Blo8&icH

Analysis Report for Preparation of 2016 Culebra Potentiometric Surface

Contour Map

Task Number: 4.4.2.3.1

Report Date: 6/6/2017

7617

Technical Review:

- Mm/m

Krlstopherﬂ(uhlman 8844 Date
Applied Syst€éms Analysis & Research Department
Wie N P
| W @Aéden#z L £
Courtney errick, 5864 Date
Geomec ics Department
Shelly R sen, 8880 Date

Carlsbad Programs Group

Management Review: Q@;{—/)

7/6/17

Christi D. Leigh, 8882
Manager, Repository Performance Department

WIPP:4.4.2.3.1:TD:QA-L:RECERT:549085

Information Only

Date

Culebra Contour Map

Page 2 of 58

Table of Contents
S5 <[OO U 2
2 SCIENTIfIC APPrOBCH...c.iiceirirtiiesstianeriecisiens i ises s ste e tesae st s aaa et s s s easesessasssaensentesasssseessaneseesasansesansanens 3
2.1 M OAEIING OVETVIEWsussususwaswssasrassvnvssssssvesssvanisssmans syaissns siia d6oaousivt istteintesafon xas asass smassassorarsnasnsorain 3
2.2 Creating Average MODFLOW SimUIGEION ...ccccoeciiicieiieriineeceece e tccemscnestes s esnessne e esnessenssesassses 5
2.3 [2To T8 o F=1 V2 @aT o Uo i 6o o L3O R 6
2.4 PEST Calibration of Averaged MODFLOW Model to Observations........cccoeeeeeecrceerececvenecneenns 6
25 Figures Generated from Averaged MODFLOW MoOdE]ccoveeveeninrmrinrverrrmresrserssesssesssesersanses 9
3 2016 RESUIS cuviieieuiicitieisier e ecrerseresr s seesar s e st s s ses s caeasesonase e e e s e ma e easssEesnanssnsessssserssessnsasssensesansees 9
3.1 2016 Equivalent Freshwater Head CONtOUrS cusmammmmssmmasmmsmsmsemsms smmmsssiomess 9
3.2 2026 PArticle Track. . eoereeecerieeteieerceeen ettt te et e et e e e e e sresen e e e e sassen s ennesa e aese s pantons 11
3.3 2016 Measured vs. MOdelRd Fitcccuiicimrimsmisisisieniniinmnearesssisnsssessnessssssnsessasssassessesssssssssesnsenns 12
L 0 T T ool L OO OO 16
5 RUN CONTrOE NAITATIVE ..o rerceree e et ne e s n s ene s s asseeve s be b e se s e nr e saesse e e e e nseannnnens 17
6 Appendix: MODFLOW and Pest Files and Script Source LiStiNgSccccceeereevmricnriinnieesieessieseesereenne 24
6.1 IMPIUL File: LISHINE cuemenssmmmns s s i s i s s s i T s s s s 24
6.2 DULPUY FilE LiSHIE covsmmvnmmonssomssmosssmsossmmsmonsss s commssss s s s s s s s i 25
6.3 Individual MODFLOW and Pest Script LIStINGS......ccoovererererieerienieeninniieniesre s sicssseassscsassnssassranns 26

1 Introduction

This report documents the preparation of the 2016 potentiometric contour map and associated particle
tracks for the Culebra Member of the Rustler Formation in the vicinity of the Waste Isolation Pilot Plant
(WIPP). The driver for this analysis is the draft of the Stipulated Final Order sent to the New Mexico
Environment Department (NMED) on May 28, 2009 (Moody, 2009). This Analysis Report follows the
procedure laid out in Sandia National Laboratories procedure SP 9-9 (Kuhlman, 2009), which was
prepared in response to this NMED driver. This report is similar to Thomas (2016); the same analysis is
performed on data from March 2016, rather than January 2015 data. March 2016 data for contouring
were obtained from the WIPP Management & Operations contractor (Seal, 2017).

Beginning with the ensemble of 100 calibrated MODFLOW transmissivity (T}, horizontal anisotropy (A),
and areal recharge (R) fields (Hart et al., 2009) used in WIPP performance assessment (PA), average
parameter fields were used as input for MODFLOW to simulate equivalent freshwater heads within and
around the WIPP land withdrawal boundary (LWB). For 2016, PEST is used to adjust a subset of the
boundary conditions in the averaged MODFLOW model to improve the match between the observed
freshwater heads and the model-predicted heads at Culebra well locations. The output of the averaged,

Information Only

Culebra Contour Map
Page 3 of 58

PEST-calibrated MODFLOW model is both contoured and used to compute the 2016 advective particle
track forward from the WIPP waste-handling shaft.

The effects of pumping at C-2492 (i.e., new Mills well) have significantly affected water levels in the
Culebra monitoring network at WIPP, especially south of the WIPP facility. The procedure for adjusting
the boundary conditions of the averaged MODFLOW model to match this year’s observed freshwater
heads cannot match the significant drawdown observed in WIPP Culebra wells (Kuhiman, 2017). In this
report we minimize the impact of drawdown from Mills Ranch pumping, since this is a transient process
that we cannot match with a steady-state model. Instead, we present the difference between the
measured and modeled freshwater heads, and show how it can be attributed to pumping the Mills well.

2 Scientific Approach

2.1 Modeling Overview
Steady-state groundwater flow simulations were carried out using similar software to what was used for
the WIPP Compliance Recertification Application 2009 Performance Assessment Baseline Calculation
(CRA-2009 PABC), as presented in the AP-114 Task 7 Analysis Report (Hart et al., 2009), and used in CRA-
2014 (DOE, 2014). This setup was used to create the input calibrated fields. See Table 1 for a summary
of software used in this analysis. The MODFLOW parameter fields (transmissivity (T), anisotropy (A), and
recharge (R)) used in this analysis are ensemble averages of the 100 sets of Culebra parameter fields
used for WIPP PA for the CRA-2009 PABC and CRA-2014. To clearly distinguish between the two
MODFLOW models, the original MODFLOW model, which consists of 100 realizations of calibrated
parameter fields (Hart et al., 2009), will be referred to as the “PA MODFLOW maodel.” The model derived
here from the PA MODFLOW model, calibrated using PEST, and used to construct the resulting contour
map and particle track, is referred to as the “averaged MODFLOW model.” The PA MODFLOW model T,
A, and R input fields are appropriately averaged across 100 realizations, producing a single averaged
MODFLOW flow model. This averaged MODFLOW model was used to predict regional Culebra
groundwater flow across the WIPP site.

For CRA-2009 PABC, PEST was used to construct 100 calibrated model realizations of the PA MODFLOW
model by adjusting the spatial distribution of model parameters (7, A, and R); MODFLOW boundary
conditions were fixed. The calibration targets for PEST in the PA MODFLOW model were both May 2007
freshwater heads (excluding AEC-7) and transient drawdown to large-scale pumping tests. Hart et al.
(2009) described the calibration effort that went into the CRA-2009 PABC; DOE (2014) summarizes the
model development and calibration results. An analogous but much simpler process was used here for
the averaged MODFLOW model. PEST was used to modify a subset of the MODFLOW boundary
conditions (see red boundaries in Figure 1). For simplicity the boundary conditions were modified
(rather than the T, A, and R parameter fields), because calibrating parameters or boundary conditions
from all 100 realizations would be a significant effort, and the results (100 contour maps) would be
difficult to present. The PEST calibration targets for the averaged MODFLOW model were the March
2016 measured annual freshwater heads at Culebra monitoring welis. In the averaged MODFLOW
model, boundary conditions were modified while holding model parameters (T, A, and R) constant. In

Information Only

Culebra Contour Map
Page 4 of 58

contrast to this, the PA MODFLOW model used fixed boundary conditions and made adjustments to 7,
A, and R parameter fields.

Table 1. Status of Key Software used in Analysis

Software Version Description Platform Software QA status
MODFLOW-2000 | 1.07 Groundwater flow mode! SunOS PA cluster Ao Qusiad Uriperp 15
(Harbaugh et al., 2000}
Automatic parameter Developed; qualified under NP 15-1
sy Rl estimation code RO0EA R loster (Doherty, 2002)
DTRKMF 1.01 Particle tracker SunOS PA cluster Developed; qualified under NP 19-1
Python 2.79 Scnp.tmg l? Migcge {file SunOS PA cluster Commercial off the shelf
manipulation)
Python 2.72.11 SCI’Ipt'I RE langusge Linux desktop Commercial off the shelf
(plotting)
Bash 43.33 Scrlp{tlng I?nguage il SunOS PA cluster Commercial off the shelf
manipulation)

MODFLOW
Constant Head Cells

MODFLOW
Inactive Cells

CRA2009 PABC
Active MODFLOW Boundary

WIPP Land
Withdrawal Boundary

i ~
£
E
S
\J
X

g Contour Map

B Area

g

8

. 76050@ 610000 815000 620000 625000 630000

NAD27 UTM X (m)

Figure 1. MODFLOW model domain, adjusted boundary conditions shown in red, contour map area outlined in green. Mills
Ranch well location indicated with “x”

The resulting heads from the PEST-calibrated averaged MODFLOW model were contoured over an area
surrounding the WIPP site using matplotlib {(a Python plotting library). The figure covers a subset of the
complete MODFLOW model domain; see the green rectangle surrounding the WIPP LWB in Figure 1. We

Information Only

Culebra Contour Map
Page 5 of 58

compute the path taken through the Culebra by a conservative (i.e., non-dispersive and non-reactive)
particle from the waste-handling shaft to the WIPP LWB. The particle track is computed from the
averaged MODFLOW model flow field using DTRKMF, these results are also plotted using matplotlib.
Scatter plot statistics were computed using numpy (a Python array-functionality library), which
summarize the quality of the fit between the averaged MODFLOW model and observed Culebra
freshwater heads. MODFLOW, PEST, DTRKMF, and the Bash and Python input files and scripts written
for this work were executed on the WIPP PA Solaris cluster (santana.sandia. gov) running SunOs
5.11, while the creation of figures was done using Python scripts on an Intel-Xeon-equipped Dell desktop
computer (empire.sandia.gov) running Kubuntu Linux, version 14.04.

2.2 Creating Average MODFLOW Simulation
An averaged MODFLOW model is used to compute the equivalent freshwater head and cell-by-cell flow
solution. The computed heads are contoured and the flow solution is used to compute particle tracks.
The ensemble-averaged inputs are used to create a single average simulation that produces a single
averaged output, rather than averaging the 100 individual outputs of the Culebra flow model used for
WIPP PA. This average approach was taken to simplify the contouring process, and create a single
contour map that exhibits physically realistic patterns (i.e., its behavior is constrained by the physics
embodied in the MODFLOW simulator code). An alternative approach would average outputs from 100
models to produce a single average result, but this average result may be physically unrealistic. The
choice to average inputs, rather than outputs, is a simplification (only one model must be calibrated
using PEST, rather than all 100 realizations). This simplification results in “smooth” freshwater head
contours and relatively faster particle tracks, compared to those predicted by the any one of the 100
fields calibrated as part of AP114 Task 7 (Hart et al., 2009).

The MODFLOW model grid is a single 7.5-m thick layer, comprising 307 rows and 284 columns; each
model cell is a 100-meter square. The modeling area spans 601,700 to 630,000 meters in the east-west
direction, and 3,566,500 to 3,597,100 meters in the north-south direction, both in Universal Transverse
Mercator (UTM) North American Datum 1927 (NAD27) coordinates, zone 13 north.

The calibrated T, A, and R parameter fields from the PA MODFLOW model were checked out of the PA
version control repository using the checkout_average_run_modflow. sh script (scripts are listed in
the Appendix; input and output files are available from the WIPP version control system in the
repository /nfs/data/CVSLIB/Analyses/SP9_9). Model inputs can be divided into two groups. The
first group includes model inputs that are common across all 100 calibrated realizations; these include
the model grid definition, the boundary conditions, and the model solver parameters. The second group
includes the T, A, and R fields, which are different for each of the 100 realizations. The constant model
inputs in the first group are used directly in the averaged MODFLOW model, while the inputs in the
second group were averaged across all 100 calibrated model realizations using the Python script
average_realizations.py. All three averaged parameters were geometrically averaged (i.e., the
arithmetic average was computed from the log,, values, which was then exponentiated to give the
resulting value), since they vary over multiple orders of magnitude.

Information Only

Culebra Contour Map
Page 6 of 58

2.3 Boundary Conditions
The boundary conditions taken from the PA MODFLOW model are used as the initial condition from
which PEST boundary condition calibration proceeds. There are two types of boundary conditions in the
WIPP MODFLOW model. The first type of condition includes geologic or hydrologic boundaries, which
correspond to known physical features in the flow domain. The no-flow boundary along the axis of Nash
Draw is a hydrologic boundary (the boundary along the dark gray region in the upper left of Figure 1).
The constant-head boundary along the halite margin corresponds to a geologic boundary (the eastern
irregular boundary adjoining the light gray region in the right of Figure 1). Physical boundaries are
believed to be well known, and are not adjusted in this PEST calibration.

The second type of boundary condition includes the constant-head cells along the rest of the model
domain. This type of boundary includes the straight-line southern, southwestern, and northern .
boundaries that coincide with the primary compass directions and the rectangular frame surrounding
the model domain (shown as heavy red lines in Figure 1). The value of specified head assigned in
boundary cells corresponds with this second boundary type and is adjusted in the PEST calibration
process.

The Python script boundary_types.py is used to distinguish between the two different types of
specified head boundary conditions based on the specified head value used in the PA MODFLOW model.
All constant-head cells (specified by a value of -1 in the MODFLOW IBOUND array from the PA
MODFLOW model) with a starting head value greater than 1000 meters above mean sea level (AMSL)
are left fixed and not adjusted in the PEST optimization, because they correspond to no-flow constant
head region to the east of WIPP. The remaining constant-head cells are distinguished by setting their
IBOUND array value to -2 {which is still interpreted as a constant-head value by MODFLOW, but allows
simpler discrimination between boundary conditions in Python scripts elsewhere in this analysis).

Using output from boundary_types.py, the Python script surface_02_extrapolate.py
computes initial head at active model cells (IBOUND=1) and the specified constant-head at adjustable
boundary condition cells (IBOUND=-2), given parameter values for the surface to extrapolate.

2.4 PEST Calibration of Averaged MODFLOW Model to Observations
There are two major types of inputs to PEST. The first input class is the “forward model”, which includes
the entire MODFLOW model setup derived from the PA MODFLOW model and described in the previous
section, along with any pre- or post-processing scripts or programs needed. These files comprise the
forward model PEST runs repeatedly to estimate sensitivities of model outputs to model inputs. The
second input type includes the PEST configuration files, which list parameter and observation groups,
observation weights, and indicate which parameters in the MODFLOW model will be adjusted in the
inverse simulation. Freshwater head values from March 2016 used as targets for the PEST calibration
from Seal (2017) are listed in Table 2, and specified along with weights in the PEST configuration files.
AEC-7R replaced previous AEC-7, but the surface casing has not been surveyed, so freshwater heads are
not available from AEC-7R, and AEC-7 has been plugged and abandoned. In comparison with Table 2,
well names used in figures don’t include leading zeros or hyphens and are capitalized for historical

reasons.

Information Only

Culebra Contour Map
Page 7 of 58

To minimize the number of estimable parameters, and to ensure a degree of smoothness in the
specified constant-head boundary condition values, a parametric surface is used to extrapolate the
heads to the estimable boundary conditions. The surface is of the same form described in the analysis
report for AP-114 Task 7. The parametric surface is given by the foliowing equation:

h(x, y) = A+ B(y + Dsign(y)abs(»)*) + C(Ex’ + Fx’ — x) (1)

where abs(y) is absolute value and sign(y) is the function returning 1 for y >0, -1 for y < 0 and O for
y =0and x and y are coordinates scaled to the range [J1 (I {x, y} (1. in Hart et al. (2009), the values
A=928,B=8,C=1.2,D=1,E=1, F=-1and a = 0.5 are used with the above equation to assign the
boundary conditions in the PA MODFLOW model.

PEST was used to estimate the values of parameters A, B, C, D, E, F, and a given the observed heads in
Table 2. The Python script surface_02_extrapolate.py was used to compute the MODFLOW
starting head input file (which is also used to specify the constant-head values) from the parameters A-F
and a. Each forward run of the model corresponded to a call to the Bash script run_02_model. This
script called the surface_02_extrapolate. py script, the MODFLOW-2000 executable, and the PEST
utility mod2obs, which is used to extract and interpolate model-predicted heads from the MODFLOW
output files at observation well locations.

The PEST-specific input files were generated from the observed heads using the Python script
create_pest_02_input.py. The PEST input files include the instruction file (how to read the
MODFLOW output), the template files (how to write the MODFLOW input), and the PEST control file
(listing the ranges and initial values for the estimable parameters and the values and weights associated
with observations). The wells used in the 2016 PEST calibration were separated into four groups,
indicated by the code in the second column of Table 2. Weights were compiled using scientific
judgement and trial-and-error (different combinations of weights were tried). Higher observation
weights (2.5) were assigned to wells inside the LWB, lower observation weights (0.4) were assigned to
wells distant from the WIPP site, wells near the WIPP LWB were assigned an intermediate weight (1.0),
and wells impacted by Mills Ranch pumping were assigned a low weight (0.05). Additional observations
representing the average heads north of the LWB and south of the LWB were used to help prevent over-
smoothing of the estimated results across the LWB. The additional observations and weights were
assigned to improve the fit in the area of interest (inside the WIPP LWB), possibly at the expense of a
somewhat poorer fit far from the WIPP LWB and closer to the boundary conditions.

Information Only

Culebra Contour Map
Page 8 of 58

Table 2. Freshwater head calibration targets used in PEST, from Seal (2017). Gray text indicates wells not used because of
long-term recovery. Red indicates wells clearly influenced by pumping at the Mills Ranch. Code: N=north, S=south,
C=central, M=influenced by Mills Ranch, X=excluded.

Measurement Freshwater Head Specific Gravity

Well Code Date (m AMSL) (g/cm’)
C-2737 SM 03/18/16 911.01 1.025
ERDA-9 CM 03/18/16 916.86 1.073
H-02b2 CM 03/21/16 922.88 1.011
H-03b2 SM 03/18/16 905.54 1.019
H-04bR SM 03/15/16 901.78 1.029

H-05b N 03/15/16 937.75 1.085
H-06bR N 03/14/16 935.59 1.038
H-07b1 S 03/14/16 913.82 1.009
H-0SbR S 03/15/16 906.12 1.004
H-11b4R SM 03/15/16 905.16 1.078
H-12R S 03/15/16 908.48 1.108
H-15R SM 03/18/16 909.35 1.119
H-16 CM 03/18/16 924.07 1.034
H-17 SM 03/15/16 905.52 1.133
H-19b0 M 03/18/16 905.76 1.066
IMC-461 C 03/14/16 927.60 1.004
SNL-01 N 03/14/16 938.87 1.030
SNL-02 N 03/14/16 935.91 1.008
SNL-03 N 03/14/16 938.14 1.028
SNL-05 N 03/14/16 936.37 1.009
SNL-08 N 03/15/16 931.89 1.095
SNL-09 C 03/14/16 930.35 1.018
SNL-10 (& 03/14/16 929.32 1.010
SNL-12 SM 03/15/16 903.66 1.007
SNL-13 SM 03/14/16 908.09 1.025
SNL-14 SM 03/15/16 903.77 1.044
Y $53/18/16 G33.57 1.233
SNL-16 S 03/14/16 917.98 1.014
SNL-17 S 03/15/16 912.08 1.009
SNL-18 N 03/14/16 936.69 1.009
SNL-19 N 03/14/16 935.96 1.005
WIPP-11 N 03/14/16 938.74 1.038
WIPP-13 N 03/18/16 937.21 1.036
WIPP-19 C 03/18/16 930.91 1.050
WQSP-1 N 03/18/16 936.88 1.049
WQSP-2 N 03/18/16 939.00 1.047

WQSP-3 N 03/18/16 935.15 1.146

WQSsP-4 SM 03/15/16 907.83 1.076
WQSP-5 SM 03/15/16 906.73 1.029
WQSP-6 SM 03/18/16 911.95 1.019

Information Only

Culebra Contour Map
Page 9 of 58

2.5 Figures Generated from Averaged MODFLOW Model
The MODFLOW model is run predictively using the averaged MODFLOW model parameters, along with
the PEST-calibrated boundary conditions. The resulting cell-by-cell flow budget is then used by DTRKMF
to compute a particle track from the waste-handling shaft to the WIPP LWB. Particle tracking stops
when the particle crosses the WIPP LWB. The Python script
convert_dtrkmf_output_for_surfer.py converts the MODFLOW cell-indexed results of DTRKMF
into a UTM x and y coordinate system, saving the results in the Surfer blanking file format to facilitate
plotting results. The heads in the binary MODFLOW output file are converted to an ASCll matrix file
format using the Python script head_bin2ascii.py.

The resulting particle track and contours of the model-predicted head are plotted using a matplotlib
Python script for an area including the WIPP LWB, corresponding to the region shown in previous
versions of the Annual Site Environmental Report (ASER) (e.g., see Figure 6.11 in DOE (2008)),
specifically the green box in Figure 1. The modeled heads extracted from the MODFLOW output by
mod2obs are then merged into a common file for plotting using the Python script
merge_observed_modeled_ heads.py.

3 2016 Results

3.1 2016 Equivalent Freshwater Head Contours
The model-generated freshwater head contours are given in Figure 2 and Figure 3. There is a roughly
east-west trending band of steeper gradients, corresponding to lower Culebra transmissivity. The
uncontoured region to the right of the purple line in the eastern part of the figures corresponds to the
portion of the Culebra that is located stratigraphically between halite and other members of the Rustler
Formation (Tamarisk Member above and Los Medaiios Member below). This region east of the “halite
margin” has a high freshwater head but extremely low transmissivity, essentially serving as a no-flow

boundary in this area.

Information Only

Culebra Contour Map
Page 10 of 58

Freshwater Heads WIPP Area 2016

l‘l

\

T

\l

f— e

N

)/

500000
=

NAD27 NM East State Plane Northing (ft)

o =
3 O
: s,
& 5
=
2
o =
3 . o
(=] L 2065.7
D | o HaBR WIPP LWB \ L
5 : g
2958.6 E
_— >
SNL13 SNL14 o
81 . . H17
R | 2793 2651 .
<o) 29700
N \
660000 665000 670000 675000 680000

MAD27 NM East State Plane Easting (ft)

Figure 2. Model-generated March 2016 freshwater head contours with observed head listed at each well (5-foot contour
interval) with blue water particle track from waste handling shaft to WIPP LWB. Purple curve is Rustler halite margin.

Information Only

Culebra Contour Map
Page 11 of 58

Freshwater Heads Model Area 2016

520000 530000 540000

~ | HBR SNL14

SnL13 ® oy

NAD27 NM East State Plane Northing {ft)

OUvE

H9BR
.

T = = T T T T T T T
630000 640bOO 650000 660000 670000 680000 690000 700000 710000 720000
NAD27 NM East State Plane Easting (ft)

450000 460000 470000 480000 490000 500000 510000
3
=
4

Figure 3. MODFLOW-modeled March 2016 heads for entire model domain (10-foot contour interval). Green rectangle
indicates region contoured in Figure 2, black square is WIPP LWB.

3.2 2016 Particle Track
The blue arrow in Figure 2 shows the DTRKMF-calculated path a water particle would take through the
Culebra from the coordinates corresponding to the WIPP waste handling shaft to the LWB (a path length
of 4079 m). Assuming the transmissive portion of the Culebra is only 4-m thick, and assuming a constant
porosity of 16%, the travel time to the WIPP LWB is 5447 years (output from DTRKMF is adjusted from
an original 7.75-m Culebra thickness). This is an average velocity of 0.75 m/yr.

Information Only

Culebra Contour Map
Page 12 of 58

3.3 2016 Measured vs. Modeled Fit
The scatter plot in Figure 4 shows measured and modeled freshwater heads at the observation locations
used in the PEST calibration. The observations are divided into three groups, based on proximity to the
WIPP site. Wells within the LWB are represented by red crosses, wells outside but within 3 km of the
LWB are represented with green ‘x’s, and other wells within the MODFLOW model domain but distant
from the WIPP site are indicated with blue stars. Additional observations representing the average
heads north of the LWB and south of the LWB were used to help prevent over-smoothing of the
estimated results across the LWB. This allowed PEST to improve the fit of the model to observed heads
inside the area contoured in Figure 2, at the expense of fitting wells closer to the boundary conditions
(i.e., wells not shown in Figure 2).

modeled vs. measured 2016

3100 :
; R
f : SNL18
- Lo
4
3060 A - p— 4
3 H16, v
= ,) / ;
:: 3040 - ._y?-_, . HZBZ. 4 ’ stLS
© :
§ , ERBYARY *IMC461
g 3020 { - : "WC2€73ZL:{_WQSP6“
= H3B2 +H15R-
£ H1PBO 5o+ wQspa
© f b
2 3000 ----H-H-ng&r «—»fﬁ{_—-lani « e
° kY “ *SNL16
B sm_lléqSH 7 *H7B1
2980HOBR& ./
‘ .
' : Inside LWB
2960 4- ! » <« 3km From LWB
i # distant
I — 45’ perfect Fit
. } — 4 1m Misfit
940 . - . — . : -
23040 2960 2980 3000 3020 3040 3060 3080 3100

Observed Freshwater Head (ft AMSL)

Figure 4. Measured vs. modeled scatter plot for averaged MODFLOW model generated heads and March 2016 observed
freshwater heads

The central black diagonal line in Figure 4 represents a perfect model fit (1:1 or 45-degree slope); the
two green lines on either side of this represent a 1-m misfit above or below the perfect fit. Wells more
than 1.5 m from the 1:1 line are labeled.

Information Only

Culebra Contour Map
Page 13 of 58

The calibrated parameters (for equation 1) were A =926.1, B=9.46, C = 2,55, D =0.9755, £ =-1.536,
F=-0.4084, and a = -0.4263. The parameters a (exponent on y), C (coefficient on all x variability), and £
(coefficient on x* variability) had the largest relative change (~185-253%) compared to the starting
values. Parameter F (coefficient on x*) was within 59% of its original value, and B was 18% away. All
other parameters were <10% different from their original values.

The squared correlation coefficient (R?) for the measured vs. modeled data is listed in Table 3. Figure 5
and Figure 6 show the distribution of errors resulting from the PEST-adjusted model fit to observed data.
The wells within and near the WIPP LWB have a weighted R® of greater than 99%, and the calibration
decreased the R? value when including all wells, but is still above 90%. The calibration improved the fit
for the wells in and near the WIPP LWB at the expense of fit to wells distant from the LWB. The
distribution of residuals in Figure 5 shows there are more errors where the model overpredicts, which is
consistent with drawdown from Mills Ranch pumping.

Table 3. 2016 Measured vs. Modeled correlation coefficients

dataset measured vs. modeled R*
wells inside WIPP LWB 0.993
Uncalibrated wells <3km from WIPP LWB 0.960
all wells 0.936
wells inside WIPP LWB 0.991
Calibrated wells <3km from WIPP LWB 0.955
all wells 0.913

Histogram of Model Residuals 2016

s Instde LWB & <3km from WIPP LWB
Al wells

-30 -20 -10 0 10 20
Measured-Modeled (ft)

Figure 5. Histogram of Measured-Modeled errors for 2016

Information Only

Culebra Contour Map
Page 14 of 58

individual residuals 2016

20
] inside WIPP {(WB

1
»
S

<3km WIPP LWB >3km WIPP LWB
10
0 Yy ———— + —p——
£ © m & o o om ~ ~ o o~

g RSN 333738 ¢
3 $s 22§ s
2 -10
o
:
- f F O § O F OB SGMBR § AeEssorsorcsrprseesmpeeenmepeempmes R OB 8 0§ B SUSOERREEEOEESIUCIEE ARG SRR e
g
3
-3
a
=

"'--_'"--"""-"1‘---165‘“---"--—' -
HI81
_ H9BR
MCAG1 4 '
: i1 4
SNLLG
sNL1B
SNL19
SNL3

Figure 6. Measured-Modeled errors at each well location for 2016; red bars indicate wells impacted by Mills Ranch pumping.

The model fit to the March 2016 observations as a whole is poor. The averaged MODFLOW model
captures the bulk steady-state Culebra flow behavior, but it cannot recreate the large drawdown
centered on well C-2492 (also called the “new Mills” well; Kuhiman, 2017), which is located immediately
south of WIPP Culebra well H-04bR. This well has been pumping off and on since September 2013. The
well appears to have stopped pumping for two months in winter 2015 (Dec 2015 & Jan 2016), but had
been pumping for about a month again by March 2016. The impacts from the long-term pumping were
extending across the southern portion of the WIPP LWB. Figure 6 shows the individual residuals for each
well, grouped by location. The red bars show negative residuals (mcdel over-predicting observed
values), and are associated with impacts from pumping at the Mills Ranch well.

The process for adjusting the boundary conditions of the averaged steady-state MODFLOW outlined in
SP 9-9 (Kuhiman, 2009) cannot match the effects of this pumping. This report presents a contour map
which represents the Culebra freshwater head piezometric surface as it would possibly look, if it were
unperturbed by pumping. Figure 7 shows the difference between the unperturbed (i.e., modeled)
freshwater head and the observed freshwater head drawdown which is due to pumping at C-2492. The
decision was made to use this approach, rather than modify the procedure, because it is believed the
pumping at C-2492 does not represent the natural steady-state flow in the Culebra.

Information Only

Culebra Contour Map
Page 15 of 58

Observed-Modeled Freshwater Heads WiPP Area 2016
H6BR |

H58 ,
39

505000

% S ERDA9
;5 § SNL10 104 » 13
+¥ A /
[«] —
=
@ /
=
&
0.
g o - / =
5 & ol
- B @)
Be T
& —
- 5
N
2 o - =
2 § 9
2 -
o
s
-
SNL14 o
27 ° HR7
§ 37
660000 665000 670000 675000 680000

NAD27 NM East State Plane Easting {ft}
Figure 7. Triangulated contours for observed minus model-predicted freshwater head. Red labels indicate wells designated

as significantly impacted by C-2492 pumping, which were assigned a smaller weight (0.05) in the calibration process (also see
wells marked “M” in the second column of Table 2).

Information Only

Culebra Contour Map
Page 16 of 58

4 References
DOE (US Department of Energy). 2008. Waste Isolation Pilot Plant Annual Site Environmental Report for
2007. US Department of Energy: Carlsbad, NM, DO/WIPP-08-2225.

DOE (US Department of Energy). 2014. Title 40 CFR Part 191 Subparts B and C Compliance Recertification
Application 2014 for the Waste Isolation Pilot Plant Appendix TFIELD-2014 Transmissivity Fields.
US Department of Energy: Carlsbad, NM, DOE/WIPP-14-3503.

Doherty, J. 2002. PEST: Model Independent Parameter Estimation. Watermark Numerical Computing,
Brisbane, Australia.

Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald. 2000. MODFLOW-2000, the U.S. Geological
Survey modular ground-water model — User guide to modularization concepts and the Ground-
Water Flow Process. U.S. Geological Survey Open-File Report 00-92.

Hart, D.B., S.A. McKenna, and R.L. Beauheim. 2009. Analysis Report for Task 7 of AP-114: Calibration of
Culebra Transmissivity Fields. Sandia National Laboratories: Carlsbad, NM, ERMS 552391.

Kuhlman, K.L. 2014. Analysis Report for Preparation of 2013 Culebra Potentiometric Surface Contour
Map, Sandia National Laboratories: Carlsbad, NM, ERMS 562110.

Kuhlman, K.L. 2017. WIPP Milestone Report: 2016 Culebra Groundwater Level Fluctuations, Memo to
WIPP Records Center. Carlsbad, NM: Sandia National Laboratories.

KuhIman, K.L. 2009. Procedure SP 9-9, revision 0, Preparation of Culebra potentiometric surface contour
maps. Carlsbad, NM: Sandia National Laboratories, ERMS 552306.

Moody, D.C. 2009. Stipulated Final Order for Notice of Violation for Detection Monitoring Program,
Sandia National Laboratories: Carlsbad, NM. WIPP Records Center, ERMS 551713.

Seal, B. 2017. March 2016 Culebra ASER map data, Washington TRU Solutions, Carlsbad, NM. WIPP
Records Center, ERMS 567985.

Thomas, M. 2016. Analysis Report for Preparation of 2015 Culebra Potentiometric Surface Contour Map,
Sandia National Laboratories: Carisbad, NM, ERMS 566114.

Information Only

Culebra Contour Map
Page 17 of 58

5 Run Control Narrative
This section is a narrative describing the calculation process mentioned in the text, which produced the

figures given there.

Figure 8 gives an overview of the driver script checkout_average_run_modflow.sh (§A-4.1); this
script first exports the 4 parameter fields used in the TFIELDS calibration process (transmissivity (T),
anisotropy (A), and recharge (R), and storativity (S)) from CVS version control for each of the 100
realizations of MODFLOW, listed in the file keepers (see lines 17-26 of script). In the steady-state
simulations done for this report, the S field is not used. Some of the realizations are inside the Update
or Update2 subdirectories in CVS, which complicates the directory structure. An equivalent list
keepers_short is made from keepers, and the directories are moved to match the flat directory
structure (lines 31-53). At this point, the directory structure has been modified but the MODFLOW input

files checked out from CVS are unchanged.

Python script average_realizations.py (§A-4.2) is called, which first reads in the keepers_short
list, then reads in each of the 400 input files and computes the geometric average at each cell across the
100 realizations. The 400 input files are each saved as flattened matrices, in row-major order. The
average result is saved into 4 parameter files, each with the extension . avg instead of .mod. A single
value from each file, corresponding to either the cell in the southeast corner of the domain (input file
row 87188 = model row 307, model column 284 for K [hydraulic conductivity — what is actually used by
MODFLOW] and A) or on the west edge of the domain (input file row 45157 = model row 161, model
column 1 for R and §) is saved in the text file parameter_representative_values.txt to allow
checking the calculation in Excel, comparing the results to the value given at the same row of the .avg
file. The value in the right column of Table 4 can be found by taking the geometric average of the values
in the text file, which are the values from the indicated line of each of the 100 realizations.

The input files used by this analysis, the output files from this analysis (including the plotting scripts) are
checked into the WIPP version control system (CVS) under the repository $CVSLIB/Analyses/SP9_9.

Information Only

Culebra Contour Map
Page 18 of 58

CVS: AP-114 Task 7
100 realizations T,A,R &S fields +
Other MF2K input files

average realizations.py boundary_types.py

Compute log-space average T,A,R & S fields Determine which boundaries will be adjusted

surface 02_extrapolate.py

Compute parametric surface for starting head

create_average NS residuals.py

Compute meta-observations regarding head

MODFLOW-2000

Binary head output A TN/]
1
(]
H MODFLOW-2000 Binary flow
y E velocity output
i
1
- . 1
" Extract & interpolate head at
observation i| head bin2ascii.py
1
[}
) _ i| Convert head field to Surfer Co
PEST-controlled simulation loop E ASCII grid format for plotting ' track
]
___________________________________ 1
lot it :
plot-results- lot-contour-)
bar-charts.py \ / Iiaps i \ convert_dtrkmf output for_ surfer.py
Plot scatter & bar Plot maps w/ Convert L§ DTRKMF output to XY Surfer ASCII
figures w/ matplotlib matplotiib blanking file format for plotting

Figure 8. Process flowchart; dark gray indicates qualified programs, light gray are scripts written for this analysis

Table 4. Averaged values for representative model cells

Field Input file row Model row Model column Geometric average
K 87188 307 284 9.2583577E-89
A 87188 307 284 9.6317478E-681
R 45157 161 1 1.4970689E-19
) 45157 161 i | 4.0388352E-03

Information Only

Culebra Contour Map
Page 19 of 58

Figure 9 shows plots of the average logy, parameters; inactive regions (< 10™°) were reset to 1 to
improve the plotted color scale. The rest of the calculations are done with these averaged fields.

average log; (K average log,,(A)
0 0.0 0 —
50 —15 50 0.45
-3.0 40.30
100 100
—4.5 d0.15
150 —(75.2 150 -
200 i 200 .
e 0.15
300k -12.0 300 —0.45
0 50 100 150 200 250 0 50 100 150 200 250
average log,,(R) average log,,(S5)
0 0 0.0
50 50 —0.8
-1.6
100 100 | 2.4
150 150 F §-3.2
200 200 -4.0
250 250 ~40
-5.6
300 300

0 50 100150 200 250 0 50 100 150 200 250

Figure 9. Plots of base-10 logarithms of average parameter fields; rows and columns are labeled on edges of figures.

Next, a subdirectory is created, and the averaged MODFLOW model is run without any modifications by
PEST. Subsequently, another directory will be created where PEST will be run to improve the fit of the

model to observed heads at well locations.

The next portion of the driving script checkout_average_run_modflow. sh links copies of the input
files needed to run MODFLOW-2000 and DTRKMF into the original_average run directory. Then
MODFLOW-2000 is run with the name file mf2k_head. nam, producing binary head
{modeled_head.bin) and binary cell-by-cell flow budget (modeled_flow.bud) files, as well as a text
listing file (modeled_head. 1st). DTRKMF is then run with the input files dtrkmf. in and
wippctrl.inp, which utilizes the cell-by-cell budget file written by MODFLOW to generate a particle
track output file, dtrk.out. The input file wippctrl. inp specifies the starting location of the particle

Information Only

Culebra Contour Map
Page 20 of 58

in DTRKMF face-centered cell coordinates, the porosity of the aquifer (here 16%), and the coordinates of
the corners of the WIPP LWB, since the calculation stops when the particle reaches the LWB.

The Python script head_bin2ascii. py (§A-4.7) converts the MODFLOW binary head file, which
includes the steady-state head at every element in the flow model domain (307 rows x 284 columns)
into a Surfer ASCII grid file format. This file is simply contoured in Python using matplotlib, no
interpolation or gridding is needed. The Python script convert_dtrkmf_output_for_surfer.py
(§A-4.9) reads the DTRKMF output file dtrk. out and does two things. First it converts the row, column
format of this output file to an x, y format suitable for plotting, and second it converts the effective
thickness of the Culebra from 7.75 m to 4 m. The following table shows the first 10 lines of the
dtrk.out and the corresponding output of the Python script

dtrk_output_original_ average.bln. The first three columns of dtrk.out (top half of Table 5)
after the header are cumulative time (red), column (blue), and row (green). The three columns in the
blanking file (second half of Table 5) after the header are UTM NAD27 X (blue), UTM NAD27 Y (green),
and adjusted cumulative time (red, which is faster than the original cumulative travel time by the factor
7.75/4=1.9375). The conversion from row, column to x, y is

X =601700 +100* column
Y =35971000100 * row

since the 1,J origin is the northwest corner of the model domain (601700, 3597100), while the X,Y origin
is the southwest corner of the domain. The blanking file is plotted directly in Python using matplotlib,
since it now has the same coordinates as the ASCII head file.

Table 5. Comparison of first 10 lines of DTRKMF output and converted Surfer blanking file for original_average

1 158
18.79 150.21 1.18790000E+04 1.58210000E+04 ©.000000B0E+08 1.85168267E-81 1.59999996E-01 1.00000000E+88
150.29 1.18859872E+64 1.50285080E+04 1,82562574E+01 1.85130032E-01 1.59999996E-01 1.00000000E+20@
150.36 1.18929942E+04 1,50359947E+@4 2.95104788E+01 1,85094756E-01 1.59999996E-01 1.00000000E+00
150.43 1.19000000E+84 1.50434379E+04 3.07321029E+01 1.85062532E-81 1.59999996E-01 1,008620000E+00
150.62 1.19206651E+04 1.50624751E+84 5.88294962E+01 1.73534671E-01 1.59999996E-01 1.00000000E+008
150.81 1.19415109E+84 1.50813473E+04 8.69498492E+01 1.73684593E-01 1.59999996E-01 1.02020000E+88
151.00 1.19624759E+04 1.51006000E+04 1.15010608E+82 1.73860152E-81 1.5 6E-01 1. OE+20
151.10 1.19749757E+84 1.511@2419E+84 1.31170520E+02 1.81333000E-01 1.59999996E-01 1.00000000E+60
.87 151.20 1.19874963E+04 1.51284665E+04 1.47335525E+02 1.81390626E-81 1. 6E-01 1. +08

The PEST utility script mod20bs is run to extract and interpolate the model-predicted heads at
observation locations. The input files for mod2obs.exe were taken from AP-114 Task 7 in CVS. The
observed head file has the wells and freshwater heads, but is otherwise the same as that used in the
model calibration in AP-114 (Hart et al. 2009). The Python script
merge_observed_modeled_heads.py (§A-4.9) simply puts the results from mod2obs and the
original observed heads in a single file together for easier plotting and later analysis.

Information Only

Culebra Contour Map
Page 21 of 58

A similar process is carried out in a new directory called pest_02 (beginning line 146 of the driver
script). The PEST calibration is carried out there, to keep it separate from the original_average
simulation. Now the Python script boundary_types. py (§A-4.3) is also run, to create a new
MODFLOW IBOUND array, where the two different types of boundary conditions are differentiated. This
Python script uses the MODFLOW IBOUND array (init_bnds_orig. inf first % of Table 6) and the
initial head array (init_head_orig.mod middle % of Table 6) as inputs, and writes a new MODFLOW
IBOUND array (init_bnds. inf bottom % of Table 6) with constant-head nodes indicated in red in
Figure 1 marked as -2 and other constant-head nodes remaining as -1 as output. The script differentiates
between these two types of boundary conditions by checking if the starting head is <1000m. Starting
heads >1000m are associated with the constant-head areas to the east of the halite margins (lighter gray
areas in Figure 1).

Table 6. Input IBOUND, starting head, and output IBOUND array data corresponding to first row of MODFLOW model

ol 2R]

7]
0
e |

OO ®
(s> I I o)
QO ®
[
L B
()
o006
000
o0
OO0 ®
oS0
OO
[~ B]
o0 ®
[I
cCe®
o0
[
O ®
o>
OO ®
DO
OO
DO
ceo®
DO ®
-=oo
= oo
e]
o ®
= O®
= ® 6
= oo
T Rro®

-1-1-t1-1-42-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 -1-1-1-1-1-1-1-1-1-1

943 944
944 944
944 944
944 944
944 944
944 944 944 544 944 944 944 944 944 944 944 1087 168- 8 082 1081 1080 1¢) 78 1077 10)7

0
Q

© 6 © @ B 0 000G 6 o e
2 =¥ =7 52 =¥ =J =2 <P < =D =2 #F <3 <P B £P L 22 =D =2 <P =F 4T w2 D =

e
o ®|s

oo e
e e b
® ®|n ﬂ’:
®of

o)

o®

el

o S

oo
oo

)

oo ®

oo e

oo

oo

oo

o0 ®

co®

)

oo ®

oo ®

oo ®

oo

Tnoo

N
N
'
N
'
N
1
L5 I
]
Mo
N
|
Nt

{

Table 6 shows the data corresponding to the northernmost row of the MODFLOW model domain (284
entries long) for the two input files and one output file. In the top IBOUND array, the values are either O
or -1, indicating either inactive (the region northwest of the no-flow area shown in dark gray in Figure 1)
or constant head (both red and light gray cells in Figure 1). The first 284 values from the initial head file
(reformatted from scientific notation to integers to facilitate printing) show a jump from approximately
944 (in blue) to >1000 (in red). These same cells are colored in the output, showing how the initial head
value is used to distinguish between the two types of constant-head boundaries. MODFLOW treats any
cells as constant head which have an IBOUND entry <0, so both -2 and -1 are the same to MODFLOW,

Information Only

Culebra Contour Map
Page 22 of 58

but allow distinguishing between them in the Python script which extrapolates the heads to the

boundaries.

The required PEST input files are created by the Python script create_pest_02_input.py

(§A-4.4). This script writes 1) the PEST instruction file (nodeled_head. ins), which shows PEST how to
extract the model-predicted heads from the mod2obs . exe output; 2) the PEST template file
(surface_par_params.ptf), which shows PEST how to write the input file for the surface
extrapolation script; 3) the PEST parameter file (surface_par_params. par), which lists the starting
parameter values to use when checking the PEST input; 4) the PEST control file
(bc_adjust_2016ASER. pst), which has PEST-related parameters, definitions of extrapolation surface
parameters, and the observations and weights that PEST is adjusting the model inputs to fit. The
observed heads are read as an input file in the PEST borehole sample file format
{meas_head_2016ASER. smp), and the weights are read in from the input file
(obs_loc_2016ASER.dat).

PEST runs the “forward model” many times, adjusting inputs and reading the resulting outputs using the
instruction and template files created above. The forward model actually consists of a Bash shell script
(run_02_model) that simply calls a pre-processing Python script surface_02_extrapolate.py
(§A-4.5), the MODFLOW-2000 executable, the Python script create_average_ NS_residuals.py,
and the PEST utility mod2obs. exe as a post-processing step. The script redirects the output of each
step to /dev/null to minimize screen output while running PEST, since PEST will run the forward

model many dozens of times.

The Python script create_average NS_residuals. py takes the output from the PEST utility
mod20bs and creates a meta-observation that consists of the average residual between measured and
model-prediction, only averaged across the northern or southern WIPP wells (the welis in the center of
the WIPP site are not included in either group). This was done to minimize cancelation of the errors
north (where the model tended to underestimate heads) and south (where the model tended to
overestimate heads) of the WIPP. The results of this script are read directly by PEST and incorporated as
four additional observations (mean and median errors, both north and south of WIPP).

The pre-processing Python script surface_02_extrapolate.py reads the new IBOUND array
created in a previous step (with -2 now indicating which constant-head boundaries should be modified),
the initial head file used in AP-114 Task 7 (init_head_orig.mod), two files listing the relative X and Y
coordinates of the model cells (rel_{x,y}_coord.dat), and an input file listing the coefficients of the
parametric equation used to define the initial head surface. This script then cycles over the elements in
the domain, writing the original starting head value if the IBOUND value is -1 or 0, and writing the value
corresponding to the parametric equation if the IBOUND value is -2 or 1. Using the parameters
corresponding to those used in AP-114 Task 7, the output starting head file should be identical to that
used in AP-114 Task 7.

After PEST has converged to the optimum solution for the given observed heads and weights, it runs the
forward model one more time with the optimum parameters. The post-processing Python scripts for

Information Only

Culebra Contour Map
Page 23 of 58

creating the Surfer ASCII grid file and Surfer blanking file from the MODFLOW and DTRKMF output are
run and the results are plotted using additional Python scripts that utilize the plotting and map
coordinate projection functionality of the matplotlib library.

These two plotting scripts (plot-contour-maps.py and plot-results-bar-charts.py)are
included in the appendix for completeness, but only draw the figures included in this report, and passed
on to the site management and operations contractor for the ASER.

Information Only

6 Files and Script Source Listings

6.1 Input Files

bytes | file type description file name
1.5K | Python script | average 100 realizations : average.realizations.py
2.1K | Python script | distinguish different BC types boundary-types.py
. main routine: checkout files, run MODFLOW
6.2K | Bash script ym PEST, sall Pythion seripis checkout.average_run-modflow.sh
; convert DTRKMF 1J output 7
624 | Python script 5o Sifer XY Blanking foumnet convert _dtrkmf_output_for_surfer.py
2.8K | Python script | create meta observations of avg heat create_average NS_.residuals.py
3.1K | Python script | create PEST input files from observed data create_pest_02.input.py
48 | input listing | responses to DTRKMF prompts dtrkmf.in
' . convert MODFLOW binary ‘ .
4.0K | Python script ittt by Bupter ARCTI g v head bin2ascii.py
1.1K | input | listing of 100 realizations from CVS keepers
; observed March 2016 heads
14K | input in mod2obs bore sample file format meAs-head 20150580 P
. paste observed head and model-generated
968 | Python script Bty Dt oo Bl merge-observed.modeled-heads.py
76 | file listing files needed to run mod2obs mod2obs_files.dat
139 | input listing | responses to mod2obs prompts mod2obs_head.in
372 | file listing files needed to run MODFLOW modflow_files.dat
393 | input listing of wells and geographic groupings obs_loc_2016ASER.dat
215 | file listing files needed to run PEST pest_02_files.dat
2.3M | input relative coordinate 1 <2 <1 rel_x_coord.dat
2.3M | input relative coordinate 1 <y <1 rel_y_coord.dat
490 | Bash script PEST model: execute MQDFLO\’V and R
do pre- and post-processing
26 | input mod2obs input file settings.fig
47 | input mod2obs input file spec-domain.spc
1.8K | input mod2obs input file spec.wells.crd
. compute starting head from
2.4K | Python script parsmister sud setdinate s surface_02_extrapolate.py
506 | input DTRKMF input file wippctrl.inp

Table 1: Input Files

24

Information Only

6.2 OQOutput Files

bytes | file type description file name
19K | DTRKMF output | particle track results dtrk.out
16K | DTRKMF output | particle track debug dtrk.dbg
1.9K | script output heads at well locations modeled.vs.cbserved_-head.pest-02.txt
1.1M | script output formatted MODFLOW heads modeled_head.pest_02.grd
5.3K | script output formatted DTRKMF particle dtrk.output_pest_02.bln
12K | PEST output matrix condition numbers bc_adjust_2016ASER.cnd
2.7K | PEST output binary intermediate file bc_adjust_2016ASER.drf
7.3K | PEST output binary intermediate file bc_adjust_2016ASER. jac
74K | PEST output binary intermediate file bec_adjust_2016ASER. jco
9.8K | PEST output binary intermediate file bc_adjust_2016ASER. jst
3.8K | PEST output parameter statistical matrices bc_adjust_2016ASER.mtt
477 | PEST output parameter file bc.adjust_2016ASER.par
56K | PEST output optimization record bc_adjust_2016ASER.rec
4.5K | PEST output model outputs for last iteration | bc.adjust_2016ASER.rei
8.2K | PEST output summary of residuals bc_adjust_2016ASER. res
28 | PEST output binary restart file bc.adjust 2016ASER.rst
22K | PEST output relative parameter sensitivities | bc.adjust_-2016ASER.sen
3.9K | PEST output absolute parameter sensitivities | bc.adjust_.2016ASER. seo
214K | png image matplotlib plot (Fig. 2) aser-area-contour-map2016.png
226K | png image matplotlib plot (Fig. 3) large-area-contour-map2016.png
161K | png image matplotlib plot (Fig. 7) aser—area-modobs-contour-map2016.png
34K | png image matplotlib plot (Fig. 5) model-error-histogram2016.png
25K | png image matplotlib plot (Fig. 6) model-error-residuals2016.png
117K | png image matplotlib plot (Fig. 4) scatter_pest_02_2016.png

Table 2: Listing of Output Files

25

Information Only

»

© ® N e w

10
11
12
i3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
a2
43
44

45

47

48

6.3

Individual scripts

6.3.1 Bash shell script checkout_average run modflow.sh

set
set

set

echo
echo
echo

for d in

—0 nounset
-0 errexit #

-0 xtrace

cvs —-d /nfs/data/CVSLIB/Tfields checkout OQutputs/${d}/modeled {K,A,R,S}_field.mod

do
done
cvs —-d /nfs/data/CVSLiB/Tfields
cvs -d /nfs/data/CVSLIB/Tfields
cvs —-d /nfs/data/CVSLIB/Tfields
cvs -d /nfs/data/CVSLIB/Tfields

if [-a keepers_short]

then

fi

rm keepers_short

touch keepers_short

for d in ‘cat keepers’

do

bn

if [S{d} !

=‘basename ${d}*

${bn}]

then
dn=‘dirname ${d}"*

checkout
checkout
checkout
checkout

26

Inputs/data/elev_{top,bot} .mod
Inputs/data/init_{bnds.inf, head.mod}
Inputs/modflow/mf2k_culebra. {lmg, 1pf}
Inputs/modflow/mf2k_head. {ba6,nam, oc,dis, rch}

Information Only

49
50
51
52
53
54
55
56

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

L2
82
By
(1]
85

86

88
89
a0
a1

a2

mv ./Outputs/${d} ./Outputs/

bouEl .« /Outputss Sibn) A5 tdn)

£fi

echo ${bn} >> keepers_short

done

echo
echo
echo

was previouslv named

out

python average_realizations.py

=

echo
echo
echo

Forv

od=original_average

if [-d ${od} 1]
then
echo ${od}
rm -rf ${od}
fi

mkdir ${od}
cd ${od}
echo ‘pwd’

-

for file in ‘cat“../modflow_files.dat‘

do
ln -sf ${file}
done

7 el
L1I1K

for £ in {A,R,K,S}

do

1n -sf ../modeled_S${f}_field.avg ./modeled_S${f}_field.mod

done

1n -sf elev_top.mod fort.33

27

Information Only

101
102

103

105

137

143
144
145
146
147
148
149
150

1In -sf elev_bot.mod fort.34

echo
echo
echo

/utilities/modflow2000 mf2k_head.nam

Jutilities/dtrkmf ‘cat dtrkmf.in®

In -sf ../head_bin2ascii.py .
python head _binZascii.py
mv modeled_head_asciihed.grd modeled_head_${od}.grd

In -sf ../convert_dtrkmf output_for_surfer.py .
python convert_dtrkmf_output_for_surfer.py
mv dtrk_output.bln dtrk_output_${od}.bln

for file in ‘ecat .

do
ln -sf ${file}
done

./mod2obs_files.dat®

In -sf ../meas_head_2016ASER.smp

In -sf ../obs_loc_2016ASER.dat

/utilities/mod2obs <mod2obs_head.in

ln -sf ../merge_observed_modeled_heads.py

python merge_observed_modeled_heads.py

mv both_heads.smp modeled_vs_observed_head_${od}.txt

cd ..
echo ‘pwd’

echo
echo
echo

for p in pest_02
do

if [-d ${p} 1
then

28

Information Only

151
152
153
154
1585
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170

181
182
183
154

185

197
198
199
200

201

echo §{p)}
rm -rf ${p}
fi

mkdir ${p}
cd ${p}
echo ‘pwd’

files

link to u]
for file in ‘cat ../modflow files.dat®
do
In -sf ${file}
done

link g
for £ in {A,R,K,S}
do
In -sf ../modeled_${f}_field.avg ./modeled_${f}_field.mod
done

1 c to mc s files o

for file in ‘ecat ../mod2obs_ flles dat‘
do
In -sf ${file}

done

for file in ‘ecat ../${p}_files.dat"®
do
in -s ${file} .

done

ified by

! lame
rm init_head. mod
ln -sf ../Inputs/data/init_head.mod ./init_head_orig.mod
rm init_bnds.inf
in -sf ../Inputs/data/init_bnds.inf ./init_bnds_orig.inf

s

modification dt

lon iterati

python create ${P} lnput Py

run pest
/utilities/pest bc_adjust_2016ASER

“7ou1d be best ri
Out}m;t

####

S

29

Information Only

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

218

220

221

222

223

224

225

227

In -sf elev_top.mod fort.33
1ln -sf elev_bot.mod fort.34

/utilities/dtrkmf ‘cat dtrkmf.in‘

1In -sf ../head_bin2ascii.py
python head_bin2ascii.py
mv modeled_head_asciihed.grd modeled_head_${p}.grd

ln -sf ../convert_dtrkmf output_for_surfer.py
python convert_dtrkmf_ output_for_surfer.py
mv dtrk_output.bln dtrk_output_${p}.bln

for file in ‘eat ../mod2obs_files.dat’
do

ln -sf ${file} .
done

/utilities/mod2obs <mod2obs_head.in

In -sf ../merge_observed_modeled_heads.py

python merge_observed_modeled heads.py

mv both_heads.smp modeled_vs_observed_head_${p}.txt

cd

done

30

Information Only

© ~ > m L3 W © -

[> > -~ - S - » «w w « W oW oW W oW oW [[N N N
w 3 (=] - w N - o © ® =~ =3 « > L O W ® N o @ § 3 82 gz; : ;5 : C.Hﬁ G :S

»
©

6.3.2 Python script average_realizations.py

from math import logl0, pow

nrow = 307

ncol = 284

nel = nrow+ncol

nfr = 100 # number of fields (realiza
nft = 4 g g =0 7 e

def floatload(filename):

f = open(filename, b
m = [float(line.rstrip()) for line in f]
f.close()
return m
types = [’ ’ v]
flist = open(3)
runs = flist.read().strip().split("n")

flist.close()

fields = []

for i in xrange (nft):
fields.append([None] *xnfr)
for i in xrange (nfr):

fieldé[—l][i] % [Nohé]#Ael V

print /

for i,run in enumerate (runs):
print i,run
for j,t in enumerate (types):

fields[j1[i][0:nel] = floatload(+ run +
fh = []
for t in types:
fh.append (open (+ t + ’)

for j in range (len(types)):
fields[j] = zip(x(fields[j]))

print

31

Information Only

50

51

52

53

54

&5

58

57

for i in xrange{nel):

if i%10000 ==
print i

for h,d in zip(fh,fields):

h.write(

for h in fh:
h.close()

% pow(10.0, sum(map(logl0,d[i])) /nfr)

32

Information Only

)

10

12

13

14

15

6

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

6.3.3 Python script boundary types.py
nx = 284
ny = 307

nel = nxx*ny

def intload(filename) :

f open (filename,)
m [[int (v) for v in line.rstrip().split()] for line in f]

f.close()
return m

def intsave(filename,m):

f = open (filename,)
for row in m:

f.write(« Jodnd [% col for col in row]) +)
f.close ()

def floatload(filename):

f = open(filename,)

m = [float(line.rstrip()) for line in f]
f.close()

return m

def reshapev2m(v) :

m = [None]*ny

for i, (lo,hi) in enumerate (zip (xrange (0, nel-nx+l, nx), xrange(nx, nel+l, nx))):
m[i] = v{lo:hi]

return m

FERRFEA#H

read in original MODFLOW IBOUND array | 0,1, and)
ibound = intload()
h = reshapevZ2m(floatload())

for i, row in enumerate (ibound) :
for j,val in enumerate (row):

33

Information Only

50

51

52

53

54

55

58

intsave(

if ibound[i] [j] == —i and h[i][jj < 1000;0:
ibound[i] []j] = -2

, ibound)

34

Information Only

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3.4 Python script create pest_02_input.py

prefix =

lnscrucclion

fin = open ('

a3 o} we

wells = |
fin.close()

fout = open(
fout .write(

(line.split () [0], line.

% préfix,);

pair

split () [3]] for line in fin]

')
)

for i,well in enumerate (wells):

fout.write(
fout.close ()

params
pnames = | .

fout = open (
fout .write(

)
fout.close ()

4 vl ate
cenpilace

ftmp = open

ftmp.write (

for n in pnames:
ftmp.write (

ftmp.close ()

N

fpar = open (
fpar.write (

% well[O0])

= [928.0, 8.0; L.2, 1.0y 1.8; -1.0; 0.5]

4 7 14 4 7]

)

for n,p in zip(pnames,params) :

fpar.write ('

% (pr))

35

Information Only

50
51
52
53
b4e
55
56
57

58

70

926
97
98
99

100

fpar.close

()

f = open|(

f.write(

% prefix, ¥

% (len(params),len(wells)+4))

f.write(

)

for n,p in zip(pnames,params):
iFf o & @

else:

f.write(

fin = open

(

f.write(
(n, p, -2.0%p, 3.0xp))

f.write(
(n, p, 3.0+xp, -2.0xp))

% prefix,)

lines = fin.readlines/()

[line.rstrip().split () [1] for line in lines]
groups = [line.rstrip().split() (2] for line in lines]
fin.close ()

location =

weights =

numnorth =
numsouth =

for 1,g in
if

[]

0.0
0.0

zip(location,groups):

in g:

36

Information Only

oe

101
102
103
104
105
108
107
108
109
110
111
112
113

114

116
117
118
119
120

121

123
124
125
126
127

128

130
131
132
133
134
135
136
137
138
139
140
141
142

143

weights.append(0.05)

else:
if 1 ==
weilghts
elif ==
weights
elif 1 ==
weights

elif 1 ==
weights

if in g

.append(2.5)
.append(1.0)

.append (0.4)

.append (0.01) #

numnorth += 1.0

elif " in

g:

numsouth += 1.0

for name,head,w in zip(zip(*wells) [0],zip (+wells) [1],weights):

f.write(

f.write

% (name, head, w))

% (numnorth, numsouth, numnorth, numsouth))

f.write(

)
f.close ()

37

Information Only

hio
12
13
14
15
16
kg
18
19
20
21
22
23
24
25
26
27

28

KL
38
40
41
42
43
44
45
46
47
48

49

6.3.5 Python script surface 02_extrapolate.py

from itertcols import chain
from math import sqgrt

def matload(filename) :

f = open(filename, "1r’)

m = [line.rstrip().split() for line in f]
f.close()

return m

def floatload(filename):

f = open(filename, ')

m = [float (line.rstrip()) for line in f]
f.close()

return m

def reshapem2v (m) :

return list (chain(xm))
def sign(x):

if x<0:
return -1

elif x>0:
return +1

else:
return 0
SESTETEE

read in modified IBOUND array, with the cells to modify se o
ibound = reshapemZv (matload|())
h = floatload/()
x = floatload()
y = floatload/()
*))
finput = open (7)
try:

a,b,c,d,e,f,exp = [float(line.rstrip()) for line in finput}]

38

Information Only

except ValueError:

finput.seek (0)
lines = [line.rstrip() for line in finput]
for i in range(len(lines)):

lines[i] = lines[i].replace(i)

a, br Cc, d, e, f, exp

finput .close()

fout = open (

= [float (line) for line in lines]

’)

for i in xrange(len(ibound)):

if ibound(i] ==

or ibound[i] ==

if<ytijr==70$

fout.write (% (a + crx(exx[1])**3 + fxx[i]**2 — x[i])))
else:
fout .write(% (a + bx(y[i] + dxsign(y[i])*abs(y[i]) x*exp) +
cx(exx[1]**3 + fxx[i]x*2 — x[i])))

else:

fout.write(

fout.close()

39

Information Only

'S

11

12

13

14

15

18

17

18

19

6.3.6 Bash shell script run_02_model

python surface_02_extrapolate.py
/utilities/modflow2000 mf2k_head.nam >/dev/null

/utilities/mod2obs <mod2obs_head.in >/dev/null

python create_average_NS_residuals.py

40

Information Only

6.3.7 Python script head bin2ascii.py

import struct
from sys import argv,exit

class FortranFile (file) :
def _ _init_ (self, fname, mode= , buf=0):

file._ init__ (self, fname, mode, buf)
self.ENDIAN = # ttle € 2N

10

12
13

14

readReals (self,

1 = struct.unpack{(self.ENDIAN+ ' ,self.read(self.di))[0]
data_str = self.read(l)
len_real = struct.calcsize (prec)
if 1 % len_real != 0:
raise IOError (
num = 1/len_real
reals = struct.unpack(self.ENDIAN+str (num)+prec,data_str)

if struct.unpack (self.ENDIAN+ ,self.read(self.di)) [0] != 1:
raise IOError (
return list (reals)

26
27

28

readInts (self):

1 = struct.unpack(,self.read(self.di)) [0]

data_str = self.read(l)

len_int = struct.calcsize()

if 1 % len_int != 0:
raise IOError (

num = 1/len_int

ints = struct.unpack (str (num)+ ,data_str)

if struct.unpack(self.ENDIAN+ ,self.read(self.di)) [0] != 1:
raise IOError(

return list (ints)

def readRecord(self):

dat = self.read(self.di)
if len(dat) == 0:

raise IOError ()
1 = struct.unpack(self.ENDIAN+ ,dat) [0]
data_str = self.read(l)
if len(data_str) != 1:

raise IQError ()
check = self.read(self.di)

41

Information Only

50
51
52
53
54
55
56
57

58

=8
89
80
21
92
93
94
95
26
97
98
99

100

def

def

if name ==

if len(check) != 4:
raise IOError (

if struct.unpack (self.ENDIAN+
raise IOError (

return data_str

reshapevZm (v, nx,ny) :

m = [None]*ny
n = nx*ny

,check) [0] !

for i, (lo,hi) in enumerate (zip (xrange (0, n-nx+l, nx),

m[i] = v[lo:hi]
return m

floatmatsave (filehandle,m) :

for row in m:

f.write ('’ .Jjoin (][

.o

4 T -, T SFEl e S A S rTE

try:

infn,outfn = argv[1l:3]
except:

print

infn =

outfn =

ff = FortranFile (infn)

-

while True:
try:

2 7
e Ao r

h = ff.readRecord({()

except IOError:

exit

break

else:
unpa

Information Only

42

% col for col in row])

xrange (nx,

(1)

101 kstp, kper, pertim, totim, text,ncol, nrow,ilay = struct.unpack(fmt,h)

102

103 I L { S 1
104 print kstp, kper,pertim, totim, text,ncol,nrow,ilay
105

106 h = ff.readReals()

107

108 ff.close()

109

110 xmin, xmax = (601700.0,630000.0)

111 ymin, ymax = (3566500.0,3597100.0)

112 hmin = min (h)

113 hmax = max (h)

114

115 g ' { AL U

116 f = open{(outfn,)

117 f.write(

118

119

120

121

122 % (ncol,nrow, xmin, xmax, ymin, ymax, hmin, hmax))
123 hmat = reshapevZ2m(h,ncol,nrow)

124

126

127 (

120 floatmatsave (f,hmat[::-1))

130 f.close{)

43

Information Only

i0

el

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

6.3.8 Python script merge_observed modeled heads.py

fobs = open(’)
fmod = open(')

fwgt = open (')
fdb = open(’ ')

fout = open/(;)

wells = {}

for line in fdb:
well,x,y = line.split () [0:3]

wells[well.upper()] = [x,y]
fdb.close ()
fout.write(.Jjoin ([’ ' ’

7 f] 7])+
for sobs,smod,w in zip (fobs, fmod, fwgt) :
obs = float (sobs.split () [3])
mod float (smod.split () [3])
name = sobs.split () [0].upper/()
fout.write(.join([name,wells[name] [0],wells[name] [1],
str (obs), str (mod), str(obs—-mod),
w.rstrip().split () [1]1]1)+)

fobs.close()
fmod.close ()
fwgt.close{)
fout.close()

Information Only

e N R RN e

NN N NW N N M - - - - - - - = - -
N s W N =R C O BN TR W N = O

»
o«

6.3.9 Python script convert_dtrkmf output_for_surfer.py

%0 601700.0

y0 = 3597100.0
dx = 100.0
dy = 100.0

fout = open (

fin = open (

')

results = [l.split() for 1 in fin.readlines() [1:]]

fin.close{()

npts = len(results)

fout.write(

for pt in results:

float (pt[1])*dx + x0

y0 - float (pt[2]) *xdy

float (pt[0])/7.75%x4.0
fout.write(

1

X

¥
t

fout.close ()

% npts)

% (erIt))

45

Information Only

o o » w » -

<1

10
4,
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
a7
38
39
40
41
42
43
44
45
46
47
48

49

6.3.10 Python script plot-contour—maps.py

import numpy as np
from scipy.interpolate import griddata

manualFix = True
simpleContours = False

if not manualFix:
import matplotlib
matplotlib.use ()

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import pyproj

putm = pyproj.Proj(init=)
pstp pyproj.Proj(init=)

f

def transform(xin,yin):

xout, yout = pyproj.transform(putm,pstp,xin,yin)
xout /= M2FT

yout /= M2FT

return xout, yout

year =
fprefix =

mprefix =

cfname = fprefix +

pfname fprefix +

wfname = fprefix +

wfl3name = +wfname

M2FT = 0.3048

res = np.loadtxt (wfname, skiprows=1,usecols=(3,4,5))
res /= M2FT # convert heads to f

wellutmx,wellutmy, obs, obsmod = np.loadtxt (wfname, skiprows=1,usecols={(1,2,3,5),unpack=Truc¢
wellutmx13,wellutmyl3, obsl3 = np.loadtxt (wfl3name, skiprows=1,usecols=(1,2,3),unpack=True’

wellx,welly = transform(wellutmx,wellutmy)

wellx13,wellyl3 = transform(wellutmx1l3,wellutmyl3)

obs /= M2FT

obsl3 /= M2FT

obsmod /= M2FT

names = np.loadtxt (wfname, skiprows=1,usecols=(0,),dtype=)

46

Information Only

50
51
52
53
54
55
56
57
&8
59
60
61
62
63
64
65
€8
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
24
95
96
o7
98
99

100

namesl3

weights = {}

fh = open/(% year,)
lines = fh.readlines ()
fh.close{()

for line in lines:
f = line.split()

weights [f[0] .upper()] = { rint (£[1]),

h = np.loadtxt (cfname, skiprows=5)
h{h<0.0] = np.NaN

h[h>1000.0] = np.NaN

h /= M2FT

utmy,utmx = np.mgrid[3566500.0:3597100.0:3073, 601700.0:630000.0:2847]

hx,hy = transform(utmx,utmy)
del utmx,utmny

np.loadtxt (wfl3name, skiprows=1,usecols=(0,),dtype=

1£{2]}

px,py = transform(xnp.loadtxt {(pfname, skiprows=1,delimiter=

part = np.loadtxt (pfname, skiprows=1,delimiter=

modx, mody = transform(*np.loadtxt (mprefix+
wipputmx, wipputmy = np.loadtxt (mprefix+

usecols=(0, 1), unpack=True)

wippx,wippy = transform(wipputmx, wipputmy)
aserx, asery transform(*np.loadtxt (mprefix+
delimiter=

for ux,uy,x,y in zip(wipputmx,wipputmy,wippx,wippy) :

print ux,uy, 1 X, Y

a= []

47

%

,usecols=(1,2),unpack=True))

Information Only

,usecols=(0,1),unpack=True)
,usecols=(2,))

, unpack=True))

101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

117
118
119
120
121
122
123
124
125
126
127
128
129
130

131

133
134
135
136

137

139
140
141
142
143
144
145
146
147
148
149
150

151

fig = plt.figure(l,figsize=(12,16))
ax = fig.add_subplot (111)
lev = 3000 + np.arange(17)x10

CS = ax.contour (hx,hy,h, levels=lev,colors= ; linewidths=0.5)

ax.clabel (CS,lev{::2], fmt=)

if simpleContours:
lev = 2900 + np.arange(27) =10
hZ = griddata((wellx,welly),obs, (hx,hy),method=
CS = ax.contour (hx,hy,hZ,levels=lev,linestyles=

ax.clabel (CS, lev[::2], fmt=)

ax.plot (wippx, wippy,)

ax.plot (aserx, asery,)

ax.plot {modx, mody, ,color= , linewidth=2)

ax.plot (wellx,welly, linestyle= ,marker= ,
markeredgecoloxr= ,markerfacecolor=

ax.set_xticks (630000 + np.arange (10.0)x10000)
ax.set_yticks (450000 + np.arange(10.0)*10000)
labels = ax.get_yticklabels ()
for label in labels:

label.set_rotation(90)
for %,y,n in zip(wellx,welly, names):

a.append(plt.annotate (n, xy=(x,y), xytext=(0,5),

textcoords= ’
horizontalalignment= ¥
fontsize=8))

plt.axis)

ax.set_title(+year)

ax.set_xlabel (
ax.set_ylabel (

)

, colors=

pd = M2FT*np.sqrt ((px[1:]-px[:-1])**2 + (pyl[l:]-pyl[:-1]) **2)

ax.text (688000,537000, :
ax.annotate (, xy=(670000,509200) , xytext=(67

,linewidth=0.5)

,8ize=12, rotation=-26,color=
5000,;515000) ;

fontsize=12, arrowprops=dict (facecolor= ,width=1))
ax.annotate (, Xy=(658000,478500), fontsize=12,color=)
print ypd.sum(), (part[-1], ’
print ;pd.sum() /part[-1],

if manualFix:

for lab in a:

48

Information Only

152
153
154
158
156
157
158
159

160

162
163
164
165
166
167
168
169

170

172
173

174

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
108
199
200
201

202

lab.draggable ()
plt.show()
else:
if simpleContours:
fnout =
else:
fnout = +year+
plt.savefig (fnout)
plt.close(1l)

del lev,CS

mask = np.logical_and(np.logical_and(hx>aserx.min(),hx<aserx.max()),
np.logical_and(hy>asery.min(), hy<asery.max(}))

h{"mask] = np.NaN

a = []

fig = plt.figure(l,figsize=(12,16))
ax = fig.add_subplot (111)
lev = 3000 + np.arange(l7)x«5

+yeart

CS = ax.contour (hx,hy,h,levels=lev,colors= ;, linewidths=0.5)

ax.clabel (CS, lev[::2], fmt= ,inline_spacing=2)
if simpleContours:
lev = 2900 + np.arange (37)«5

hZ = griddata((wellx,welly),obs, (hx,hy),method=

CS = ax.contour(hx,hy,hZ,levels=lev,linestyles= ,colors=

ax.clabel (CS,lev{::2], fmt=)
ax.plot (wippx, wippy,)
ax.plot (modx, mody, ,color= , 1linewidth=2)
ax.plot(wellx,welly,linestyle= ,marker= 7

markeredgecolor= ,markerfacecolor=)
ax.plot (px,py,linestyle= ,color= , linewidth=4)
plt.arrow(x=px[-3],y=py[-3],dx=-10,dy=-50,
linewidth=4, color= ,head_length=500,head_width=500)

plt.axis()
ax.set_xlim([aserx.min(),aserx.max()])
ax.set_ylim([asery.min(),asery.max()])

ax.set_xticks (660000 + np.arange(5.0)+«5000)
ax.set_yticks (485000 + np.arange(5.0)+5000)
labels = ax.get_yticklabels ()
for label in labels:

label.set_rotation (90)

for j, (Xx,y,n) in enumerate (zip(wellx,welly,names)):

)

if aserx.min () <x<aserx.max() and asery.mih()<y<asery.max():

49

Information Only

,linewidth=0.5)

204 a.append (plt.annotate (n, xy=(x,y) ,xytext=(0,5),

205 textcoords= .

206 horizontalalignment= i

207 fontsize=10))

208 # | ! F'i 2 A

209 a.append(plt.annotate ($res[j,0],xy=(x,y),xytext=(0,-15),
210 textcoords= ¥

211 horizontalalignment= ¥

212 fontsize=6))

213 ax.set_title(+ year)

214 ax.set_xlabel ()

215 ax.set_ylabel ()

216

217 ax.annotate (,Xy=(665000,488200), fontsize=12)

zns ax.text (678700,495000, ,size=16,rotation=-90,color=
219

220 if manualFix:

221] 1 [

222 for lab in a:

223 lab.draggable ()

224 plt.show ()

225 else:

226 if simpleContours:

227 fnout = +year+
228 else:

229 fnout = +year+

230 plt.savefig(fnout)

231 plt.close(l)

232

233

234

485 ¢ A -

236 fig = plt.figure(l,figsize=(12,16))

237 ax = fig.add_subplot (111)

238 CS = ax.tricontour (wellx,welly,obsmod, linestyles=)
230 ax.plot (wippx,wippy,)

240 ax.plot (modx, mody, ,color= , linewidth=2)
241 ax.plot(wellx,welly,linestyle= ,marker= §
242 markeredgecolor= ,markerfacecolor=)

245 plt.axis()

244 ax.set_xlim([aserx.min(),aserx.max()])

245 ax.set_ylim([asery.min(),asery.max()}])

226 ax.clabel (CS, fmt= ,inline_spacing=2)

247 ax.set_xticks (660000 + np.arange(5.0)+«5000)
24s ax.set_yticks (485000 + np.arange(5.0) *5000)
249 labels = ax.get_yticklabels()

250 for label in labels:

251 label.set_rotation(90)

252
253 for j, (%,y,n) in enumerate (zip(wellx,welly,names)):

50

Information Only

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
2904
296
296
207
298
299
300
301
302
303

304

if aserx.min()<x<aserx.max() and asery.min()<y<asery.max():

if in weights[n] []:
color =

else:
color =

a.append(plt.annotate (n, xy=(x,y),xytext=(0,5),
textcoords= r
horizontalalignment= i
fontsize=10,color=color))

a.append(plt.annotate (%obsmod{j], xy=(x,y),xytext=(0,-15),

textcoords= ’
horizontalalignment= ;
fontsize=6, color=color))

ax.set_title(+ year)

ax.set_xlabel (b

ax.set_ylabel ()

ax.annotate (, Xy=(665000,488200), fontsize=12)

ax.text (678700, 495000, ,Size=16,rotation=-90, color=

if manualFix:

for lab in a:
lab.draggable ()
plt.show()
else:
plt.savefig(tyear+)
plt.close (1)

fig = plt.figure(l,figsize=(12,16))
ax = fig.add_subplot (111)
lev = 2900 + np.arange(15) 20

hZz = griddata ((wellx,welly),obs, (hx,hy),method=)
CsS ax.contour (hx, hy, hZ, linestyles= , levels=lev, colors=)

ax.clabel (CS, fmt=)

hz griddata ((wellx13,wellyl3),0bsl3, (hx,hy),method=)
CS = ax.contour (hx,hy,hZ, linestyles= , levels=lev,colors=)

ax.clabel (CS, fmt=)

ax.plot (wippx,wippy,)

ax.plot (modx, mody, ,color= , linewidth=2)
ax.plot (wellx,welly, linestyle= ,marker= ”
51

Information Only

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348

markeredgecolor= ,markerfacecolor=)
plt.axis()
ax.set_xlim([aserx.min(),aserx.max()])
ax.set_ylim{[asery.min(),asery.max()])

ax.set_xticks (660000 + np.arange(5.0)*5000)
ax.set_yticks (485000 + np.arange(5.0)*5000)
labels = ax.get_yticklabels ()
for label in labels:
label.set_rotation (90)
for j, (x,y,n) in enumerate (zip(wellx,welly,names)):

if asérx.min()<x<aserx.max() and asery.min()<y<asery.max():
a.append(plt.annotate(n, xy=(x,y),xytext=(0,5),

textcoords= '
horizontalalignment= 7
fontsize=10,color=)

a.append (plt.annotate(%obs[j],xy=(xX,vy),xytext=(-12,-15),
textcoords= ’
horizontalalignment= .
fontsize=6,color= ¥)

for j, (x,y,n) in enumerate (zip(wellxl13,wellyl3, namesl3)):

if aserx.min()<x<aserx.max{() and asery.min()<y<asery.max():

a.append (plt.annotate (%obsl13({jl], xy=(%x,y),xytext=(12,-15),

textcoords= ’
horizontalalignment= ;
fontsize=6,color= 3

ax.set_title()

ax.set_xlabel ()

ax.set_ylabel ()

ax.annotate (, Xy=(665000, 488200), fontsize=12)

ax.text (678700,495000, ,S8ize=16,rotation=-90, color=

if manualFix:

for lab in a:
lab.draggable ()
plt.show ()

else:
plt.savefig(+year+)
plt.close (1)

52

Information Only

F
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

6.3.11 Python script plot-results-bar-charts.py
import numpy as np
manualFix = True
if not manualFix:
import matplotlib

matplotlib.use()

import matplotlib.pyplot as plt

fprefix
mprefix =
fname = fprefix +

ofname =

M2FT 0.3048

year

res = np.loadtxt (fname, skiprows=1,usecols=(3,4,5))
ores = np.loadtxt (ofname, skiprows=1,usecols=(3,4,5))

weights = np.loadtxt (fname, skiprows=1,usecols=(6,), dtype=]

names = np.loadtxt (fname, skiprows=1,usecols=(0,),dtype=)

zones np. loadtxt (% year,usecols=(2,),dtype=

name_zone_dict = dict(zip(names, zones))

wipp = np.loadtxt (mprefix+)
%X,y = np.loadtxt (fname, skiprows=1,usecols=(1,2),unpack=True)

fig plt.figure (2, figsize=(18,12))
axl fig.add_subplot (121)

axl.plot (x,v,) vel

axl.plot (wipp[:,0],wippl:,1],)
buff = np.loadtxt (mprefix+)
buff{1:3,0] -= 3000.0

buff(0,0] += 3000.0

buff[3:,0] += 3000.0

buff{2:4,1] -= 3000.0

buff[0:2,1] += 3000.0

buff[-1,1] += 3000.0

Il

53

Information Only

50

51

52

53

54

55

56

57

58

59

60

81

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

B7

88

89

20

91

92

93

94

25

96

97

98

99

100

colors = { H v : § s # 3 r
axl.plot (buff[:,0],buff[:, 1],)
for xv,yv,n,w,z in zip(x,y,names,weights, zones):

print xv,yv,n,w,z

plt.annotate (%(n,w,z),xy=(xv,yv), fontsize=8, color=colors(z])

plt.axis()
axl.set_xlim([x.min()-1000,x.max()+1000])
axl.set_ylim({y.min()-1000,y.max()+1000])
ax2 = fig.add_subplot (122)

ax2.plot (x,vy,)
ax2.plot (wippl[:,0],wippl[:,1],)
ax2.plot (bufff:,0],buff[:,1],)
for xv,yv,n,w,z in zip(x,y,names,weights, zones) :
plt.annotate (%$(n,w,z),xy={(xv,yv), fontsize=8, color=colors[z])
plt.axis()

ax2.set_xlim{([wipp{:,0] .min()-100,wipp[:,0] .max()+100])
ax2.set_ylim([wipp[:,1] .min()-100,wipp[:,1]) .max()+100])
plt.suptitle(+year)

plt.savefig(+year+)

res /= M2FT
ores /= M2FT

bins = 20
rectfig = (15,7)
squarefig = (8.5,8.5)

fig = plt.figure(l,figsize=rectfiqg)
ax = fig.add_subplot (111)

ax.hist ([res[weights<2,2],res[:,2]],bins=bins, range=(-30,30.0),

rwidth=0.75,align= 7
color=[7 1.
label=[' 1)

ax.set_xlabel ()
ax.set_ylabel ()

ax.set_ylim([0,10])

ax.set_x1lim([-30,20])
ax.set_yticks(np.arange(0,10,2))

plt.gridi()

ax.yaxis.grid (True,which=)
ax.xaxis.grid(False)

plt.legend(loc=)

plt.title(+year)

54

Information Only

101 #plt.annotate (’AEC-7 @ %.1f’'%res(0,2],xy=(-9.75,5.0),xytext=(-8.5,5.0),
w2 # arrowprops=("arrowstyle’:’ }, fontsize=i6)

103 plt.savefig(’ mod: ST T . Jyram-’ +year+’)

10a plt.close(l)

108

106 # create bar chart g t f individual residual for ASER

107 # B RS S SR EETFE S S S S EE LT EESEEEE S E S SRS EEE S S

108

1we m0 = weights==0

moe ml = weights==1

m m2 = np.logical_or(weights==2,weights==99)
112

ns # separate wells into groups

14 resin = res[m0, 2]
1s resnear = res[ml,2]
1ne resfar = res[m2,2]
117

18 nin = resin.size

119 nhear = resnear.size

120 nfar = resfar.size’

121

122 # Separate names Into groups
123 namin = names [m0]

124 namnear = names[ml]

125 namfar = names[m2]

126

127 # get indices that sort vectors

128 ordin = np.argsort (namin)

12¢ ordnear = np.argsort (namnear)

130 ordfar = np.argsort (namfar)

131

132 # put vectors back together (groups adjacent and sorted inside each group)

133 resagg np.concatenate ((resinf[ordin], resnear[ordnear], resfar|[ordfar]),axis=0)
134 namagg = np.concatenate((namin[ordin],namnear[ordnear],namfar[ordfar]),axis=0)

135

136 fig = plt.figure(l,figsize=rectfiqg)
137 ax = fig.add_subplot (111)

138

19 wid = 0.6

140 shift = 0.5 - wid/2.0

i ab = np.arange(res.shape[0])

143 print ab.shape
142« print ab

145

e barlist = ax.bar (left=ab+shift,height=resagg,width=0.75,bottom=0.0,color='1lightgray’
1ur for b,n in zip(barlist,namagg):

148 if "M’ in name_zone_dict[n]:

149 # change all the bars for mills-ranch affected wells to red

150 b.set_color (‘tomato’)

151

55

Information Only

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

ax.set_ylim([-45.0,20.0])

ax.spines|] .set_position()
ax.spines]|] .set_color()
ax.xaxis.set_ticks_position()

plt.xticks (ab+0.5+wid, namagg, rotation=90)

ax.axvline (x=nin, color= ,linestyle=)
ax.axvline (x=nin+nnear, color= ,linestyle=)
ax.axhline (y=0,color= ,linestyle=)
ax.axhline (y=-15,color= ,linestyle=)
plt.grid()

ax.yaxis.grid(True,which=)
ax.xaxis.grid(False)
ax.set_x1im ([0, res.shape[0]])

plt.annotate ('’ ,xy=(0.0,15.0), xycoords= 7
xytext=(nin, 15.0), textcoords= "
arrowprops={ $ H
plt.annotate (,Xxy=(nin/3.0,15.5), xycoords=)
plt.annotate(’ ' ,xy=(nin, 15.0), xycoords= ’
xytext=(nin+nnear,15.0), textcoords= .
arrowprops={ - 1)
plt.annotate (, Xy=(nin+nnear/3.0,15.5),xycoords=)
plt.annotate (', xy={(nint+nnear, 15.0), xycoords= ‘
xytext=(nin+nnear+nfar,15.0), textcoords= i
arrowprops={ : 1)
plt.annotate (, Xy=(nin+nnear+nfar/3.0,15.5), xycoords=)
ax.set_ylabel ()
ax.set_title(+year)
plt.savefig(+year+)
plt.close(1l)
m = 1.0/M2FT
sr = [2940,3100]
fh = open(% year,)
fh.write()
fh.write(% np.corrcoef(res[:,0],res[:,1])[1,0]**2)
fh.write(np.corrcoef (ores[:,0],0res[:,1]1)[1,0]%%*2)
fh.write(% np.corrcoef (res[weights<2,0],

res[weights<2,1]) [1,0]*%*2)

56

Information Only

203

204

212
213
214
2156
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

252

% np.corrcoef (ores[weights<2,0], ores[weights<2,1])[1,0]%%2)

res[weights==0,11)[1,0]%%2)

fh.write(
fh.write(% np.corrcoef (res[weights==0,0],
fh.write(% np.corrcoef (ores{weights==0,0],ores[weights==0,1])[1,0]%%2)
fh.close ()}
fig = plt.figure(l, figsize=squarefigqg)
ax = fig.add subplot (111)
ax.plot (res[m0,0],res{m0,1],color= ,markersize=10,
marker= ,linestyle= , label=)
ax.plot (res{ml,0},res[ml,1],color= ,markersize=10,
marker= ,linestyle= , label=)
ax.plot (res[m2,0],res[m2,1],color= ,markersize=10,
marker= ;,linestyle= , label=)
ax.plot(sr, sr, , label=)
ax.plot ([sxr[0],sr[1]],[sr[0]+m,sxr[1]+m], ; linewidth=0.5, label=
ax.plot ([sxr[0],sr[1l]], [sxr[0]-m,sr[1l]-m], ,linewidth=0.5, label=

ax.set_xticks (np.linspace(sr[0],sr[1],9))
ax.set_yticks (np.linspace(sr{[0],sxr[1],9))
ax.set_xlim(sr)
ax.set_ylim(sr)

plt.
Bl
plt
a =
for

minorticks_on ()

legend (loc= ,scatterpoints=1, numpoints=1)
.grid{()

L]

j,lab in enumerate (names):

if res[j,2] < -1.5%m:

a.append (plt.annotate (lab, xy=(res[3j,0],res[3,11),
xytext=(res[3j,0]-(2.9x1len(lab)),
res(j,1]1-2.0),fontsize=14))

elif res(3j,2} > 1.5%m:

a.append(plt.annotate (lab, xy=(res[]j,0],res[]j,1]),
xytext=(res[]j,0]+2.0,
res[j,1]1-2.0), fontsize=14))

ax.set_xlabel ()
ax.set_ylabel ()
ax.set_title(+year)

if manualFix:

for lab in a:
lab.draggable ()
plt.show ()

else:

plt.

plt.savefig(+year+)
close (1)

57

Information Only

