Anthropogenic influences on groundwater in the vicinity of the Waste Isolation Pilot Plant, southeastern New Mexico, USA

Matthew A. Thomas¹, Kristopher L. Kuhlman², and Anderson L. Ward³

¹Sandia National Laboratories, 4100 National Parks Highway, Building A, Mail Stop 1395, Carlsbad, New Mexico, 88220-9006
²Sandia National Laboratories, PO Box 5800, Mail Stop 0747, Albuquerque, New Mexico, 87185-0747
³United States Department of Energy, 4021 National Parks Highway, Carlsbad, New Mexico, 88220-9082
Waste Isolation Pilot Plant (WIPP)
Culebra Dolomite (Rustler Fm.)

Powers and Holt (1999)

<table>
<thead>
<tr>
<th>PERMIAN</th>
<th>Ochoan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rustler</td>
</tr>
<tr>
<td></td>
<td>Forty-niner</td>
</tr>
<tr>
<td></td>
<td>Magenta Dolomite</td>
</tr>
<tr>
<td></td>
<td>Tamarisk</td>
</tr>
<tr>
<td></td>
<td>Culebra Dolomite</td>
</tr>
<tr>
<td></td>
<td>Los Medaños</td>
</tr>
<tr>
<td></td>
<td>(proposed formal name for "unnamed lower member")</td>
</tr>
<tr>
<td></td>
<td>Salado</td>
</tr>
<tr>
<td></td>
<td>Castile</td>
</tr>
</tbody>
</table>

Beauhiem and Holt (1990)

Zones Prograde East Due to Progressive Unloading/Erosion and Dissolution

WIPP

West

East

Culebra hand sample

Beauhiem and Holt (1990)
Groundwater monitoring network

- Culebra is the most transmissive and laterally extensive saturated zone above the Salado.
- Flow is ~N-S inside Land Withdrawal Boundary.
- Long-term, high-frequency monitoring network
 -Began in 2003
 -40 Culebra wells
 -Recording fluid pressure
 -Collected at 15-minute intervals, downloaded monthly

Kuhlman (2014)
Pressure transducer data

Study objective(s)

- Within a preliminary, simulation-based framework:
 - Estimate a pumping rate for the well.
 - Simulate drawdown associated with the pumping.
 - Simulate and compare advective particle travel paths/times for cases with and without pumping.
 - Consider what the pumping tells us about the system in light of how it is has traditionally been modeled.
 - 100 base-case (calibrated) realizations
 - 2D, steady state, heterogeneous, and anisotropic
Culebra flow modeling, setup

- Code: PFLOTRAN
- Ensemble-averaged 2D realization; constant head and no-flow boundaries; initial conditions from steady-state simulation; sink term (pumping well); nine-month period
Culebra flow modeling, targets

- Iterate for sink term that minimizes Modeling Efficiency (EF).
- Two observation groups; strong vs. subdued response
- Best-fit pumping rate: $1.8\times10^{-3} \, \text{m}^3\text{s}^{-1}$ (28.5 gpm)
Qualitative similarities between observed and simulated drawdown field

- North-south lobe
- Drawdown opens to the south
Culebra particle tracking, setup

- Codes: PFLOTRAN, DTRKMF
 - PFLOTRAN:
 - Apply best-fit sink term from ensemble-averaged model to the 100 realizations that comprise the ensemble-average model.
 - Constant head and no-flow boundaries; initial conditions from steady-state simulation; sink term (pumping well); nine-month period
 - DTRKMF:
 - Calculate conservative (i.e., non-dispersive and non-reactive) particle track each realization.
Culebra particle tracking, results

Particle tracks w/o pumping
- Distance: 3134.1 m
- Time: 8254.2 yr
- Rate: 0.38 m/yr

Particle tracks w/ pumping
- Distance: 3295.3 m
- Time: 3981.9 yr
- Rate: 0.83 m/yr
Summary

Findings
- The Culebra-based pumping in the vicinity of the WIPP halves “snapshot based” estimates of particle travel time across the site.
- The effects (i.e., change in travel time and path) associated with the pumping period are unimportant relative to the WIPP performance period.

Food for thought
- What did we learn about the system?
- What could transient forcings looking like in the future?
- What is the best way to increase confidence in a transient simulation conducted on the geologic timescale when it is calibrated with observations made on the human timescale?
Funding statement

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-6381A