2.0 Gas Generation

Re-evaluation of Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Conditions

Data Summary Report January 24, 2001

J.B. Gillow and A.J. Francis Environmental Sciences Department Brookhaven National Laboratory Upton, NY 11973

Abstract

Gas generation from the microbial degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository is under investigation at Brookhaven National Laboratory. The biodegradation of mixed cellulosics (various types of paper) and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, neoprene, hypalon, and leaded hypalon) is being examined. In addition, we are studying the effects of environmental variables such as starting atmosphere (air or nitrogen), water content (humid (~70% relative humidity) and brine inundated), and nutrient amendments (nitrogen, phosphate, yeast extract, and excess nitrate) on microbial gas generation. This report presents data obtained from samples incubated under humid conditions: i) initially aerobic (sample bottles sealed with air in the headspace) after 2553 days (7 years) of incubation at $30 \pm 2^{\circ}$ C; ii) anaerobic conditions incubated for 2156 days (6 years). In addition this report provides data from plastic (polyethylene and polyvinylchloride) and rubber (neoprene) materials (unirradiated and irradiated to simulate long-term radiation damage) incubated under brine-inundated conditions for 2612 days (7 years); and hypalon (unleaded and leaded, unirradiated and irradiated) incubated for 2464 days (6.75 years). Total gas production and carbon dioxide production are presented. Initially aerobic (sealed) humid samples did not show any marked increase in gas or CO₂ produced over the 4.75 year period since they were last analyzed; most notable was a decrease in CO₂ content in the inoculated samples in the absence of bentonite and an increase in unamended samples of 75 µmoles CO₂ g⁻¹ cellulose in its presence. Loss of CO2 may be due to gas consuming process such as methanogenesis; additional analysis is planned for this year to examine methane production. This trend is also observed under anaerobic humid conditions, with a decrease in CO2 content in amended samples. An increase of 82 µmoles CO2 g⁻¹ cellulose was shown in unamended inoculated samples (no bentonite) during the 4.75 year period since the last analysis. Samples containing plastic and rubber materials did not show any significant increase in gas volume beyond control samples incubated without the polymer substrate. Carbon dioxide, a more sensitive analyte for microbial activity, increased somewhat in samples containing irradiated PE (10.9 µmoles CO₂ sample⁻¹ over 4.9 years since the last analysis); irradiated PVC (44.6 µmoles); irradiated neoprene (21.5 µmoles);

and unirradiated hypalon (unleaded, 11.2 μ moles, and leaded, 9.77 μ moles). Note that the amount of CO₂ generated over 4.9 years in samples containing plastic or rubber materials is not markedly higher than control samples. Additional analysis, including microscopy and spectroscopy, will be used to determine if material changes have occurred in the polymers due to microbial activity and biodeterioration.

Progress Report

Long-term experiments designed to examine gas generation due to biodegradation of the organic fraction of transuranic wastes under WIPP repository-relevant conditions have been ongoing at Brookhaven National Laboratory (BNL). A summary of these experiments for the period 1991 to 1996 was published in SAND96-2582 "Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions." The experiment to quantify gas generation due to cellulose biodegradation under inundated conditions was again analyzed in 1999, after 2718 days (7.4 years) incubation (4 years since the analyses reported in SAND96-2582). At that time total gas volume, carbon dioxide and methane were analyzed and this was reported in a memo dated September 23, 1999, a summary report for work conducted that year under TP-99-01 Rev. 0 (2/4/99). Table 1 provides information about the status of ongoing studies at BNL.

Experiment	Start Date	SAND96-2582 Data (Days)	Most Recent Analysis Date	Incubation Time of Recent Analysis (Days)
Long-Term Inundated Cellulose	1/29/92	1228	7/8/99 CH₄ 7/28/99 CO₂	2718
Initially Aerobic Humid Cellulose	4/7/93	804	4/3/00 CO ₂	2553
Anaerobic Humid Cellulose	5/4/94	415	3/29/00 CO ₂	2156
Inundated PE, PVC, and Neoprene	3/9/93	840	5/3/00 CO ₂	2612
Inundated Hypalon	8/3/93	664	5/2/00 CO ₂	2464

Table 1. Status of Microbial Gas Generation Experiments at BNL.

This report presents data obtained during FY2000 from long-term studies designed to examine gas generation under: i) initially aerobic humid conditions with data reported here after 2553 days (7 years) of incubation at $30 \pm 2^{\circ}$ C; ii) anaerobic humid conditions incubated for 2156 days (6 years); iii) brine-inundated conditions with plastic and rubber materials (unirradiated and irradiated to simulate long-term radiation damage) incubated for 2612 days (7 years); and iv) brine-inundated conditions with hypalon (unleaded and leaded, unirradiated and irradiated) incubated for 2464 days (6.75 years). Total gas production was analyzed as well as carbon dioxide in the headspace of 159 sample bottles.

Materials and Methods

Samples were prepared in 160 ml glass serum bottles, with 1 g of mixed cellulosics (0.25 g each of Whatman[®] #1 filter paper, brown paper towel, white paper towel, and Kimwipes[®]) mixed with (i) 5.00 g of reagent-grade NaCl (Aldrich), (ii) 5.00 g of crushed WIPP muck pile salt from the WIPP underground workings (100% E140, N635 salt), and (iii) a mixture of 3.50 g WIPP muck pile-salt and 1.50 g bentonite MX-80 (70% salt/30% bentonite).

Samples were prepared with and without added nutrients. The nutrients added (amended samples) consisted of a 0.50 ml solution containing nitrogen (ammonium nitrate, 0.1% w/v), phosphorus (potassium phosphate, 0.1% w/v), and yeast extract (0.05% w/v). Unamended samples received 0.50 ml of a filtered, sterilized reagent-grade salt solution (20% w/v). All samples were prepared in triplicate.

Inoculum

Mixed inoculum was prepared as described in SAND96-2582 and 2.0 ml was pipetted onto the cellulose with a calibrated pipette. The uninoculated samples (controls) received 2.0 ml of filter sterilized ($0.2\mu m$, Millipore Corp.) reagent-grade NaCl (Aldrich) solution (20% w/v deionized H₂O) to duplicate the moisture content of the inoculated samples. To examine the viability and potential gas-producing activity of the mixed inoculum, as well as elucidate the nutrient conditions in the mixed inoculum, 20 ml aliquots were prepared in duplicate with the following additions: i) no nutrients; ii) nutrients; iii) glucose + nutrients; and iv) succinate + nutrients.

Control Samples

Because WIPP crushed salt contains viable bacteria adding it to the samples provided an additional, but integral, source of inoculum. Samples containing WIPP salt but without inoculum are not true "abiotic" controls. Therefore, reagent-grade NaCl was added to specific uninoculated samples to serve as abiotic controls.

Humidity Maintenance

In order to maintain the desired relative humidity of approximately 70-74%, 3 ml of G-Seep brine (a_W (water activity of the brine) = 0.73) in an unsealed 5 ml glass tube (1.0 x 7.5 cm) was placed inside the 160 ml serum bottle containing 1 g of mixed cellulose. Upon sealing the sample bottles, the relative humidity was measured using a Hygroskop GTTM (Rotronic, Zurich) portable humidity meter, the probe of which was fitted with a rubber seal to allow measurements to be taken inside of an uncapped serum bottle. The meter was calibrated before use with a standard solution (80% relative humidity)

according to the manufacturer's specifications. The relative humidity in the sample bottles (72%) was verified using this method.

Atmosphere

Initially aerobic (sealed) samples were sealed with butyl rubber stoppers and aluminum crimp seals in an air atmosphere. Anaerobic samples were prepared in a N_2 -filled glove box, and all components (mixed inoculum, nutrient solutions, and sterile brine) were flushed with N_2 before they were added to the sample.

Microbial Activity Measurements under Humid Conditions

In addition to the above treatments, 1% succinate or glucose was added with the nutrient amendment to certain samples to determine microbial gas generation under humid conditions in the presence of a readily metabolizable source of carbon. The ability of specific microorganisms (i.e., denitrifiers) to grow under such low-moisture conditions was examined. We point out that WIPP halophiles can function under low-moisture conditions because they can grow in highly concentrated brine, which has a low water activity.

Two of the inoculated, succinate-amended treatments (one with bentonite, the other without bentonite) were incubated with 0.1 atm of acetylene to examine N_2O production from denitrification.

Incubation

Seventy-two samples were incubated at $30 \pm 2^{\circ}$ C. In this study, we attempt to determine the rate and extent of gas production due to biodegradation of unirradiated and electronbeam irradiated plastic and rubber materials under conditions relevant to the WIPP repository. In the case of irradiated materials, these were accelerated tests because the entire structure of the polymer was altered as opposed to the effects of alpha-irradiation, which alter only the surface of the polymer. These samples, therefore, represented "overtest" conditions in terms of overall radiation dose. The influence of adding nutrients (nitrogen, phosphorus, and yeast extract) on the extent of biodegradation also was determined.

E-Beam Irradiated Plastic and Rubber Materials

The plastics examined were polyethylene and polyvinylchloride; the rubber materials were neoprene and hypalon (leaded and unleaded). These materials were exposed to electron-beam irradiation at the linear accelerator (LINAC) at Argonne National Laboratory by Dr. D. Reed, Chemical Technology Division. The polymer samples received an absorbed dose of either 500-700 Mrad (low-dose) or 4000-6000 Mrad (high dose), see Table 2. Tests with unleaded and leaded hypalon did not include a high-dose irradiation because it caused extensive degradation (melting) of the leaded sample.

Table 2. Irradiation conditions and material characteristics.

Polymer	Density (g\cm')	Thickness (mm)	Absorbed Dose (Low) Mrad	Absorbed Dose (High) Mrad
Polyethylene	0.92	0.28	500	4,140
Polyvinylchloride	1.30	0.28	700	5,850
Neoprene	1.23	0.46	660	5,535
Unleaded Hypalon	NA	NA	NA	NA
Leaded Hypalon	NA	NA	NA	NA

Irradiation Conditions (samples irradiated in air):

NA - not available

Material Characteristics:

Polymer	Unirradiated	Low-Dose	High-Dose
Polyethylene	clear	light yellow	darker yellow/brittle weight loss
Polyvinylchloride	clear	dark brown/sticky liquid droplets weight loss	Black/sticky weight loss
Neoprene	black	loss of flexibility weight loss	brittle weight loss
Unleaded Hypalon	dull white	brown discoloration	NA
Leaded Hypalon	dull white	brown discoloration	NA

 $\overline{NA} = Not applicable$

Triplicate samples of unirradiated and low-dose irradiated polymers and duplicate samples of the material that received high doses of electron-beam irradiation were tested. Each polymer was cut into 2 cm² pieces, the weights were recorded, and the pieces placed in acid-washed sterilized (autoclaved) 70 ml glass serum bottles. Mean weights (22 samples for each polymer) were as follows: Polyethylene (86.1 mg), Polyvinylchloride (134.6 mg), Neoprene (257.5 mg).

Mixed Inoculum/Inundation Fluid

Every sample bottle containing plastic or rubber was filled with 50 ml of a mixture consisting of 56% G-Seep Brine #10 (collected 12/13/89-1/10/90), 27% WIPP muck pile salt slurry, and 17% surficial lake brine/sediment slurry. The salt slurry and brine/sediment slurry were prepared as previously described. The inundation fluid differed from that added to the sample bottles containing cellulose; the sample bottles containing plastic or rubber material were inundated with fluid comprised of 100% mixed inoculum. The mixed inoculum was used without dilution to increase the proportion of potential plastic/rubber degrading microorganisms in the experiment. This was done to provide an additional "overtest" because we expected at the outset that biodegradation

rates potentially would be very low, especially if the same concentration of mixed inoculum (3.8% v/v) was used as in the cellulose experiment.

Sample Treatments

Samples were incubated either unamended (without added nutrients) or amended (with nutrients). Table 3 lists the composition of the nutrient addition. The pH of the nutrient solution was adjusted to 7.0 with NaOH and 2.50 ml of the filter-sterilized concentrated stock solution was added to the appropriate samples using a calibrated continuously adjustable pipette (Pipetteman[™], Rainin Corp.).

Nutrient	Final concentration (g/L)	Final concentration (w/v %)
NH4NO3	0.5	0.1
K₂HPO₄	0.5	0.1
Yeast extract	0.25	0.05

Table 3.	Composition of the nutrient amendment.
----------	--

Unirradiated, low and high dose electron beam or alpha-irradiated polymers were treated as follows:

each);

i) Polymer + no nutrients (unamended) + mixed inoculum (one sample

ii) Polymer + nutrients (amended) + mixed inoculum (triplicate);

iii) No polymer + nutrients (control) + mixed inoculum (triplicate); and

iv) No polymer + no nutrients (control) + mixed inoculum (triplicate).

One set of each treatment detailed above was prepared for each material for aerobic and anaerobic incubations, giving a total of 87 bottles. The final aqueous sample volume of the unamended treatments was 50 ml, and 52.5 ml for the amended treatments; the headspace volume was 20 ml, and 17.5 ml, respectively.

Incubation

Samples were incubated under initially aerobic and anaerobic conditions in serum bottles fitted with butyl rubber stoppers and sealed with aluminum crimps. Anaerobic samples were prepared in a glove box and incubated under a N₂ atmosphere, whereas aerobic samples were prepared on the lab bench. We expected that the aerobic samples would eventually become anaerobic due to consumption of oxygen by aerobic microorganisms in the sealed bottle. All samples were incubated unshaken (static) at $30 \pm 2^{\circ}$ C.

Gas Analysis

The composition of the headspace gas of each sample was determined over time and compared to the baseline composition at time zero (t=0). For each sampling, the serum bottle fitted with a butyl rubber septum was pierced with a sterile 22-gauge needle (Becton Dickenson) attached to a digital pressure gauge (-5.00 to 35.00 psi (calibrated to NIST by the manufacturer (Wallace and Tiernan): 0.00 to 35.00 psi), to measure the headspace gas pressure to calculate total gas production. At the same time, the room temperature was recorded with a thermometer calibrated to NIST (Princo Instruments).

Immediately after this, a gas-tight syringe (Pressure-Lok[™], Precision Instrument Corp.) fitted with a stainless-steel side-port needle was used to remove 0.3 ml of headspace gas to determine the various gases quantitatively by gas chromatography (GC). All analyses were performed according to written procedures prepared as part of the BNL Quality Assurance Program (QAP).

Carbon dioxide was analyzed using a Varian 3400 gas chromatograph according to methods detailed in SAND96-2582. Gas production was assessed by examining the increase in total gas volume over time, in addition CO_2 is quantitated as an indicator of microbial activity. The values were measured against the baseline (t=0), or against control values. For these experiments we prepared the following control samples: i) unamended, uninoculated samples; ii) and samples without organic substrate (cellulose or plastic/rubber material). The gas data in this report are cumulative from t=0.

Results

The appendix provides the following tables of data: 1-4, total gas and CO₂ produced in aerobic humid experiments; Table 5 presents a summary of CO₂ production on a pergram cellulose basis with corrections made in the data for CO₂ produced in control samples; Tables 6-9 provide total gas and CO₂ produced in anaerobic humid experiments; Table 10 provides a summary of CO₂ production; 11-15, total gas produced in samples containing plastic and rubber materials; and 16-20, CO₂ produced in samples containing plastic and rubber materials. Data are the mean of triplicate samples with the standard error reported except where single samples were analyzed due to either holding the replicate in reserve or prior destructive testing of the replicate samples.

Summary

Initially Aerobic Humid Samples (Tables 1-5)

Initially aerobic (sealed) humid samples did not show any marked increase in gas or CO_2 production over the 4.75 year period since they were last analyzed (Tables 1-4); most notable was a decrease in CO_2 content in unamended and amended samples in the absence of bentonite (Table 5) and an increase in unamended samples of 75 µmoles CO_2 g⁻¹ cellulose in its presence (Table 5, these studies show a stimulatory effect of bentonite on microbial gas generation under humid conditions). Loss of CO_2 may be due to a gas

consuming process such as methanogenesis; additional analysis planned for this year will examine methane production.

Anaerobic Humid Samples (Table 6-10)

A decrease in CO₂ content was observed in specific samples (amended, uninoculated and inoculated, Table 10). An increase of 82 μ moles CO₂ g⁻¹ cellulose was shown in unamended inoculated samples (no bentonite) during the 4.75 year period since the last analysis (Table 10); while the same samples with bentonite only showed an increase of 7 μ moles (unamended inoculated samples with bentonite but without cellulose produced 42.2 μ moles CO₂ sample⁻¹, this value is used to correct for gas production in the absence of cellulose). Amended samples without bentonite showed a decrease in CO₂; those with bentonite showed an increase of 70 μ moles CO₂ g⁻¹ cellulose (Table 10).

Samples Containing Plastic and Rubber Materials (Tables 11-20)

Samples containing plastic and rubber materials did not show any significant increase in gas volume beyond that produced by control samples incubated without the polymer substrate. Carbon dioxide, a more sensitive analyte for microbial activity, increased somewhat in samples containing irradiated PE (10.9 μ moles CO₂ sample over 4.9 years since the last analysis); irradiated PVC (44.6 μ moles); irradiated neoprene (21.5 μ moles); and unirradiated hypalon (unleaded, 11.2 μ moles, and leaded, 9.77 μ moles). Note that the amount of CO₂ generated over 4.9 years in samples containing plastic or rubber materials is not markedly higher than control samples. Additional analysis, including microscopy and spectroscopy, will be used to determine if material changes have occurred in the polymers due to microbial activity.

Future Work

Further analysis of the data presented here will entail correcting the gas generation data from samples containing plastic and rubber materials using the control samples. In addition, gas production on a per-gram polymer basis will be determined. During the second quarter of FY2001 select samples from the long-term inundated cellulose biodegradation experiment will again be analyzed for total gas, CO₂, and most importantly methane. These samples will be studied for the presence of methanogenic bacteria. Select samples from the humid studies and samples containing plastic/rubber materials will also be analyzed for methane production. Material characterization techniques including infrared and x-ray spectroscopy will be used to assess the extent of polymer degradation due to microbial activity.

Treatments (without bentonite)			Va	lume of Gas Produce Incubation Time				
	6	120	317		593	804	2553	
Control Empty bottle Blank (tube+brine only) No cellulose (salt/ inocutum/ tube+brine)	7.15 5.74 6.23 ± 0.09	-0.22 -2.27 -2.36 ± 0.04	0.28 -0.68 -0.21 ± 0.07	1.08 0.14 0.73 ± 0.07	1.19 0.52 0.23 ± 0.04	2.51 0.32 3.01 ± 0.22	0.73 -0.89 -0.48 ± 0.87	
Carbon Source: Cellulose Only Unamended uninoculated Unamended inoculated Amended uninoculated Amended inoculated	6.87 ± 0.11 7.50 ± 0.33 6.98 ± 0.18 7.39 ± 0.11	-0.03 ± 1.85 -0.31 ± 1.82 -0.03 ± 1.88 -0.21 ± 1.57	-0.41 ± 0.09 0.19 ± 0.33 -0.23 ± 0.10 -0.02 ± 0.18	-0.20 ± 0.14 -0.61 ± 0.25 -0.29 ± 0.13 -0.39 ± 0.07	0.12 ± 0.03 0.31 ± 0.05 0.20 ± 0.10 0.13 ± 0.17	1.10 ± 0.17 1.29 ± 0.25 0.50 ± 0.21 0.77 ± 0.18	0.77 ± 0.16 1.15 ± 0.39 1.26 ± 0.24 0.91 ± 0.12	
Carbon Source: Cellulose + Glucose Amended uninoculated Amended inoculated Amended uninoculated (RG salt)	8.45 ± 0.11 7.03 ± 0.07 NA	-2.08 -1.92 ± 0.11 3.12	0.75 ± 0.00 0.79 ± 0.33 1.99 ± 1.90	-0.06 ± 0.21 0.35 ± 0.23 -0.80 ± 0.11	0.02 ± 0.14 0.15 ± 0.04 -0.34 ± 0.33	0.13 ± 0.28 0.50 ± 0.22 0.18 ± 0.40	1.05 ± 0.22 1.15 ± 0.00 2.87 ± 0.99	
Cerbon Source: Cellulose + Succinete Amended uninoculated (w/ acetylene) Amended uninoculated (w/o acetylene) Amended inoculated (w/o acetylene) Amended inoculated (w/o acetylene)	19.5 5.15 12.9 5.88	NA -2.08 NA -2.29	0.84 0.98 1.17 1.27	-0.10 -0.37 0.35 0.05	1.68 -0.08 -0.34 0.17	-0.10 0.72 -0.10 0.72	1.98 0.74 n/a 2.18	

Table 1. Total Volume of Gas Produced in Initially Aerobic Humid Treatments (without bentonite)

RG salt = reagent grade NaCl was used in this treatment in place of WIPP salt NA=not enalyzed

Treatments (with bentonite)				N	dume of Gas Produc	ed (mVsample)		
treatments (man bontanto)					Incubation Time		804	2553
		8	120		399	593	004	
Control	-							0.73
Empty bottle	7.15		-0.22	0.28	1.08	1.19	2.51	-0.89
Blank (tube+brine only)	5.74		-2.27	-0.68	0.14	0.52	0.32 1.68 ± 0.95	1.47 ± 0.51
No cellulose (salt/ inocutum/ tube+brine)	7.25	± 0.03	-2.42 ± 0.08	-0.42 ± 0.07	0.52 ± 0.18	0.33 ± 0.04	1.06 1 0.85	
Carbon Source: Cellulose Only					0.00 × 0.45	0.31 ± 0.05	-0.01 ± 0.10	1.38 ± 0.25
Unamended uninoculated	5.67	± 0.00	1.03 ± 1.41	-0.62 ± 0.17	-0.39 ± 0.15	0.37 ± 0.03 0.06 ± 0.12	0.02 ± 0.32	1.05 ± 0.30
Unamended inoculated	8,35	± 0.48	-0.59 ± 1.52	0.11 ± 0.13	-0.40 ± 0.08	0.11 ± 0.05	0.19 ± 0.27	2.05 ± 0.99
Amended uninoculated	8.09	± 0.00	0.08 ± 1.85	0.01 ± 0.13	-0.15 ± 0.13	0.11 ± 0.03	0.51 ± 0.19	1.15 ± 0.18
Amended inoculated	7.81	± 0.26	0.78 ± 1.56	0.35 ± 0.31	0.02 ± 0.24	0.11 1 0.14		
arbon Source: Cellulose + Glucose							1.03 ± 0.78	1.41 ± 0.40
Amended uninoculated	6.35	± 0.04	-1.98	-1.45 ± 0.29	-0.09 ± 0.25	0.07 ± 0.07		1.20 ± 0.04
Amended inoculated		± 0.11	-1.45 ± 0.07	-0.42 ± 0.07	0.23 ± 0.11	0.20 ± 0.04		1.26 ± 0.3
Amended uninoculated (RG sall)		NA	2.60	1.78 ± 1.57	-0.82 ± 0.21	0.13 ± 0.04	1.59 ± 0.76	1.20 1 0.01
arbon Source: Cellulose + Succinete					A 45	0.07	-0.63	1.48
Amended uninoculated (w/ acetylene)	18.7		NA	0.74	-0.15	0.27	-0.33	0.84
Amended uninoculated (w/o acatylene)	5.56		-1.98	1.71	-0.78		0.55	n/a
Amended inoculated (w/ acatylene)	18.0		NA	2.00	0.05	0.10	1.16	0.74
Amended inoculated (w/o acetylene)	6.82		-2.29	2.30	0.67	-0.11	1.10	W.1 T

Table 2. Total Volume of Gas Produced in Initially Aerobic Humid Treatments (with bentonite)

RG salt = reagent grade NaCl was used in this treatment in place of WIPP salt

NA=not analyzed

Treatments (without bentonite)	<u></u>		Carbon Dioxide () Incubation T		<u> </u>			
· · · · · · · · · · · · · · · · · · ·		120	317		593	804	2553	
Control Empty bottle Blank (tube+brine only) No cellulose (salt / inocutum/ tube+brine)	4.05 4.18 7.93 ± 0.19	4.97 4.64 14.0 ± 0.1	4.98 4.54 10.7 ± 0.3	4.94 4.63 9.21 ± 0.06	4.87 3.00 6.28 ± 0.22	2.71 2.78 3.61 ± 0.18	2.68 2.74 3.55 ± 0.2	
Cerbon Source: Cellulose Only Unamended uninoculated Unamended inoculated Amended uninoculated Amended inoculated	7.45 ± 0.21 11.7 ± 0.1 14.0 ± 1.1 35.9 ± 1.3	10.7 ± 0.2 58.0 ± 4.4 28.1 ± 0.8 42.4 ± 1.5	12.2 ± 0.7 72.8 ± 11.4 24.1 ± 1.8 31.1 ± 2.4	12.2 ± 0.9 65.5 ± 11.5 22.9 ± 2.6 24.6 ± 2.9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8.98 ± 1.82 27.6 ± 5.3 12.2 ± 2.7 8.21 ± 1.75	8.73 ± 2.43 12 ± 3.25 6.08 ± 1.78 4.48 ± 1.09	
Carbon Source: Cellulose + Glucose Amended uninoculated Amended inoculated Amended uninoculated (RG sail)	12.7 ± 0.4 28.3 ± 1.6 NA	32.7 163 ± 98 36.0	39.7 ± 0.6 236 ± 140 44.8 ± 0.1	38.6 ± 1.2 166 ± 96 46.5 ± 0.1	35.0 ± 3.07 79.8 ± 39.8 47.4 ± 2.8	26.5 ± 4.5 26.2 ± 9.0 39.4 ± 5.6	29.83 ± 5.84 9.1 ± 1.46 56.81 ± 3.99	
Carbon Source: Cellulose + Succinate Amended uninoculated (w/ acetylene) Amended uninoculated (w/o acetylene) Amended inoculated (w/o acetylene) Amended inoculated (w/o acetylene)	15.1 15.7 14.5 15.8	NA 26.0 NA 42.4	28.8 22.7 1384 40.0	27.7 19.7 1450 38.2	21.0 14.4 1470 29.5	16.8 7.06 1270 23.6	22.12 4.75 n/a 18.86	

Table 3. Production of Carbon Dioxide in Initially Acrobic Humid Treatments (without bentonite).

RG salt = reagent grade NaCl was used in this treatment in place of WIPP salt NA=not analyzed

Treatments (with bentonite)										umoles/sa	_	de)								
		8			120			inci 317		Ime (Days) 399			59	3	804		2553		
		0			120	·		311		<u> </u>	000	· · · ·				·		<u> </u>		
Control														_						
Empty bottle	4.05			4.97			4.96			4.94			4.87			2.71			2.68	
Blank (tube+brine only)	4.18			4.64			4.54			4.63			3.00			2.76			2.74	
No cellulose (salt / inoculum/ tube+brine)	34.2	±	0.8	164	±	1	168	±	8	144	±	4	89.1	1 ±	0.8	42.3	±	3.0	18.13	± 4.52
Carbon Source: Callulose Only	••													•						
Unemended uninoculated	9.15	±	0.58	12.1	±	0.6	13.2	±	0.6	13.1	±	0.3	11.0		. 0.5		_	0.15		± 1.15
Unamended inoculated	20.7			172	±	5	273	±	25	268	±	44	219) ±	; 61		_	78		± 152
Amended uninoculated	15.2			52.2	±	1.8	49.9	±	1.1	45.1	±	2.4	33.2	2 ±	4.2	23.1	±	5.5		± 6.29
Amended inoculated	53.7	±	2.4	1030	±	80	1620	±	30	1600	±	40	1520) ±	: 40	1469.8	±	40	1059	± 207
Carbon Source: Cellulose + Glucose																				
Amended uninoculated	14.8	±	0.5	46.3			590	±	364	625	±	394	694		438		_	401		± 26.3
Amended inoculated	44.9			1590	±	40	1240	±	20	1250	±	160	1240) ±	240	816	±	355		± 230
Amended uninoculated (RG salt)		NĀ		39.5	_	-	50.9	±	1.3	54.6	±	2.4	55.7	'±	6.7	45.7	±	8.6	82	± 37
Carbon Source: Cellulose + Succinate																•				
Amended uninoculated (w/ acetylene)	22.9				NA		50.0			50.8			46.1			38.9			27.8	
Amended uninoculated (w/o acetylene)	21.7			47.7			50.4			46.8			43.6	1		37.3			34	
Amended inoculated (w/ acetylene)	- 38.5				NA		1430			1470			1540)		1460			n/a	i i
Amended inoculated (w/acetylene)	52.8			1130	. – 1		1460			1500			1520			1400			631	

Information Only

Table 4. Production of Carbon Dioxide in Initially Aerobic Humid Treatments (with bentonite)

.

RG salt = reagent grada NaCl was used in this treatment in place of WIPP salt NA=not analyzed

Table 5. Summary of Carbon Dioxide Production per gram Cellulose in Initially Aerobic Humid Treatments (including corrected data)

Treatments			hour Dioxide (umples/ Incubation Time				
without bentonite	6	120	<u>. 317</u>		<u> </u>	804	2553
ontrol No cellulose (salt/ inocutum/ tube+brine)	7.93 ± 0.19	14.0 ± 0.1	10.7 ± 0.3	9.21 ± 0.06	6.38 ± 0.22	3.61 ± 0.18	3.55 ± 0.2
arbon Source: Cellulose Unamended inoculated Amended inoculated	11.7 ± 0.1 35.9 ± 1.3	58.0 ± 4.4 42.4 ± 1.5	72.6 ± 11.4 31.1 ± 2.4	65.5 ± 11.5 24.8 ± 2.9	45.3 ± 8.1 14.7 ± 2.4	27.6 ± 5.3 8.21 ± 1.75	12.0 ± 3.25 4.48 ± 1.09
Unamended inoculated (corrected)*	3.77 ± 0.03 28.0 ± 1.0	42.1 ± 3.3 28.5 ± 1.0	62.0 ± 9.6 20.5 ± 1.6	56.3 ± 9.9 15.6 ± 1.8	38.9 ± 7.0 8.32 ± 1.4	24.0 ± 4.6 4.60 ± 0.98	8.45 ± 2.29 0.93 ± 0.23
Amended inoculated (corrected)*	20.0 2 1.0	2010 2 110					
Amended indculated (contected)			n Dioxide (µmoies/ gra				
	6				593	804	2553
Treatments		Cerb	on Dioxide (umoles/ gra Incubation Time (Da	ays)	<u> </u>	804 42.3 ± 3	
Treatments with bentonite	6		on Dioxide (umoles/ gra Incubation Time (Da 317	ays) 399			2553 16.13 ± 4.52 233 ± 152 1059 ± 207

* These samples have been corrected with the appropriate control for gas production in the absence of cellulose

Table 6. Total Volume of Gas Produced in Anaerobic Humid Treatments (without bentonite)

Treatments (without bentonite)							ays	d (ml/sample)	_		• •			
•	66		100		gas produced* (94 d)			gas produced (40d)	415			gas produced (275 d)	2156	gas produced <u>(1741 d</u>
Control								4.04	2.01	•	1.04	-1.60	0.72	-1.29
Empty bottle	7.98 ±	0.59	4.62	-		3.61		-1.01 -1.01			1.02	-2.43	-0.69	-1.26
Blank (tube+brine only)	6.85 ±	0.38	3.81 :			2.80		-1.51	2.76		0.88	1.20	5.53	2.77
No cellulose (salt/ inoculum/ tube+brine)	6.49 ±	0.04	3.07	± 0.07	-3.42	1.56 	± 0.63	-101	2.70					
Carbon Source: Cellulose Only								-1.58	-2.26		0.17	-2.27	0.09 ± 0.1	16 2.35
Unamended uninoculated		0.80	1.59		•	0.01	± 1.07 ± 1.39	-1.23	-0.28		1.23	-1.45	2.00 ± 1.0	
Unamended inoculated	9.49 ±	0.45		± 1.23		1.17		-1.23	-1.87		0.24	-0.95	1.70 ± 1.0	
Amended uninoculated	7.50 ±			± 1.25		-0.92		-1.43	-1.07		1.15	-0.53	0.43 ± 0.0	
Amended inoculated	7.64 ±	0.37	0.89	± 0.89	-8.75	-0.54	± 1.03	-1,43	-1.07	-	1.10			
Amended inoculated (wi acetylene)	20.4 ±	0.1	1 6.8 :	E 0.6	-3.87	14.95	± 0.48	-1.81	7.15	±	5.15	-7.60	0.32 ± 0.0	08 -6.83
arbon Source: Cellulose + Glucose								4 -	0.54			-2.58	2.50 ± 0.0	82 3.01
Amended uninoculated	6.55 ±	0.63	3.82	± 0.73		2.07	_		-0.51		0.44	-2.56	3.27 ± 1.3	
Amended inoculated	7.18 ±		4.63	± 0.11			± 1.10		0.68		1.90	-0.09	3.63 ± 0.	• •
Amended uninoculated (RG salt)	8.60 ±	: 0.00	2.35	± 1.90) -4.25	0.18	± 2.28	-2.17	0.09		1.48	-0.03		
arbon Source: Celluiose + Succinate											5.24	4.45	NA	NA
Amended uninoculated (w/ acetylene)	18.9 ±	0.1	10.8		-8.11	3.66			8.11			4.45 -1.72	8.69	8.20
Amended uninoculated (w/o acetylene)	8.30 ±	0.19	4.50			4.21		-0.29	2.49 8.46		1.80 4.32	-0.37	5.70 ± 3.	19 -0.76
Amended inoculated (w/ acetylene)	16.7 ±	0.1	7.27			8.83			0.40 2.46			1.79	7.05	4.59
Amended inoculated (w/o acetylene)	5.87 ±	0.04	1.70	± 1.72	2 -3.97	0.67	± 1.71	-1.03	2.40	±	1.01	1.1.9		

Information Only

RG salt = reagent grade NaCI was used in this treatment in place of WIPP salt

NA=not analyzed

*net gas produced between two time periods (duration between analyses given in parentheses).

Treatments (with bentonite)		-				Total Volume		Prod ays	uceo	(mvsample)						
	6		100			gas produced* (94 d)	•		gas produced (40 d)	415		<u> </u>	gas produced (275 d)	2156	gas produce (1741	
<i>Control</i> Empty bottle Blank (tube+brine only) No cellulose (sait/ inoculum/ tube+brine)	7.98 ± 6.85 ± 8.16 ±	0.59 0.36 : 0.19	4.62 3.61 4.60		.34	-3.36 -3.04 -1.58		± 0. ± 0. ± 1.	.27	-1.01 -1.01 -3.73	2.01 0.37 1.93	±	1.04 1.02 0.37	-1.60 -2.43 1.06	0.72 -0.89 -1.79	-1.28 -1.28 -3.72
Carbon Source: Cellulose Only Unamended uninoculated Unamended inoculated Amended uninoculated Amended inoculated	7.22 ± 8.63 ± 6.18 ± 6.81 ±	0.03 0.08	6.36	± 0 ± 1 ± 0 ± 1).51	-4.31 -0.27 -2.48 3.59	5.68	± 3 ± 1	.11	-1.51 -0.50 -2.15 4.91	-0.65 11.22 -0.79 8.60	± ±	1.05 5.42 1.06 2.97	-2.05 5.36 -2.36 -6.71	0.98 ± 0. 6.37 ± 2. 1.05 ± 0. 2.58 ± 1.	06 -4.8 47 1.84
Amended Inoculated (wit acetylene)	16.2	0.3	17.2	± 0).3	-1.02	15.54	± 0	.74	-1.61	7.32	±	5.11	-8.22	8.16 ± 4	20 0.84
Carbon Source: Cellulose + Glucose Amended uninoculated Amended inoculated Amended uninoculated (RG sait)		± 0.04 ± 0.11 ± 0.14	3.18 9.79 5.51		3.73	-4.00 2.62 -1.67	-0.39 7.67 3.27	± 4	1.78	-3.57 -1.92 -2.24	-1.91 7.48 2.43	l ±	0.00 6.62 0.95	-1.52 -0.41 -0.84	0.19 7.73 ± 4 6.23 ± 1	
Carbon Source: Cellulose + Succinate Amended uninoculated (w/ acetylene) Amended uninoculated (w/o acetylene) Amended inoculated (w/ acetylene) Amended inoculated (w/o acetylene)	19.9 ± 7.91 ± 19.6 ± 6.76 ±	0.48 0.1	6.36 4.28 16.7 10.2	± ' ± (2.14 1.10 0.5 0.3	-11.52 -3.85 -2.69 3.42	4.75 3.20 6.59 10.41	± 4	1.03 4.01	-3.81 -1.0 6 -6.12 0.23	-1.54 3.86 5.36 3.84	3 ± 3 ±	0.03 0.24 5.00 1.94	0.66 -3.23	2.34 ± 0 3.37 ± 2 10.04 -0.53	

Information Only

Table 7. Total Volume of Gas Produced in Anaerobic Humid Treatments (with bentonite)

RG salt = reagent grade NaCl was used in this treatment in place of WIPP salt

NA=not analyzed

*net gas produced between two time periods (duration between analyses given in parentheses).

Treatments (without bentonite)							µmoles C	_						_	
	6		100			Days		•	415			2156			
Control												0.00	4 4 2		
Empty bottle		± 0		0.68					0.95	0.00		0.00	4.13		
Blank (tube+brine only)	0.00	± 0).00			0.22		-	0.00	0.00		0.00	2.14		
Salt / inoculum/ tube+brine (no cellulose)	3.60	± 0	0.01	5.90	±	0.11	7.63	±	1.08	16.4	±	0.6	8.35		
Carbon Source: Cellulose Only	•											• • •	45.0		0.46
Unamended uninoculated	4.07	± 0	0.09	5.44					0.82			0.18			0.46
Unamended inoculated	11.3	± C	0.12	25.9		3.8	36.1		7.0	89.0	±	24.4	163		36
Amended uninoculated	3.34	± C	0.22	34.3	±	1.44	39.8	_	0.9	32.3		1.5			2.76
Amended inoculated	16.9	± 1	1.15	36.4	±	0.8	40.4	±	0.8	34.7	±	0.9	18.2	İ	1
Amended inoculated (wi acetylene)	13.7	± 1	1.3	38.5	±	2.2	42.7	±	2.5	61.0	±	16.9 	47.3	±	17
Carbon Source: Cellulose + Glucose													42.0		5.2
Amended uninoculated	3.34	± (0.27	23.5		1.6	31.3			38.6			-+2.9 52.8		10.8
Amended inoculated	17.7	± (0.47	39.8		0.2	42.2			41.8	_				
Amended uninoculated (RG sait)	4.07	± (0.37	19.8	±	2.4	28.9	±	0.6	26.3	± 	2. 9	47.8 		
Carbon Source: Cellulose + Succinate				:							_		N 1 A		
Amended uninoculated (w/ acetylene)	3.21	± (0.04	22.5	±	0.8	29.4			28.8	_		NA		
Amended uninoculated (w/o acetylene)	3.19	± (0.18	21.4	±	0.2	27.9		0.5	[·] 34.1			984		
Amended inoculated (w/ acetylene)	13.5		0.7	78.1	±	33.4	123	±		308	±		99.8		
Amended inoculated (w/acetylene)	14.8	±	0.2	60.5	±	16.0	106	±	21	328	±	78	1034		

Inform³⁴**tion Only**

Table 8. Production of Carbon Dioxide in Anaerobic Humid Samples (without bentonite)

RG salt = reagent grade NaCl was used in this treatment in place of WIPP salt NA=not analyzed

Treatments (with bentonite)					_	µmotes C	02	/Sample						
	-	6		100			C 140)ays		415		2	15	<u>B_</u>
Control	0.00	± 0.00	0.68	· + (0.48	1.34	±	0.95			0.00	4.13		
Empty bottle		± 0.00	0.32			0.00			0.00			2.14		
Blank (tube+brine only) Salt / inoculum/ tube+brine (no cellulose)		± 0.51	36.6	±		39.8	±	5.5	51.6	±	3.4	93.8		
Cerbon Source: Cellulose Only							•		26.5	±	8.9	37.6	±	19. ⁴
Unamended uninoculated		± 0.15	12.1				±	3.6	434	÷	39	483	±	133
Unamended inoculated	20.3	± 0.2	93.7	-	2.6	186		1.5	49.6	÷	1.6	41.7	±	3.2
Amended uninoculated	6.65	± 0.80	39.2	_	1.5		_	25	442	÷	152	554		35.
Amended inoculated	32.2	± 1.1	250	±	30	473	±	20	472	1				
Amended inoculeted (wi acetylene)	26.6	.± 0.7	94.0	±	18.6	123	±	30	251	±	92	558 	±	270
Carbon Source: Cellulose + Glucose					• •	53.1		0.4	64.3	+	1.0	177		
Amended uninoculated	6.71		44.5				±		584	÷	_	754	±	94
Amended inoculated	31.4	± 0.7	396	_	13	407 55.1	_	1.4	74.9			178	±	3
Amended uninoculated (RG salt)	5.28	± 0.45	45.9	±	0.7			·····						
Carbon Source: Cellulose + Succinate						44 E		2.4	36.7	+	0.9	48.5	±	0.5
Amended uninoculated (w/ acetylene)	5.77				0.00	41.5	_	3.1 1.0	54.0	_		79.4		3.4
Amended uninoculated (w/o acetylene)	8.58		44.9	_	1.6	51.5			324		30	447		-
Amended inoculated (w/ acetylene)	27.7		70.3	_	2.7	114		-	516		0	1356		
Amended inoculated (w/o acetylene)	26.0	± 0.82	237	'±	2	317	I	6	510	-	v			

Information Only

Table 9. Production of Carbon Dioxide in Anaerobic Humid Samples (with bentonite)

RG salt = reagent grade NaCl was used in this treatment in place of WIPP salt NA=not analyzed

Treatments			dloxide (µmoles/ gran)ays	1 Cellulose)	
	66	100	140	415	2156
Control No cellulose (sait/ inoculum/ tube+brine)	3.60 ± 0.01	5.9 ± 0.1	7.64 ± 1.08	16.4 ± 0.6	8.35
Cerbon Source: Cellulose Unamended inoculated Amended inoculated	11.3 ± 0.1 16.9 ± 1.2	25.9 ± 3.6 38.4 ± 0.8	36.1 ± 7 40.4 ± 0.8	89 ± 24.4 34.7 ± 0.9	163 ± 36 18.2 ± 1
Unamended inoculated (corrected)* Amended inoculated (corrected)*	7.70 ± 0.08 13.3 ± 0.9	20.0 ± 2.9 30.5 ± 0.7	28.5 ± 5.5 32.8 ± 0.6	72.6 ± 19.9 18.3 ± 0.5	154.7 ± 34.2 9.9 ± 0.5

		Calbalaca (S.	A AGEFONIC FUILING JOINVISS
	Carbon Dioxide Production pe		
		BIGHT CONGIONO	•
π_{-} μ_{-} μ_{-	SUDOIL DIOVIGO I LOGGOOM	- U	

Treatments			dioxide (µmoles/ grai ays	m cellulose)	
with bentonite	6	100	140	415	2156
Control No cellulose (salt/ inoculum/ tube+brine)	14.2 ± 0.5	38.8 ± 6.1	39.8 ± 5.5	51.8 ± 3.4	93.8
Carbon Source: Cellulose Unamended inoculated Amended inoculated	20.3 ± 0.2 32.2 ± 1.1	94 ± 3 250 ± 30	186 ± 6 473 ± 25	434 ± 39 442 ± 152	483 ± 133 554 ± 35.7
Unamended inoculated (corrected)* Amended inoculated (corrected)*	6.10 ± 0.08 18.0 ± 0.6	57.1 ± 1.6 213 ± 26	146 ± 5 433 ± 23	382 ± 34 390 ± 134	389 ± 107 460 ± 30

Information Only

* These samples have been corrected with the appropriate control for gas production in the absence of cellulose

			Millili	ers of Gas Produc	ed/Sample		
	<u>. </u>			Days		045	2612
Sample	0	30		334	488	840	
Vo Plastic or Rubber							
Aerobic						1.70 ± 0.35	3.29 ± 0.37
Unamended	0.93	0.97 ± 0.13	-1.09 ± 0.63	0.45 ± 0.50	0.78 ± 0.52	2.69 ± 0.59	2.86 ± 0.49
Amended	0.65	1.74 ± 0.17	1.56 ± 0.03	0.90 ± 0.48	1.73 ± 0.57	2.69 1 0.55	
Anaerobic					1.59 ± 0.42	2.48 ± 0.34	2.31 ± 0.4
Unamended	1.07	1.17 ± 0.05	0.98 ± 0.08	0.66 ± 0.37	3.66 ± 0.98	4.24 ± 0.82	5.27
Amended	0.93	4.96 ± 0.24	3.13 ± 1.19	3.13 ± 1.15	3.00 1 0.90		
Polyethylene - Aerobic		<u> </u>					
Unamended				2.47	2.42	3,46	4.53
Unirradiated	1.06	1.50	-1.97	2.47 1.30	1.61	2.51	3.33
Irradiated (Low-Dose)	1.17	1.56	-2.37		1.33	3.02	4.39
Irradiated (High-Dose)	1.02	1.25	-2.32	2.19	1.55		
Amended				1.78 ± 0.49	1.87 ± 0.44	2.70 ± 0.25	3.84 ± 0.42
Unirradiated	1.06	1.73 ± 0.05	1.55 ± 0.34	1.54 ± 0.41	1.55 ± 0.36	2.49 ± 0.38	2.85 ± 0.64
Irradiated (Low-Dose)	0.95	2.09 ± 0.09	0.98 ± 0.32	1.73 ± 0.57	1.95 ± 0.61	2.97 ± 0.56	1 .99 .
Irradiated (High-Dose)	0.84	1.94 ± 0.22	1.52 ± 0.14	1.73 1 0.57		<u> </u>	
Polyethylene - Anaerol	bic						
Unamended				2.34	2.09	2.40	3.47
Unirradiated	1.21	1.44	1.19	2.34	2.10	2.51	3.46
Irradiated (Low-Dose)	1.14	1.35	1.22		2.32	2.67	3.51
Irradiated (High-Dose)	1.22	1.41	0.59	1.98	2. 7 2		
Amended			a aa + 0.00	3.73 ± 0.91	3.33 ± 0.45	3.48 ± 0.58	3.15
Unirradiated	1.15	5.09 ± 0.06	3.33 ± 0.92	4.84 ± 0.81	4.30 ± 0.61	3.76 ± 0.14	4.05 ± 0.0
Irradiated (Low-Dose)	1.26	5.61 ± 0.21	4.99 ± 0.58	4.84 ± 0.81 4.75 ± 0.74	4.54 ± 0.85	4.69 ± 0.83	4.02
Irradiated (High-Dose)	1.08	5.41 ± 0.19	4.37 ± 0.81	4.10 ± 0.14			

Table 11. Total Volume of Gas Produced in Samples Containing Polyethylene.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

			Millilte	rs of Gas Produce	d/Sample		
Sample	·····	<u> </u>		Days		040	2612
Jampie	0	30	189	334	488	840	2014
No Plastic or Rubber							
Aerobic						4 70 ± 0.05	3.29 ± 0.37
Unamended	0.93	0.97 ± 0.13	-1.09 ± 0.63	0.45 ± 0.50	0.76 ± 0.52	1.70 ± 0.35	2.86 ± 0.49
Amended	0.85	1.74 ± 0.17	1.56 ± 0.03	0.90 ± 0.48	1.73 ± 0.57	2.69 ± 0.59	2.00 1 0.45
Anaerobic						2.48 ± 0.34	2.31 ± 0.4
Unamended	1.07	1.17 ± 0.05	0.98 ± 0.08	0.66 ± 0.37	1.59 ± 0.42		5.27
Amended	0.93	4.96 ± 0.24	3.13 ± 1.19	3.13 ± 1.15	3.66 ± 0.98	4.24 ± 0.82	J.27
Polyvinylchloride - Aer	obic		۳.,				
Unamended		÷			4 40	2.08	3.36
Unirradiated	1.06	0.64	-1.99	1.39	1.13	2.29	3.38
Irradiated (Low-Dose)	0.90	0.92	0.59	1.59	1.02	2.2 9 1.34	1.97
Irradiated (High-Dose)	1.12	1.18	-2.05	1.40	1.09	1,34	1.07
Amended					1.60 ± 0.32	2.57 ± 0.37	3.23 ± 0.36
Unirradiated	0.89	1.90 ± 0.23	1.67 ± 0.13	1.67 ± 0.29	0.49 ± 0.15	1.37 ± 0.17	2.65 ± 0.2
Irradiated (Low-Dose)	0.90	-0.47 ± 0.31	-0.05 ± 0.23	0.17 ± 0.18		3.00 ± 0.17	3.81 ± 0.12
Irradiated (High-Dose)	0.87	-1.08 ± 0.14	2.81 ± 0.71	2.05 ± 0.04	2.48 ± 0.10	3.00 1 0.17	
Polyvinylchloride - An	aerobic				-		
Unamended				0.40	2.14	3.08	3.55
Unirradiated	1.06	1.66	1.70	2.12	0.96	1.66	2.66
Irradiated (Low-Dose)	1.24	1.86	1.61	1.09		1.72	3.97
Irradiated (High-Dose)	1.09	1.53	1.53	1.34	1.54	1.72	
Amended				4.07 + 0.04	4.01 ± 0.80	4.69 ± 0.58	4.72 ± 0.42
Unirradiated	1.02	5.10 ± 0.19	3.89 ± 1.08	4.07 ± 0.94		4.94 ± 0.16	4.75 ± 0.20
Irradiated (Low-Dose)	0.99	1.32 ± 0.06	3.82 ± 0.92	5.01 ± 0.30	4.78 ± 0.23	5.19 ± 0.03	5.27 ± 0.02
Irradiated (High-Dose)	0.96	2.73 ± 0.79	5.34 ± 0.11	5.24 ± 0.11	5.31 ± 0.09	0.10 X 0.00	

Table 12. Total Volume of Gas Produced in Samples Containing Polyvinylchloride.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamendad: no nutrient addition.

			Milliliter	s of Gas Produced	d/Sample		
				Days		840	2612
Sample	0	30	189	334	488		
No Plastic or Rubber			••				
Aerobic				0.45 ± 0.50	0.78 ± 0.52	1.70 ± 0.35	3.29 ± 0.37
Jnamended	0.93	0.97 ± 0.13	-1.09 ± 0.63		1.73 ± 0.57	2.69 ± 0.59	2.86 ± 0.49
Imended	0.85	1.74 ± 0.17	1.56 ± 0.03	0.90 ± 0.48		_	
naerobic				a ca t 0.27	1.59 ± 0.42	2.48 ± 0.34	2.31 ± 0.40
Inamended	1.07	1.17 ± 0.05	0.98 ± 0.08	0.66 ± 0.37	3.66 ± 0.98	4.24 ± 0.82	5.27
Amended	0.93	4.96 ± 0.24	3.13 ± 1.19	3.13 ± 1.15			
Neoprene - Aerobic							
Unamended			0:40	-1.77	-0.94	3.23	2.70
Inirradiated	0.91	0.32	-2:13	1.32	1.66	3.25	3.55
rradiated (Low-Dose)	1.03	-0.02	-0.84	0.53	1.95	2.91	2.74
Irradiated (High-Dose)	0.97	-0.05	-2.30	0.00			
Amended				1.34 ± 0.12	1.65 ± 0.21	2.69 ± 0.34	2.66 ± 0.25
Unirradiated	1.00	2.32 ± 0.09	1.75 ± 0.12	1.28 ± 0.37	1.70 ± 0.26	2.96 ± 0.22	3.13 ± 0.43
Irradiated (Low-Dose)	0.97	1.87 ± 0.20	1.74 ± 0.30	1.33 ± 0.37	1.77 ± 0.24	2.80 ± 0.06	3.16 ± 0.40
Irradiated (High-Dose)	0.70	1.91 ± 0.15	1.76 ± 0.38	1.55 1 0.07	·		
Neoprene - Anaerobic							
Unamended			0.05	1.67	1.56	1.80	2.15
Unirradiated	1.06	1.48	0.95	1.26	1.66	2.44	1.90
Irradiated (Low-Dose)	1.10	1.29	1.05	2.03	1.99	1.98	3.44
Irradiated (High-Dose)	1.14	1.73	1.54	2.00	·		
Amended				4.19 ± 0.93	3.78 ± 0.73	2.96 ± 0.54	3.64 ± 0.3
Unirradiated	1.23	5.19 ± 0.14	3.48 ± 1.00	2.46 ± 0.33	2.31 ± 0.39	2.46 ± 0.36	2.79 ± 0.3
Irradiated (Low-Dose)	0.98	5.05 ± 0.11	3.61 ± 0.64		4.86 ± 0.04	5.12 ± 0.07	4.58 ± 0.0
Irradiated (High-Dose)	1.00	4.53 ± 0.09	4.74 ± 0.24	5.26 ± 0.20			

Table 13. Total Volume of Gas Produced in Samples Containing Neoprene.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

		Milliliters of Gas	Produced/Sample		
0			Days		2464
Sample	0	157	332	664	2404
No Plastic or Rubber					
Aerobic			0.33 ± 0.09	0.38 ± 0.15	1.45 ± 0.27
Unamended	1.08	0.88 ± 0.08		0.51 ± 0.07	1.37 ± 0.07
Amended	1.00	-0.21 ± 0.07	-0.04 ± 0.09	0.01 2 0.01	
Anaerobic		447 + 0.04	0.88 ± 0.17	1.07 ± 0.08	1.51 ± 0.08
Unamended	0.65	1.47 ± 0.04	2.45 ± 0.95	3.09 ± 0.81	3.58 ± 0.74
Amended	0.76	4.30 ± 0.11		·····	
Unleaded Hypalon - Aerobic					
Unamended		4.05	0.14	0.34	0.82
Unirradiated	1.12	1.05	0.21	1.18	0.87
Irradiated (Low-Dose)	1.06	-0.24			
Amended		-0.60 ± 0.06	-0.25 ± 0.15	0.49 ± 0.09	1.40 ± 0.35
Unirradiated	1.14	••••	1.07 ± 0.89	1.90 ± 0.88	1.68 ± 0.15
Irradiated (Low-Dose)	1.11	0.54 ± 0.91			· · · · · · · · · · · · · · · · · · ·
Unleaded Hypalon - Anaerobic					
Unamended		1,45	0.94	1.55	2.21
Unirradiated	0.84		0.91	1.08	1.36
Irradiated (Low-Dose)	0.77	1.39	0.31		
Amended			2.92 ± 0.92	3.49 ± 0.89	3.29 ± 0.78
Unirradiated	0.82	4.04 ± 0.04		3.41 ± 0.90	2.99 ± 0.67
Irradiated (Low-Dose)	0.86	2.92 ± 0.69	2.67 ± 0.98		

Table 14. Total Volume of Gas Produced in Samples Containing Unleaded Hypalon.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

		Milliliters of Gas P	roduced/Sample		
			Days		2464
Sample	0	157	332	664	2464
No Plastic or Rubber					
Aerobic			·	0.36 ± 0.15	1.45 ± 0.27
Unamended	1.08	0.86 ± 0.08	0.33 ± 0.09	+	1.37 ± 0.07
Amended	1.00	-0.21 ± 0.07	-0.04 ± 0.09	0.51 ± 0.07	1.51 2 0.01
Anaerobic			0.86 ± 0.17	1.07 ± 0.08	1.51 ± 0.08
Unamended	0.65	1.47 ± 0.04		3.09 ± 0.81	3.58 ± 0.74
Amended	0.76	4.30 ± 0.11	2.45 ± 0.95	3.09 1 0.01	
Leaded Hypalon - Aerobic					
Unamended			0.44	-0.58	0.86
Unirradiated	1.06	-0.13	-0.41	-1.36	-1.07
Irradiated (Low-Dose)	1.02	-0.26	-1.04	-1.50	
Amended			1.40 ± 0.93	1.81 ± 0.93	2.67 ± 0.79
Unirradiated	1.17	-1.11 ± 0.67	-0.17 ± 0.14	0.57 ± 0.16	2.23 ± 0.25
Irradiated (Low-Dose)	1.08	-0.72 ± 0.08	-0.17 ± 0.14		
Leaded Hypalon - Anaerobic					
Unamended			1.09	1.49	1.85
Unirradiated	0.31	1.00		1.01	1.34
Irradiated (Low-Dose)	0.29	1.06	1.01	1.01	
Amended			2.96 ± 0.78	3.30 ± 1.12	3.60 ± 0.93
Unirradiated	0.94	3.85 ± 0.02		4.45 ± 0.05	3.97 ± 0.38
Irradiated (Low-Dose)	1.06	3.83 ± 0.10	3.77 ± 0.14	7.70 = 0.30	

Table 15. Total Volume of Gas Produced in Samples Containing Leaded Hypalon.

Amended: NH₄NO₃ (0.5 g/L), K₂HPO₄ (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

				umoles CO ₂ /Sample			
	. <u></u>	<u></u>		Days			2045
Sample	0	30	189	334	488	840	2612
No Plastic or Rubber							
Aerobic						15.0 ± 1.7	19.9 ± 1.2
Unamended	1.50	1.76 ± 0.13	6.11 ± 0.33	8.48 ± 0.39	11.9 ± 0.5	42.7 ± 2.1	46.2 ± 1.1
Amended	1.21	26.1 ± 0.2	35.9 ± 0.4	38.0 ± 0.9	42.6 ± 1.5	42.1 1 2.1	
Anaerobic				6.60 ± 0.50	15.5 ± 0.2	16.6 ± 1.9	17.2 ± 1.4
Unamended	1.52	1.76 ± 0.05	2.71 ± 0.08	29.5 ± 0.6	33.6 ± 0.7	32.9 ± 0.7	31.9
Amended	1.21	16.0 ± 0.2	23.7 ± 0.1	29.5 1 0.6			
Polyethylene - Aerobic	;						
Unamended					16.7	37.3	64.2
Unirradiated	1.70	3.63	6.61	13.6	14.9	16.5	16.0
Irradiated (Low-Dose)	1.67	2.57	6.16	14.8	13.6	16.7	26.8
Irradiated (High-Dose)	1.58	2.70	6.37	13.7	13.0		
Amended			36.3 ± 0.2	44.6 ± 0.7	40.1 ± 1.0	41.5 ± 2.7	43.7 ± 5.6
Unirradiated	1.29	29.1 ± 0.3	36.3 ± 0.2 35.0 ± 0.3	44.6 ± 0.7	40.8 ± 1.6	40.3 ± 2.2	49.4 ± 2.6
Irradiated (Low-Dose)	1.23	27.3 ± 0.3		44.3 ± 1.3	42.6 ± 0.2	· 41.5 ± 0.3	52.4
Irradiated (High-Dose)	1.25	26.8 ± 0.1	34.6 ± 0.4		<u></u>		
Polyethylene - Anaero	bic						
Unamended			4.50	14.0	11.7	11.2	14.0
Unirradiated	1.66	1.83	4.53	13.1	15.9	15.6	15.2
Irradiated (Low-Dose)	1.58	1.62	3.15	6.80	20.6	21.5	23.4
Irradiated (High-Dose)	1.63	2.10	2.71	0.00			
Amended					32.6 ± 0.4	32.0 ± 2.3	34.2
Unimadiated	1.29	19.5 ± 0.1	26.1 ± 0.1	34.7 ± 0.4	31.5 ± 1.1	32.0 ± 0.7	27.4 ± 2.6
Irradiated (Low-Dose)	1.35	19.2 ± 0.2	25.6 ± 0.5	34.6 ± 0.9	33.6 ± 1.3	35.6 ± 2.2	27.3
Irradiated (High-Dose)	1.23	19.5 ± 0.2	24.3 ± 0.3	33.6 ± 0.1	33.0 I 1.3		

Table 16. Carbon Dioxide Produced in Samples Containing Polyethylene.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

				umoles CO ₂ /Sample			
			<u> </u>	Days			2612
Sample	0	30	189	334	488	840	2012
Vo Plastic or Rubber							
Aerobic					11.9 ± 0.5	15.0 ± 1.7	19.9 ± 1.2
Unamended	1.50	1.76 ± 0.13	8.11 ± 0.33	8.48 ± 0.39	42.8 ± 1.5	42.7 ± 2.1	46.2 ± 1.1
Amended	1.21	26.1 ± 0.2	35.9 ± 0.4	38.0 ± 0.9	42.0 I 1.J		
-Inchasta						,	
Anaerobic					15.5 ± 0.2	16.6 ± 1.9	17.2 ± 1.4
Unamended	1.52	1.78 ± 0.05	2.71 ± 0.08	8.60 ± 0.50		32.9 ± 0.7	31.9
Amended	1.21	18.0 ± 0.2	23.7 ± 0.1	29.5 ± 0.6	33.6 ± 0.7		
Amenueu							
Polyvinylchloride - Ae	robic						
Unamended					14.5	18.0	29.1
Unirradiated	1.50	3.63	7.58	11.7	22.2	22.8	31.3
Irradiated (Low-Dose)	1.54	2.11	18.1	24.1	14.7	15.4	21.1
Irradiated (High-Dose)	1.57	1.89	9.38	18.2	14.7		
Insurated (High-Post)							
Amended					40.9 ± 0.3	39.8 ± 0.1	44.9 ± 0.4
Unirradiated	1.25	28.0 ± 0.5	41.7 ± 0.2	43.6 ± 0.3	28.9 ± 0.3	26.5 ± 0.1	32.7 ± 0.3
Irradiated (Low-Dose)	1.15	17.8 ± 1.2	29.4 ± 0.9	30.7 ± 0.4	44.4 ± 0.6	50.1 ± 3.4	48.4 ± 3.4
Irradiated (High-Dose)	1.22	20.3 ± 0.1	44.8 ± 0.0	44.8 ± 0.3	44.4 I U.O	00.1 2 0.1	
Insuisted (mgn-pose)			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
Polyvinylchloride - A	naerobic	-					
Unamended				13.7	15.6	20.0	25.9
Unirradiated	1.54	1.78	7.77	3.20	3.50	3.12	4.70
Irradiated (Low-Dose)	1.59	1.85	1.95		4.02	4.79	49.4
Irradiated (High-Dose)	1.58	1.88	2.03	4.18	7.72		•
* • • •		•					
Amended				00 E + 00	28.6 ± 0.9	31.9 ± 0.7	34.8 ± 1.7
Unirradiated	1.19	18.8 ± 0.3	24.1 ± 0.4	28.5 ± 0.8	17.4 ± 0.1	17.4 ± 0.3	18.7 ± 0.4
Irradiated (Low-Dose)	1.20	3.44 ± 0.08	18.7 ± 0.5	18.3 ± 0.2	_	28.5 ± 7.1	27.5 ± 6.3
Irradiated (High-Dose)	1.18	10.0 ± 3.8	20.2 ± 2.3	22.0 ± 3.0	22.4 ± 3.7		

Table 17. Carbon Dioxide Produced in Samples Containing Polyvinylchlorlde.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

			µmoles CO ₂ /Sample					
Sample			189	334	488	840	2612	
-	0	30	109	Days				
lo Plastic or Rubber				- •				
\erobic		_	a	8.48 ± 0.39	11.91 ± 0.46	15.0 ± 1.7	19.9 ± 1.2	
Jnamended	1.50	1.76 ± 0.13	8.11 ± 0.33	38.0 ± 0.9	42.8 ± 1.5	42.7 ± 2.1	48.2 ± 1.1	
mended	1.21	26.1 ± 0.2	35.9 ± 0.4	30.0 I 0.5	· - ··			
naerobic				8.60 ± 0.50	15.5 ± 0.2	18.6 ± 1.9	17.2 ± 1.4	
Jnamended	1.52	1.78 ± 0.05	2.71 ± 0.08		33.6 ± 0.7	32.9 ± 0.7	31.9	
Amended	1.21	18.0 ± 0.2	23.7 ± 0.1	29.5 ± 0.8				
Veoprene - Aerobic								
Unamended				8.33	10.1	28.8	30.5	
Inimadiated	1.60	3.34	7.68	8.33 10.7	12.3	15.1	36.8	
radiated (Low-Dose)	1.66	3.69	8.18		25.5	41.8	60.0	
madiated (High-Dose)	1.64	4.21	10.4	18.0	20.0			
Amended				37.7 ± 0.3	39.4 ± 0.9	46.8 ± 2.7	46.2 ± 2.7	
Unirradiated	1.27	25.4 ± 0.4	38.4 ± 0.5		41.8 ± 1.8	43.5 ± 3.1	55.8 ± 1.8	
Irradiated (Low-Dose)	1.32	27.8 ± 0.3	40.2 ± 0.7		48.5 ± 3.2	55.2 ± 7.1	74.6 ± 0.0	
Irradiated (High-Dose)	1.30	29.3 ± 0.2	44.5 ± 1.1	48.7 ± 2.3	40.0 2 0.0			
Neoprene - Anaerobi	c							
Unamended				0.24	15.7	15.7	15.7	
Unirradiated	1.58	2.01	2.75	9.34 3.09	NA	19.2	25.7	
Irradiated (Low-Dose)	1.65	2.09	2.18		2.38	2.92	19.0	
Irradiated (High-Dose)	1.67	1.81	2.28	2.50	2.00			
Amended		·			33.1 ± 0.8	33.5 ± 1.0	31.7 ± 0.1	
Unirradiated	1.24	18.3 ± 0.1	22.7 ± 0.3	32.9 ± 0.8	31.3 ± 1.0	31.7 ± 0.8	33.9 ± 0.5	
	1.32	19.0 ± 0.4	22.5 ± 0.2	28.3 ± 0.9	36.5 ± 0.7	48.7 ± 1.7	47.8 ± 2.2	
Irradiated (Low-Dose) Irradiated (High-Dose)	1.35	23.4 ± 0.9	30.7 ± 1.3	34.8 ± 1.0	30.3 I V./			

Information Only

Teble 18. Carbon Dioxide Produced in Samples Containing Neoprene.

Amended: NH4NO3 (0.5 g/L), K2HPO4 (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

1

	µmoles CO ₂ /Sample						
Sample		157	Days 332	664	2464		
·	0	157					
No Plastic or Rubber							
Aerobic			3.69 ± 0.06	2.52 ± 0.52	5.55 ± 0.08		
Unamended	1.78	3.84 ± 0.15	30.8 ± 0.4	29.8 ± 0.2	33.3 ± 0.7		
Amended	1.56	30.3 ± 0.5	30.0 ± 0.4				
			,				
Anaerobic			2.76 ± 0.01	4.15 ± 1.44	5.26 ± 0.15		
Unamended	1.78	2.76 ± 0.01	2.76 ± 0.01 21.2 ± 0.1	22.0 ± 0.1	23.6 ± 0.5		
Amended	1.65	20.4 ± 0.2	21.2 1 0.1				
Amenueu							
Unleaded Hypalon - Aerobi	ic				_		
Unamended			3.18	3.67	4.90		
Unirradiated	1.78	3.21	5.33	6.77	11.2		
Irradiated (Low-Dose)	1.77	4.08	0.00				
Introduced (
Amended			28.1 ± 0.3	27.1 ± 0.6	31.8 ± 0.3		
Unirradiated	1.51	27.9 ± 0.3	41.8 ± 8.4	40.6 ± 6.4	43.8 ± 7.1		
Irradiated (Low-Dose)	1.64	40.9 ± 8.6	41.0 1 0.4				
Unleaded Hypalon - Anaer	rodic				5 40		
Unamended	4 70	2.10	1.9	2.23	5.10		
Unirradiated	1.79		1.97	4.04	5.80		
Irradiated (Low-Dose)	1.79	2.22					
••••••••							
Amended		400 + 02	20.8 ± 0.2	19.6 ± 0.3	21.1 ± 0.1		
Unirradiated	1.56	19.9 ± 0.2	21.3 ± 0.4	23.5 ± 1.8	31.1 ± 5.9		
Irradiated (Low-Dose)	1.65	18.8 ± 0.6					
Illaulateu (Lott Boot)							

Table 19. Carbon Dioxide Produced in Samples Containing Unleaded Hypalon.

Amended: NH₄NO₃ (0.5 g/L), K₂HPO₄ (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

			µmoles CO ₂ /Samp	6	
Sample			Days	664	2464
Jampio	0	157	332		
No Plastic or Rubber					
Aerobic				2.52 ± 0.52	5.55 ± 0.08
Jnamended	1.76	3.84 ± 0.15	3.69 ± 0.06	29.84 ± 0.22	. 33.3 ± 0.7
	1.56	30.3 ± 0.5	30.8 ± 0.4	20.04 2 0.00	
mended					
Anaerobic				4.15 ± 1.44	5.26 ± 0.15
	1.78	2.76 ± 0.01	2.76 ± 0.01	22.0 ± 0.1	23.6 ± 0.5
Unamended	1.65	20.4 ± 0.2	21.2 ± 0.1		
Amended	· · · · · · · · · · · · · · · · · · ·				
Leaded Hypalon - Aerobic					
Unamended			4.03	5.33	8.27
Unirradiated	1.72	3.77		4	4.33
Irradiated (Low-Dose)	1.71	3.30	3.72		
Inadiated (LOW-Dobo)					
Amended			·	37.4 ± 9.4	47.2 ± 3.2
	1.53	32.8 ± 3.9	39.5 ± 8.2	20.4 ± 6.6	25.1 ± 1.7
Unirradiated	1.59	27.3 ± 0.2	27.6 ± 0.1	20.4 1 0.0	
Irradiated (Low-Dose)					
Leaded Hypalon - Anaerobic					
Unamended			4 66	2.12	6.08
Unirradiated	1.71	1.80	1.66	2.60	5.39
	1,74	2.05	2.12	2.00	
Irradiated (Low-Dose)					
Amended				21.5 ± 0.8	26.1 ± 4.4
	1.69	18.1 ± 0.1.	19.6 ± 0.2	21.5 ± 0.5 18.0 ± 1.7	20.9 ± 0.1
Unirradiated	1.72	18.8 ± 0.1	19.4 ± 0.2	10.U I I.I	
Irradiated (Low-Dose)	•••				

Table 20. Carbon Dioxide Produced in Samples Containing Leaded Hypalon.

Amended: NH₄NO₃ (0.5 g/L), K₂HPO₄ (0.5 g/L), yeast extract (0.25 g/L); Unamended: no nutrient addition.

