This memo is supplemental to the previous one (Wang & Brush, 1996). We here request a modification for the calculation of stoichiometric factor y in BRAGFLO, in order to take into account the effect of MgO added to WIPP repository as a backfill. Notice that all gas-generation-parameter values submitted in the previous memo (Wang & Brush, 1996) will not be changed.

The accumulation of CO$_2$ produced by microbial reactions will decrease pH and thus increase actinide solubility in the repository. In order to improve WIPP performance, MgO will be added to the repository as a backfill to remove CO$_2$ and buffer pH. The consumption of CO$_2$ by MgO in the repository can be described by the overall reaction:

$$\text{MgO}(c) + \text{CO}_2(g) \rightarrow \text{MgCO}_3(c).$$ \hspace{1cm} (1)

According to the current waste inventory estimates, the amount of MgO sufficient to remove all CO$_2$ is estimated to be 4×10^8 moles or 4.5×10^3 m3, which is about 4% of total transuranic waste volume (See Appendix). The simple thermodynamic calculation (See Appendix) shows that Reaction (1) will buffer the fugacity of CO$_2$ around 10$^{-11}$ atm. Therefore, as long as sufficient MgO is added, the contribution of CO$_2$ to total gas pressure will be certainly negligible. This effect will be taken into account in the BRAGFLO calculation simply by modifying the stoichiometric factor y in the Average-Stoichiometry model.

The following modification is proposed: CO$_2$ is no longer taken into account in the derivation of equations (15 -17) in the previous memo (Wang & Brush, 1996). Those equations should be replaced by:

$$y_{\text{max}} = \frac{2.4M_N\text{O}_3 + 3M_\text{SO}_4}{4.8} + 0.5\left[\frac{M'_c - 6M_N\text{O}_3}{4.8} - \frac{6M_\text{SO}_4}{3}\right]$$ \hspace{1cm} (2)

$$G = \min\left\{\frac{3M_\text{SO}_4}{3}, M'_c\right\}$$ \hspace{1cm} (3)
\[y_{\text{min}} = y_{\text{max}} - \frac{G}{M_{\text{cel}}} \]

All notations here are the same as those used in Wang & Brush (1996).

References

Appendix

A.1. How much MgO will be needed?

From Wang & Brush (1996, p. 15), the maximum quantity of CO₂ potentially to be produced in the repository is: 7.4×10^8 moles $C \times (0.04 + 0.01 + 0.05 \times 0.95)$ moles CO₂/mole $C = 4 \times 10^8$ moles of CO₂. According Reaction (1), the amount of MgO sufficient to consume all CO₂ will be 4×10^8 moles. With the molar volume of 11.2 cm3/mole for MgO (Lide, 1995), the amount of MgO needed in volume will be 4.5×10^3 m3, about 4% of total waste volume (DOE/CAO, 1996).

A.2. Fugacity of CO₂ buffered by Reaction (1)

The fugacity of CO₂, $f_{CO₂}$, controlled by Reaction (1) can be calculated by

$$\ln f_{CO₂} = \frac{\Delta G}{2.303RT}$$

where ΔG is the free energy change of Reaction (1); R is gas constant (= 1.987 cal/mol/K); T is temperature (= 298.15 K). From the data given by Drever (1982), ΔG is estimated to be -15.32 kcal/mol. $f_{CO₂}$ is thus estimated to be $10^{-11.22}$ atm.

Distribution:

MS 1320 J. Nowak (Org. 6831)
MS 1320 R. V. Bynum (Org. 6831)
MS 1328 P. Vaughn (Org. 6749)
MS 1328 D. R. Anderson (Org. 6749)
MS 1328 C. Stockman (Org. 6749)
MS 1328 M. S. Tierney (Org. 6741)
MS 1328 H. N. Jow (Org. 6741)
MS 1335 M. S. Y. Chu (Org. 6801)
MS 1341 J. T. Holmes (Org. 6748)
MS 1341 L. H. Brush (Org. 6748)
MS 1341 Y. Wang (Org. 6748)
MS 1341 R. F. Weiner (Org. 6751)
MS 1330 SWCF (Org. 6352), WBS 1.1.09.1.1(R)