rei
8.4K | PEST output summary of residuals bc_adjust_2013ASER.res
28 | PEST output binary restart file bc_adjust_2013ASER.rst
24K | PEST output relative parameter sensitivities | bc_adjust_2013ASER.sen
4.0K | PEST output absolute parameter sensitivities | bc_adjust_2013ASER.seo
213K | png image matplotlib plot (Fig. 2) aser-area-contour-map2013.png N
223K | png image matplotlib plot (Fig. 3) o large-area~-contour-map2013.png
33K | png image matplotlib plot (Fig. 5) model-error-histogram2013.png
55K | png image matplotlib plot (Fig. 6) model-error-residuals2013.png
93K | png image matplotlib plot (Fig. 4) scatter_pest_02_2013.png

Table 2: Listing of Output Files
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6.3 Individual scripts

6.3.1 Bash shell script checkout_average_run modflow.sh

#1/bin/bash

set —o nounset # ezplode if wusing an un—initialized wvariable
set —o errexit # exit on non—zero error status of sub—command

# this script makes the following directory substructure

#

# current_-dir \———— Outputs (calibrated parameter fields INPUTS)

# \——— Inputs (other modflow files — INPUTS)

# \ original_average (foward sim using average fields)
# \— bin (MODFLOW and DIRKMF binaries)

# \— pest_0? (pest—adjusted results)

set —o xtrace

oolia, | foEsassasssasasmsmak "

echo " checking out T fields"

echo it HHEEnas AN 8080800075 L]

# these will checkout the calibrated parameter—field data into subdirectories
# checkout things that are different for each of the 100 realiztaions
for d in ‘cat keepers‘
do
cvs —d /nfs/data/CVSLIB/ Tfields checkout Outputs/${d}/modeled_{K,A,R,S}_field .mod
done

# checkout MODFLOW input files thal are constant for across all realizations

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/elev_{top,bot}.mod

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/data/init-{bnds.inf 6 head.mod}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf2k_culebra.{lmg,Ipf}

cvs —d /nfs/data/CVSLIB/ Tfields checkout Inputs/modflow/mf{2k_head.{ba6,nam,oc,dis,rch}

# modify the path of "updated” T-fields , so they are all at the
# same level in the directory structure (simplifying scripts elsewhere)

if [ —a keepers.short ]
then
rm keepers_short
fi
touch keepers_short

for d in ‘cat keepers’
do
bn=‘basename ${d}°
# test whether it is a compount path
if [ ${d} !'= ${bn} ]
then
dn=‘dirname ${d}‘
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49
50
51
52
53
54
55

56

58
59
60
61
62
63
64
65
66
67
G8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929

mv ./Outputs/${d} ./Outputs/

# put an empty file in the directory to indicate
# what the directory was previously named
touch ./Outputs/${bn}/${dn}

fi

# create a keepers list without directories
echo ${bn} >> keepers_short
done

# - R —— —
echo "
echo " perform averaging across all realizations "
echo "

python average_realizations.py

# checkout MODFLOW / DIRKMF executables

cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/mf2k/mf2k_1.6.release
cvs —d /nfs/data/CVSLIB/MODFLOW2K checkout bin/dtrkmf/dtrkmf_v0100

# check out pest and obs2mod binaries

cd bin

cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/pest.exe
cvs —d /nfs/data/CVSLIB/PEST checkout Builds/Linux/mod2obs.exe
cd

echo "
echo " setup copies of files constant between all realizations

echo "

# directory for putting original base—case results in
od=original_average

if [ —d ${od} ]

then
echo ${od}" directory exists: removing and re-creating"
rm —rf ${od}

fi

mkdir ${od}

cd ${od}

echo ‘pwd‘

# link to unchanged input files

for file in ‘cat ../ modflow_files.dat
do

27

Information Only



100

In —sf ${file} .
done

# link to averaged files computed in previous step
for f in {A,R,K,S}
do
ln —sf ../ modeled_${f}_field .avg ./modeled ${f} _field .mod

done

In —sf elev_top.mod fort.33
In —sf elev_bot.mod fort.34
eChO AT R R e e R RS S A N O T 10 W S S R I T R T R T O O S o A A A S A "
echo " run original MODFLOW and DTRKMF and export results for plotting"
echo "

# run MODFLOW, producing average head and CCF
../ bin/mf2k/mf2k_1.6. release mf2k_head.nam

# run DTRKMF, producing particle track (from ccf)
../ bin/dtrkmf/dtrkmf_v0100 <dtrkmf.in

# convert binary MODFLOW head output to Surfer ascii grid file format
In —sf ../ head_bin2ascii.py .

python head_bin2ascii.py

mv modeled_head_asciihed.grd modeled_head_${od}.grd

# convert DIRKMF output from cells to X,Y and
# save in Surfer blanking file format

In ~sf ../convert.dtrkmf_output_for_surfer.py
python convert.dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output-${od}.bln

# extract head results at well locations and merge with observed
# head file for easy scatter plotiing in Excel (tad delimited)
for file in ‘cat ../mod2obs_files.dat®
do

In —sf ${file}
done

In —sf ../meas_head_2013ASER .smp .

In —sf ../obs_loc.2013ASER .dat

../ bin/Builds/Linux/mod2obs. exe <mod2obs_head.in

In —sf ../ merge.observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_-head-${od}.txt

# go back down into root directory
cd ..
echo ‘pwd’
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152
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154
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157
158
159
160
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163
164
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173
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177
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192
193
194
195
196
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198
199
200

201

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

echo " setup and run PEST to optimize parametric surface to set BC "

echo "

fo
do

r p in pest.02

if [ —d ${p} |
then
echo ${p}" directory exists: removing and re-creating"
rm —rf ${p}

fi

mkdir ${p}

cd ${p}
echo ‘pwd’

# link to unchanged input files

for file in ‘cat ../ modflow_files.dat*
do
In —sf ${file} .

done

# link to averaged files computed in previous step
for f in {A,R,K,S}
do
In —sf ../modeled_${f} _field.avg ./modeled-${f}_field .mod

done

# link to mod20bs files (mneeded for pest)
for file in ‘cat ../ mod2obs_files.dat"®
do
In —sf ${file} .
done

# link to pest files

for file in ‘cat ../${p}-files.dat®
do
In —s ${file} .

done

# rename ’‘original ’ wversions of files to be modified by pest
rm init_head .mod

In —sf ../Inputs/data/init_head.mod ./init_head_orig.mod

rm init_bnds.inf

In —sf ../Inputs/data/init_bnds.inf ./init_bnds_orig.inf

# create new ibound array for easier modification during PEST
# optimization ilerations
python boundary_types.py
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204 python create_${p}_input.py

206 # run p

207 ../ bin/Builds/Linux/pest.exe bc_adjust_-2013ASER

213 In —sf elev_top.mod fort.33
214 In —sf elev_bot.mod fort.34

216 ../ bin/dtrkmf/dtrkmf v0100 <dtrkmf.in

218 In —sf ../ head_bin2ascii.py
219 python head_binZ2ascii.py
220 mv modeled_head_asciihed.grd modeled_-head_${p}.grd

222 In —sf ../convert.dirkmf output_for_surfer.py
223 python convert.dtrkmf_output_for_surfer.py
224 mv dtrk_output.bln dtrk_output_-${p}.bln

226 for file in ‘cat ../ mod2obs_files.dat"®

227 do

228 In —sf ${f11e}

229 done

230

231 ../ bin/Builds /Linux/mod2obs . exe <mod2obs_head.in
232 In —sf ../ merge_observed_modeled_heads.py

233 python merge_observed_modeled_heads.py
234 mv both_heads.smp modeled_vs_observed_head_${p}.txt

236 cd
23v done
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6.3.2 Python script average realizations.py

from math import logl0 ,pow

nrow = 307

ncol = 284

nel = nrowx*ncol

nfr = 100 # number of fields (realizations)
nft = 4 # number of field types

def floatload (filename ):

"7?Reads file (a list of strings, one per row) into a list of strings.
open (filename ,’r’)
[float (line.rstrip ()) for line in f]

f

m

f.close()
return m

types

# get list

flist
runs

[JKJ’JA7’JRJ’)SJ]

of 100 best calibrated fields
open(’keepers_short’,’r’)

flist .read ().strip (). split(’\n’)
flist .close ()

# initialize to help speed lists up a bit
# nfr (100) realizations of each
fields = []
for i in xrange(nft):
fields .append ([ None|* nfr)
for i in xrange(nfr):

# each
fields

# read in all

print

’reading

realization being nel (87188) elements
[-1][i] = [None]*nel

realizations
)

for i,run in enumerate(runs):
print i,run
for j,t in enumerate(types):

fields[j][i][0: nel] = floatload (’Outputs/’+ run +’/modeled_’+ t +’_field.mod’)

# open up files for writing

- []

for t in types:
fh . append (open(’modeled_’+ t +’_field.avg’,’w’))

# transpose fields to allow slicing across realizations, rather
for j in range(len(types)):
fields[j] = zip (*(fields[j]))

print
# do

‘’writing

?

averaging across 100 realizations
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so for i in xrange(nel):

51 if i%10000 =— O:

52 print i

53 for h,d in zip(fh,fields):

54 h.write(’%18.11e\n’ % pow(10.0 ,sum(map(logl0 ,d[i]))/ nfr) )

ss for h in fh:
57 h.close ()
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6.3.3 Python script boundary_types.py

nx = 284 # number columns in model grid
ny = 307 # number rows
nel = nx#*ny

def intload (filename):
???Reads file (a 2D integer array) as a list of lists.
Outer list is rows, inner lists are columns.”””
f = open(filename ,’'r”)
m = [[int(v) for v in line.rstrip ().split ()] for line in f]
f.close ()
return m

def intsave(filename ,m):
7" Writes file as a list of lists as a 2D integer array, format '%3i 7.
Outer list is rows, inmner lists are columns.”””
f = open(filename,’w’)
for row in m:
f.write(’ ’.join ([’%2i> % col for col in row]) + "\n’)
f.close()

def floatload (filename):
7?7 Reads file (a list of real numbers, one number each row) into a list of floats.
f = open(filename,’'r’)
m = [float(line.rstrip()) for line in f]
f.close ()
return m

9989

def reshapev2m(v):
»”” Reshape a vector that was previously reshaped in C-major order from a matriz,
back into a matriz (here a list of lists ).
m = [None]xny
i,(lo,hi) in enumerate(zip (xrange (0, nel-nx+1, nx), xrange(nx, nel+l, nx))):
m[i] = v[lo:hi]
return m

»o»

for

# read in original MODFLOW IBOUND array (only 0,1, and —1)
ibound = intload (’init_bnds_orig.inf’)

# read in initial heads
h = reshapev2m (floatload (’init_head_orig.mod’))

# discriminate between two types of constant head boundaries
# —1) CH, where value > 1000 (area east of halite margin)

# —2) CH, where value < 1000 (single row/column of cells along edge of domain

for i,row in enumerate(ibound):
for j,val in enumerate(row):
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# is this constant head and is starting head less than 1000m ?
if ibound[i][j] = -1 and h{i][j] < 1000.0:
ibound[i][j] = -2
# save mnew IBOUND array that allows easy discrimination between types in python script dur
# PEST optimization runs, and is still handled the same by MODFLOW

# since all ibound values < 0 are treated as constant head
intsave(’init_bnds.inf’ ,ibound)
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6.3.4 Python script create_pest_02_input.py

prefix = ’2013ASER’

fin = open(’meas_head_%s.smp’ % prefix,’r’)

# each well is o [name,head] pair
wells = [[line.split ()[0],line.split ()[3]] for line in fin]
fin.close ()

fout = open(’modeled_head.ins’,’w’)
fout.write (’pif @\n’)
for i,well in enumerate(wells}:
fout . write("11 [%s]139:46\n" % well [0])
fout.close ()

# exponential surface used to set initial head everywhere

# except east of the halite margins, where the land surface is wused.
# initial guesses come from AP—114 Task report

params = [928.0, 8.0, 1.2, 1.0, 1.0, —-1.0, 0.5]

pnames = [)a», ’b’, ’C’, gy, Yer, ;f), ’eXp’]

fout = open(’avg_NS_res.ins’,’w’)
fout . write(”””pif @

11 [medianN]1:16

l1 [medianS]1:16

l1 [meanN]1:16

I1 [meanS]1:16

nn»

fout.close ()

ftmp = open(’surface_par_params.ptf’,’w’)
ftmp . write ('ptf @\n’)
for n in pnames:

ftmp . write (’© %s @\n’ % n)
ftmp. close ()

L LLLLLL AL, L LI L

4
T T 771

## pest parameter file

fpar = open(’surface_par_params.par’,’w’)
fpar.write(’double point\n’)
for n,p in zip(pnames,params):

fpar.write(’%s %.2f 1.0 0.0\n’ % (n,p))
fpar.close ()
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## pest control file

f = open(’bc_adjust_%s.pst’ % prefix ,’w’)
f.write(7"7"pcf
* control data

restart estimation

%i %i 1 0 2

1 2 double point 1 0 0
5.0 2.0 0.4 0.001 10
3.0 3.0 1.0E-8

0.1

30 0.001 4 4 0.0001 4

1 1 1

* parameter groups

be relative 0.005 0.0001 switch 2.0 parabolic
777 % (len (params),len(wells)+4))

f.write(’* parameter data\n’)
for n,p in zip (pnames,params):
if p> 0:
f.write(’%s none relative %.3f %.3f %.3f bc 1.0 0.0 1\n’ %
(n, p, —2.0%xp, 3.0x%p))

else:
f.write(’%s none relative %.3f %.3f %.3f be 1.0 0.0 1\n’ %
(ni P, 3‘0*135 _2-0*p))
f.write(”””* observation groups
ss_head
avg_-head
* observation data

## read in observation weighting group definitions
fin = open(’obs_loc_%s.dat’ % prefix,’r’)

location = [line.rstrip ().split ()[1] for line in fin]
fin.close ()

weights = []

for 1 in location:

# inside LWB

if 1l = 10;
weights . append (2.5)

# nmear LWB

if 1l = ’1°:
weights . append (1.0)

# distant to LWB
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if 1 = 22
weights .append (0.4)

if 1 = ’99’:
weights . append (0.01) # AEC-7

for name,head ,w in zip (zip (*wells)[0],zip(*wells)[1], weights):
f.write(’%s %s %.3f  ss_head\n’ % (name,head,w))

# one fewer N observation (WIPP-25 removed), there were 13

# there are 12 N observations in the average and 11 S, therefore
# split the weight between the mean and median
f.write(”””medianN 0.0 18.0 avg_-head

medianS 0.0 16.5 avg_-head

meanN 0.0 18.0 avg-head

means 0.0 16.5 avg_-head

”»» h)

f.write(”””* model command line
./run_-02_-model

* model input/output

surface_par_-params.ptf surface_par-params.in
modeled_head. ins modeled_head.smp
avg.NS_res.ins avg_NS_res.smp

777”7)
f.close ()
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6.3.5 Python script surface 02_extrapolate.py

from itertools import chain
from math import sqrt

def

def

def

def

matload (filename ):

"?"Reads file (a 2D string array) as a list of lists.
Outer list is rows, inner lists ore columns,”””

f = open(filename ,’'r’)

m = [line.rstrip ().split() for line in f]

f.close ()

return m

floatload (filename):

"??Reads file (a list of real numbers, one number each row) into a list of floats.
f open(filename ,’r’)

m = [float(line.rstrip()) for line in f]

f.close()

return m

f

reshapem2v (m):

"2 Reshapes a rectangular matriz into a vector in same fashion as numpy.reshape().
which is CG-major order”””

return list {chain (+m))

sign(x):
?nP sign function
if x<0:

return -1
elif x>0:

return +1
else:

82

return 0

# read in modified IBOUND array, with the cells to modify set to —2
ibound = reshapem2v(matload (’init_bnds.inf’))

h = floatload (*init_head_orig.mod’)

# these are relative coordinates, —1 <= z,y < +1
x = floatload{’rel_x_coord.dat’)

y = floatload (’rel_y_coord.dat’)

# unpack surface parameters (one per line)

#z=A+ Bx(y + Drsign(y)xsqrt(abs(y)))+Cx(Exzxx8 — Frxxx2 — z)
finput = open(’surface_par_params.in’,’r’)
try:

a,b,c,d,e,f,exp = [float (line.rstrip()) for line in finput]
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
G8
69
70
71
72
73
74

75

except ValueError:
# python doesn’t like D’ in 1.2D-4 notation wused by PEST sometimes.

finput .seek (0)

lines = [line.rstrip() for line in finput]
for i in range(len(lines)):
lines|i] = lines[i]}.replace(’'D’,’E")

a,b,c,d,e,f,exp = [float(line) for line in lines]
finput . close ()

# file to output initial/boundary head for MODFLOW model

fout = open(’init_head.mod’,’w’)
for i in xrange(len (ibound)):
if ibound[i] = ’~2’ or ibound[i] == ’1’:

# apply ezponential surface to active cells (ibound=1) —> starting guess
# and non—geologic boundary conditions (ibound=-2) —> constant head wvalue
if y[i] = O:
fout.write(’%.7e \n’ % (a + cx(exx[i]**3 + f#x[i]**2 — x[i])))
else:
fout.write(’%.7e \n’ % (a + bx(y[i] + d=xsign(y[i])*abs(y[i])*xexp) -+
cH(exx[1]*%3 + f=x[i]*%x2 — x[i])))
else:
# use land surface at constant head east of halite boundary
# ibound=0 doesn’t matier (inactive)
fout.write(’%.7e\n’ % h[i])

fout. close ()
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6.3.6 Bash shell script run.02 model
‘bin/bash

#echo ’step 1: surface eztrapolate’
python surface_02_extrapolate.py

# run modflow

#echo ’'step 2: run modflow
../ bin/mf2k/mf2k_1.6.release mf2k_head .nam >/dev/null

¥

# run modZ2obs
#echo ’step 3: extract observations’
../ bin/Builds/Linux/mod2obs. exe < mod2obs_head.in >/dev/null

# create meta—observations of N vs. §
python create_average_ NS_residuals.py
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6.3.7 Python script head_bin2ascii.py

import struct
from sys import argv,exit

class FortranFile(file):

NN

def

def

def

def

modified from May 2007 Enthought—dev mailing list post by Neil Martinsen—Burrell””

_.init__(self ,fname, mode='r’, buf=0):

file.__init__(self , fmame, mode, buf)

self .ENDIAN = <’ # little endian

self .di = 4 # default integer (could be 8 on 6/—bit platforms)

readReals(self , prec="1’):
”"??Read in an array of reals (default single precision) with error checking
# read header (length of record)
l = struct.unpack(self .ENDIAN+’i’,self.read(self.di))[0]
data_str = self.read(1)
len_real = struct.calcsize(prec)
if 1 % len.real != 0:
raise IOError(’Error reading array of reals from data file’)
num = 1/len_real
reals = struct.unpack(self .ENDIANtstr (num)+prec,data_str)
# check footer
if struct.unpack(self .ENDIANt i’ self.read(self.di))[0] != I:
raise IOError(’Error reading array of reals from data file’)
return list (reals)

nnN

readInts(self):
""?Read in an array of integers with error checking
1 = struct.unpack(’i’,self read(self.di))[0]
data_str = self.read(1)
len_int = struct.calecsize(’i’)
if 1 % len_int != 0:
raise IOError(’Error reading array of integers from data file’)
num = 1 /len_int
ints = struct.unpack(str (num)+’i’,data_str)
if struct.unpack(self .ENDIANt’ i’ ,self.read(self.di))}[0] != I:
raise IOError(’Error reading array of integers from data file’)
return list (ints)

»uy

readRecord ( self ):
""?Read a single fortran record (potentially mized reals and ints)
dat = self.read(self.di)
if len(dat) = 0:
raise IQOError(’Empy record header’)
1 = struct.unpack(self ENDIANA-’i’ ,dat)[0]
data_str = self.read (1)
if len(data.str) != 1:
raise IOError(’Didn’’t read enough data’)
check = self.read(self.di)

nNy
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if len(check) != 4:

raise IOError{’Didn’’t read enough data’)
if struct.unpack(self .ENDIAN+’i’,check)[0] != 1:

raise IOError(’Error reading record from data file’)
return data_str

def reshapev2m (v,nx,ny):
»77” Reshape a vector that was previously reshaped in C-major order from a matriz,
back into a C-major order mairiz (here a list of lists).”””
m = [None]xny
n = nx*ny
for i,(lo,hi) in enumerate(zip (xrange (0, n—nx+1, nx), xrange(nx, n+1, nx))):
m[i] = v[lo:hi]
return m
def floatmatsave(filehandle ,m):
"7 Writes array to open filehandle , format '568%el2.5°,

Outer list is rows, inner lists are columns.”””

for row in m:
f.write(?’.join ([’ %12.5¢’ % col for col in row]) + ’\n’)

# open file and set endian—ness

try:
infn ,outfn = argv[1:3]
except:
print ’2 command-line arguments not given, using default in/out filenames’
infn = ’modeled_head.bin’
outfn = ’modeled_head_asciihed.grd’

ff = FortranFile(infn)
# currently this assumes a single—layer MODFLOW model (or at least only one layer of outpu

# format of MODFLOW header in binary layer array

fmt = ’<2i2f16s3i’

# little endian, 2 integers, 2 floats,

# 16— character siring (4 element array of 4—byte strings), 3 integers

while True:
try:
# read in header
h = ff.readRecord ()

except IOError:
# exit while loop

break
else:
# unpack header
kstp , kper , pertim , totim , text ,ncol ,nrow, ilay = struct.unpack(fmt,h)
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# print status/confirmation to terminal
print kstp,kper, pertim ,totim ,text ,ncol ,nrow,ilay

h = ff.readReals()

ff.close ()

xmin, xmax

(601700.0,630000.0)

ymin, ymax = (3566500.0,3597100.0)

hmin = min(h)
hmax = max(h)

# write output in Surfer ASCII grid format

f = open(outfn,’w

f.write(”””DSAA
%i %i

%.1f %.1f

%.1f %.1f

.%.8@ %86

nNN

")

%(ncol ,nrow ,xmin ,xmax,ymin , ymax, hmin , hmax) )

hmat = reshapev2m (h,ncol ,nrow)

# MODFLOW starts
# Surfer ezpects

data in upper—left corner
data starting in lower—left corner

# flip array in row direction

floatmatsave (f ,hmat[:: —1])

f.close ()
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6.3.8 Python script merge_observed_modeled heads.py

fobs = open(’meas_head_2013ASER.smp’,’r’) # measured head
fmod = open(’modeled_head.smp’,’r’) # modeled head
fwgt = open(’obs_loc_2013ASER.dat’,’r’) # weights

fdb = open(’spec_wells.crd’,’r’) # z/y coordinates
fout = open(’both_heads.smp?’,’w’) # resulting file

# read in list

wells = {}

for

fdb.

line in fdb:

well ,x,y = line.split ()[0:3] # ignore last column
wells [well .upper ()] = [x,¥]

close ()

z/y coordinates, key by well name

fout . write (’\t’.join ([’#NAME’ ,’UTM-NAD27-X’ ,’UTM-NAD27-Y’ ,

’OBSERVED’ , *MODELED’ ,’0BS-MOD’ , *WEIGHT’])+ ’\n’)

for sobs,smod,w in zip(fobs ,fmod,fwgt):

fobs

.close ()
fmod .
fwgt .
fout.

close ()
close ()
close ()

obs = float (sobs.split ()[3])

mod = float (smod.split ()[3])

name = sobs.split ()[0]. upper ()

fout.write(’\t’.join (|name, wells [name] [0] , wells [name]|[1],

str (obs),str (mod),str (obs—mod),
w.rstrip ().split ()[1]])+ \n?)
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6.3.9 Python script convert_dtrkmf_output_for_surfer.py

# grid origin for dirkmf cell —> z,y conversion

x0 = 601700.0

y0 = 3597100.0
dx = 100.0
dy = 100.0

fout = open(’dtrk_output.bln’,’w’)

# read in all results for saving particle tracks
fin = open(’dtrk.out’,’r’)

results = [l.split() for 1 in fin.readlines ()[1:]]
fin.close ()

npts = len(results)

# write Surfer blanking file header
fout.write(’%i,1\n’ % npts)

# write z,y location and time
for pt in results:
x = float (pt[1])*dx + x0
y = y0 — float (pt[2])*dy
t float (pt[0])/7.75%4.0 # convert to 4m Cuelbra thickness
fout.write (’%.1f,%.1f,%.8e\n’ % (x,y,t))

fout.close ()
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6.3.10 Python script plot—contour-maps.py

import numpy as np

#import matplotlid

#matplotlib.use( Agg’)

import matplotlib.pyplot as plt

from mpl_toolkits.basemap import pyproj

manualFix = True

# hitp://spatialreference.org/ref/epsqg/26718/
# http://spatialreference.org/ref/epsg/32012/

putm = pyproj.Proj(init=’epsg:26713’) # UIM Zone 18N NAD27 (meters)
pstp = pyproj.Proj(init=’epsg:32012’) # NM state plane east NAD27 (meters)

def transform (xin,yin):
7??does the default conversion from utm —> state plane
then also convert to feet from melers”””
xout ,yout = pyproj.transform (putm, pstp,xin, yin)
xout /= M2FT
yout /= M2FT
return xout,yout

year = 2013’

fprefix = ’pest_02/’

mprefix = ’../../wipp-polyline~-data/’

cfname = fprefix + ’modeled_head_pest_02.grd’

pfname = fprefix + ’dtrk_output_pest_02.bln’

winame = fprefix 4+ ’modeled_vs_observed_head_pest_02.txt’

MZFT = 0.3048

# read in well-related things
S e oo o

# load in observed, modeled, obs—mod, (all in meters)
res = np.loadtxt (wfname,skiprows=1,usecols=(3,4,5))
res /= M2FT # conwvert heads to feet

wellutmx , wellutmy = np.loadtxt (wfname,skiprows=1,usecols =(1,2),unpack=True)

wellx , welly = transform (wellutmx , wellutmy)

names = np.loadtxt (wfname, skiprows=1,usecols=(0,),dtype="156")

#print ’DEBUG well coordinates’

#for n,uz,uy,x,y in zip (names, wellutmz , wellutmy , wellz , welly ):

# print n,uz,uy, ::’,x,y

# read in head—related things
# I e b6 I e o6 e I T I eI e b e e e

h = np.loadtxt (cfname, skiprows=5) # ASCI] matriz of modeled head in meters AMSL

h{h<0.0] = np.NaN # no—flow zome in northeast
h[h>1000.0] = np.NaN # constant—head zone in east
h /= M2FT # convert elevations to feet
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# surfer grid is implicit in header
# create grid from min/max UIM NAD27 coordinates (meters)
utmy ,utmx = np.mgrid[3566500.0:3597100.0:307j, 601700.0:630000.0:284j]

# head contour coords
hx,hy = transform (utmx,utmy)
del utmx,utmy

# read in particle—related things
S S o oo
px,py = transform (*np.loadtxt (pfname,skiprows=1,delimiter=",’,usecols=(0,1),unpack=True))

part = np.loadtxt (pfname,skiprows=1,delimiter="," ,usecols=(2,))

# read in MODFLOW model, WIPP LWB & ASER contour domain (UIM X & Y)

I e e 6 6 e b b e 6 e e e

modx,mody =  transform (#np.loadtxt(mprefix+’total_boundary.dat’,unpack=True))

wipputmx , wipputmy = np.loadtxt (mprefix+’wipp_boundary.dat’,
usecols=(0,1),unpack=True)

wippx , wippy = transform (wipputmx ,wipputmy)

aserx ,asery = transform (*np.loadtxt (mprefix+’ASER_boundary.csv’,
delimiter=",’ ,usecols=(1,2),unpack=True))

#print °'DEBUG WIPP coordinates’
for ux,uy,x,y in zip(wipputmx,wipputmy ,wippx ,wippy ):
print ux,uy,’::’ ,x,y

a = ]

# plot contour map of entire model area
# 3 3k %k 3k 3k 3k 3k 3k ok 3k ok ok sk ok ok sk ok sk ok sk ok sk ok ok sk ok sk sk sk K koK sk ok R osk sk ok
fig = plt.figure(1,figsize=(12,16))
ax = fig.add_subplot(111)
lev = 3000 + np.arange(17)%10
CS = ax.contour (hx,hy,h,levels=lev,colors="k’,linewidths=0.5)
ax.clabel (CS,lev [::2] ,fmt="%i")
ax.plot (wippx, wippy, k=)
ax.plot (aserx ,asery,’g-’)
ax. plot (modx,mody, ’ -’ ,color="purple’,linewidth=2)
ax.plot (wellx ,welly ,linestyle=’none’ ,marker=".",
markeredgecolor=’green’ ,markerfacecolor="green’)

ax.set_xticks (630000 + np.arange(10.0)%10000)
ax.set_yticks (450000 + np.arange(10.0)%10000)
labels = ax.get_yticklabels ()
for label in labels:

label .set_rotation (90)
for x,y,n in zip(wellx ,welly ,names):

# plot just abowve

a.append(plt.annotate (n,xy=(x,y),xytext=(0,5),

textcoords=’offset points’,
horizontalalignment=’center’
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101 fontsize=8))

102 plt.axis(’image’)

13 ax.set_title (’Freshwater Heads Model Area ’+year)

wa ax.set_xlabel (’NAD27 NM East State Plane Easting (ft)?’)
105 ax.set_ylabel(’NAD27 NM East State Plane Northing (ft)’)

w7 # compute travel time and path length to WIPP LWB

108 A ok skokok ok ook ok ok ook ok ok oK ok Ok K oK K K KK K K K oK KOk ok ok ok ok ok K KOk

ue # compute incremental distance between times
w1 pd = M2FTxnp.sqrt ((px[1:] —px[: —1])*%2 + (py[l:] —py[: —1])*x2)

us  ax.text (688000,537000,’ MODFLOW Active Flow Boundary’,size=12 ,rotation=—26,color=’purple’)
ue  ax.annotate (’WIPP LWB’ xy=(670000,509200),xytext=(675000,515000),

115 fontsize=12,arrowprops=dict (facecolor="black’ ,width=1))

e ax.annotate (’ASER Contour Area’,xy=(658000,478500),fontsize=12,color=’green’)

us print ’particle length:’,pd.sum(),’ (meters); travel time:’,part[{—1],’ (years); ’,
1o print ° avg speed:’,pd.sum()/part[—1],’ (m/yx)’

121 if manualFix:

122 # manually fiz labels

123 for lab in a:

124 lab.draggable()

125 plt.ShOW()

126 else:

127 plt .savefig(’large-area-contour -map’+year+’.png’)

122 plt.close (1)

130 del lev ,CS

131 mask = np.logical_and (np.logical_and (hx>aserx.min () ,hx<aserx .max
132 np.logical_and (hy>asery.min () ,hy<asery .max
133 h[’mask] = np.Na.N

—~~
St N

135 A& = []

w7 # plot contour map of ASER-figure area

138 FE Kok ok sk skok ok R ok ok o ok R oK oK R oK SROR oK OK K oK oK ok ok sk skok ok ok ok ok sk ok ok ok ok ok

we fig = plt.figure(1l,figsize=(12,16))

o ax = fig.add_subplot(111)

w lev = 3000 + np.arange(17)*5

12 CS = ax.contour(hx,hy,h,levels=lev,colors="k’,linewidths=0.5)
s ax.plot (wippx,wippy, 'k-")

s ax. plot (modx,mody, -’ ,color="purple’,linewidth=2)
s ax.plot(wellx ,welly ,linestyle=’none’ ,marker=".",
146 markeredgecolor="green’ ,markerfacecolor=’"green’)

ur  ax.plot(px,py,linestyle=’so0lid’ color="blue’ linewidth=4)

us  plt.arrow (x=px[—3],y=py|—3],dx=-10,dy=-50,

149 linewidth=4,color="blue’ ,head_length=500,head_width=500)
10 plt.axis(’image’)

11 ax.set_xlim ([aserx.min (), aserx.max()])
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152
153
154
155
156

158
159
160
161
162
163
164

165

167
168
169
170
171
172
173
174
175
176
177
178
179

180

182
183
184
185

ax.set_ylim ([asery .min (), asery .max()])
ax.clabel (CS,lev [::2] ,fmt="7%i",inline_spacing=2)
ax.set_xticks (660000 + np.arange(5.0)*5000)
ax.set_yticks (485000 + np.arange(5.0)*5000)
labels = ax.get_yticklabels ()
for label in labels:
label.set_rotation (90)
for j,(x,y,n) in enumerate(zip(wellx ,welly ,names)):
# only plot labels of wells inside the figure area
if aserx.min()<x<aserx.max() and asery.min()<y<asery.max():
# name abowve
a.append(plt.annotate(n,xy=(x,y),xytext=(0,5),
textcoords=’offset points’,
horizontalalignment=’center’,
fontsize=10))
# observed FW head below
a.append(plt.annotate(’%. 17 %res[j,0] ,xy=(x,y),xytext=(0,-15),
textcoords=’offset points’,
horizontalalignment=’center’
fontsize=6))
ax.set_title (’Freshwater Heads WIPP Area ’+4 year)
ax.set_xlabel (’NAD27 NM East State Plane Easting (ft)’)
ax.set_ylabel (’NAD27 NM East State Plane Northing (ft)?)

ax.annotate (’WIPP LWB’ ,xy=(665000,488200),fontsize=12)

ax.text (678700,495000, MODFLOW No-Flow Area’,size=16,rotation=-90,color=’purple’)

if manualFix:

# manually fix labels>>>>

for lab in a:

lab.draggable ()

plt .show ()
else:

plt .savefig(’aser-area-contour-map’+year+’.png’)
plt.close (1)
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6.3.11 Python script plot-results-bar-charts.py

import numpy as np

fname = fprefix + ’modeled_vs_observed_head_pest_02.txt’

1

2 import matplotlib

s matplotlib.use(’ Agg’)

+ import matplotlib.pyplot as plt

5

s fprefix = ’pest_02/’

7 mprefix = ?../../wipp-polyline-data/’
8

9

-
=1

ofname = ’original_average/modeled_vs_observed_head_original_average.txt’

-
-

M2FT = 0.3048
year = 22013’

e e
Bow N

-
o

# load in observed, modeled, obs—mod, (all in meters)
res = np.loadtxt (fname, skiprows=1,usecols=(3,4,5))
ores = np.loadtxt (ofname,skiprows=1,usecols=(3,4,5))

e
N o

=
o

# load in weights

weights = np.loadtxt (fname, skiprows=1,usecols=(6,),dtype=’int’)
# load in names

names = np.loadtxt (fname,skiprows=1,usecols=(0,),dtype=’186")

-
=)

w
=]

]
-

[
]

)
©

# load in N/S/C/X zones
zones = np.loadtxt(’obs_loc_%sASER.dat’ % year,usecols=(2,),dtype=’151")

[ )
[N

»
o

## checking locations / zones

# 3k ok 3k ok ok 3k sk sk ok ok sk o sk 3k ok ok ok ok sk Sk ok ok sk K 3R siosk sk sk sk K K sk koK 3k 3k ok sk ok kok ok

wipp = np.loadtxt(mprefix+’wipp_boundary.dat’)

x,y = np.loadtxt (fname, skiprows=1,usecols=(1,2),unpack=True)

Wow N NN
-

o
[

fig = plt.figure(2,figsize=(18,12))

axl = fig.add_subplot (121)

axl.plot{x,y, ’kx’) # wells

axl.plot(wipp|:,0] ,wipp[:,1],’c-?) # WIPP LWB

buff = np.loadtxt (mprefix+’wipp_boundary.dat’)
buff[1:3,0] —= 3000.0

buff [0,0] += 3000.0

buff[3:,0] += 3000.0

buff[2:4,1] —= 3000.0

buff [0:2,1] += 3000.0

buff[—1,1] += 3000.0

colors = {’N’:’red’,’S’:’blue’,’C’:’green’ ,’X’: ’gray’}
axl.plot (buff[:,0],buff[:,1],’g--?) # WIPP LWB+8m

s for xv,yv,n,w,z in zip(x,y,names,weights, zones):

46 print xv,yv,n,w,z

a7 plt.annotate(’%s %i’%(n,w),xy=(xv,yv),fontsize=8,color=colors|z])
4s plt.axis(’image’)

49 axl.set_xlim ([x.min() —1000,x.max()+1000])

BB R B B W W W W W ® W
B L N O~ Q@ © ® N4 o @ & W
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so axl.set_ylim ([y.min()—1000,y.max()+1000])

si ax2 = fig.add_subplot(122)

s2 ax2.plot(x,y,’ k*’) # wells

ss ax2.plot(wipp[:,0],wipp(:,1],’r-") # WIPP LWB

s« ax2.plot(buff[:,0],buff(:,1],’g-~-") # WIPP LWB+%m

ss for xv,yv,n,w,z in zip(x,y,names,weights,zones):

56 plt .annotate(’%s %i *%(n,w),xy=(xv,yv),fontsize=8,color=colors|z])
sz plt.axis(’image’)

ss ax2.set.xlim ([wipp [:,0].min()—100,wipp[: ,0].max()+100])
ss ax2.set.ylim ([wipp|:,1].min()—100,wipp[:,1].max()+100])
6o plt.suptitle(’well weights check ’+year)

st plt.savefig(’check-well-weights-’+year+’.png’)

62

s # convert lengths to feet

64 Tres /= M2FT

65 Ores /: M2FT

66

er # create the histogram of residuals for ASER

68 # ¥kokkkkkkkokokdkokokskskRkkkkkkkkskskskskokkkokkkkkkkk

69

wn # —10,-9,...8,9,10

7nn bins = np.arange(—10,11)

= rectfig = (15,7)

s squarefig = (8.5,8.5)

74

s fig = plt.figure (1, figsize=rectfig)

¢ ax = fig.add_subplot(111)

v # all the data, all but distant wells

»¢ ax.hist ([res[weights <2,2],res[:,2]], bins=bins ,range=(-10.0,10.0),

70 rwidth=0.75,align="mid’,
80 color=[’red’,’blue’],
5 label=[’Inside LWB & <3km from WIPP LWB’,’All wells’])

s2 ax.set_xlabel (’Measured-Modeled (ft)’)

sa ax.set_ylabel (’Frequency?’)

s« ax.set.xticks(bins)

ss ax.set-ylim ([0,10])

ss ax.set_yticks(np.arange(0,10,2))

sv plt.grid ()

ss ax.yaxis.grid (True, which="major’)

8o ax.xaxis.grid (False)

oo plt.legend (loc="upper left’)

o plt.title(’Histogram of Model Residuals ’+4year)

92 plt.annotate(AEC-7 @ %.1f'%res[0,2],xy=(—-9.75,5.0),xytext=(-8.5,5.0),
93 arrowprops={’arrowstyle’:’->’'}, fontsize=16)
94 plt.savefig(’model-error-histogram-’+year+’.png’)

os plt.close (1)

96

o7 # create bar chart plot of individual residual for ASER
08 FE ko ok sk ok s s e sk kok ok ok sk ok sk ok sk sk sk sk sk sk ke ke ke ok ke ok ek ke ok ok ok ok sk K

99

wo ml = weights==0
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101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

141
142
143
144
145

146

148
149
150

151

ml
m2

weights==1
np.logical_or (weights==2,weights==99)

# separate wells into groups

resin =  res{m0,2]
resnear = res[ml,2]
resfar = res|[m2,2]
nin = resin. size
nnear = resnear.size
nfar = resfar.size

# separate names into groups

namin =  names [m0]
namnear = names [ml]
namfar = names|[m2]

# get indices that sori wvectors
ordin = np.argsort (namin)
ordnear = np.argsort (namnear)
ordfar = np.argsort (namfar)

# put wvectors back together (groups adjacent and sorted inside each group)
resagg = np.concatenate ((resin[ordin],resnear[ordnear],resfar|[ordfar]),axis=0)
namagg = np.concatenate ((namin[ordin],namnear|[ordnear],namfar[ordfar]), axis=0)

fig = plt.figure (1, figsize=rectfig)
ax = fig.add_subplot(111)

wid = 0.6
shift = 0.5 — wid/2.0
ab = np.arange(res.shape[0])

print ab.shape
print ab

ax.bar (left=ab+shift ,height=resagg ,width=0.6,bottom=0.0,color="gray’)
ax.set_ylim ([-15.0,15.0])

ax.spines[’bottom’]. set_position(’zero?)
ax.spines|[’top’].set-color (’none?)
ax.xaxis.set_ticks_position (’bottom?)

plt . xticks (ab+wid ,namagg, rotation=90)

# wertical lines dividing groups

ax.axvline (x=nin, color=’black’,linestyle=’dashed’)
ax.axvline (x=nin+nnear , color="black’,linestyle=’dashed’)
ax.axhline (y=0,color='black’,linestyle=’so0lid’)

ax.axhline (y=-15,color="black’,linestyle=’dotted’)

plt . grid ()

ax.yaxis.grid (True, which="major’)

ax . xaxis.grid (False)

ax.set.xlim ([0, res.shape[0]])
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153 plt.annotate(’’ ,xy=(0.0,12.0),xycoords="data’,

154 xytext=(nin ,12.0), textcoords=’data’,

155 arrowprops={’arrowstyle’:?<->’})

156 plt.annotate(’inside WIPP LWB'’,xy=(nin/3.0,12.5),xycoords=’data’)

157

155 plt.annotate(’’ ,xy=(nin,12.0) ,xycoords=’data’,

159 xytext=(nin+nnear ,12.0) , textcoords=’data’,

160 arrowprops={’arrowstyle’:’<->"})

w61 plt.annotate(’<3km WIPP LWB’,xy=(nin4nnear /3.0,12.5),xycoords="data’)

16a plt.annotate(’’ ,xy=(nin+nnear ,12.0),xycoords=’data’,

164 xytext=(nin+nnear+nfar ,12.0) ,textcoords=’data’,

165 arrowprops={’arrowstyle’:’<->’})

s plt.annotate(’>3km WIPP LWB’ ,xy=(nin+nnear+nfar/3.0,12.5),xycoords=’data’)

1wz ax.set.ylabel (’Measured-Modeled (ft)?)
19 ax.set_title(’individual residuals ’+year)
o plt.annotate(AEC-7 @ %.1f '%res[0,2],xy=(nin4nnear+1.0,—-14.5),xycoords="data’)

1z plt.savefig(’model-error-residuals-’+year+’.png’)
173 plt .close (1)

we # create scatter plot of measured vs. modeled
177 AL Sk sk ok koK ok sk ok ok ok ok sk ok Sk KOk ok ok R ok o sk ok ok ok ok ok ok Kok ok ok

s m = 1.0/M2FT

179 ST [2980,3120]

If

w1 fh = open(’calibration-statistics-Vs.csv’ % year,’w’)

183 fh.write(’wellgroup,calibrated,uncalibrated\n’)
18a fh.write(’"all wells",%.4f,° % np.corrcoef(res|:,0],res[:,1])[1,0]*%2)
185 fh.write(’%.4f\n’ % np.corrcoef(ores[:,0],ores[:,1])[1,0]*%2)

wr fh.write(’"wells inside 3km of LWB",%.4f,’ % np.corrcoef(res|[weights <2,0], res|[weights <2,1
ws fh.write(’%.45\n’ % np.corrcoef(ores|[weights <2,0], ores|[weights <2,1])[1,0]*%2)

1o fh.write(’"wells “inside LWB",%.4f,’ % np.corrcoef(res|[weights==0,0],res[weights==0,1])[1,
11 fh.write(’%.45\n’ % np.corrcoef(ores|[weights==0,0],0res [weights==0,1])[1,0]*%2)

193 fh.ClOSG()
ws fig = plt.figure(1l,figsize=squarefig)

w6 ax = fig.add_subplot(111)
197 ax.plot(res[m0,0],res[m0,1], color="red’,markersize=10,

108 marker="+?,linestyle=’none’,label=’Inside LWB’)
1wo ax.plot(res[ml,0],res[ml,1],color=’green’,markersize=10,
200 marker="x’,linestyle=’none’  label=’< 3km From LWB’)
20 ax.plot(res|[m2,0],res[m2,1], color="blue’ ,markersize=10,
202 marker="+’ linestyle=’none’ ,label=’"distant’)
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203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

ax.
ax.
ax.
ax.
ax.
ax.
ax.
plt
plt
plt
for

ax.
ax.
ax.

plt

plot (sr,sr,’k-’,label="$45"{\\degree}$ Perfect Fit’)

plot ([sr[0],sr[1]],[sr[0]+m,sr[1]4+m], g~ ,linewidth=0.5,label="$\\pn$ im Misfit’)

plot ([sr[0],sr[1]],[sr[0]—m,sr[1]-m], ’g-’,linewidth=0.5,label="__nolegend__")

set-xticks (np.linspace(sr{0],sr[1],8))
set_yticks (np.linspace(sr[0],sr[1],8))
set_xlim (sr)
set_ylim (sr)
.minorticks_on ()

.legend (loc=’1lower right’,scatterpoints=1,numpoints=1)
.grid ()

j.lab in enumerate(names):

if res[j,2] < —1.5%m:

# plot labels to left of wvalue far above 45—degree line

plt.annotate (lab ,xy=(res[j,0],res[j,1]),
xytext=(res[j,0] —(2.9%len(lab)),res[j,1]
elif res[j,2] > 1.5%m:

2.0),fontsize=14)

# plot labels to right of wvalue far below 45—degree line

plt.annotate (lab ,xy=(res[j,0] ,res[j,1]),

xytext=(res[j,0]+2.0,res[j,1] —2.0),fontsize=14)

set_xlabel (’0Observed Freshwater Head (ft AMSL)?)
set_ylabel (’Modeled Freshwater Head (ft AMSL)?’)
set_title (’modeled vs. measured ’+year)
.savefig (’scatter_pest_02_’+year+’.png’)
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