SAN DIEGO NATIONAL LABORATORIES
WASTE ISOLATION PILOT PLANT

INPUT PARAMETER REPORT FOR THE 2019 COMPLIANCE
RECERTIFICATION APPLICATION PERFORMANCE
ASSESSMENT (CRA-2019 PA)

REVISION 1

Authors: Sungtae Kim
Print
Signature
Date

L. Michael Feng
Print
Signature
Date

Technical Review: Jennifer Long
Print
Signature
Date

QA Review: Shelly R. Nielsen
Print
Signature
Date

Management Review: R. Chris Camhouse
Print
Signature
Date

ERMS #571660
August 5, 2019
WIPP:4.2.1:PA:QA-L:571155

Information Only
This page intentionally left blank.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. IX
1.0 INTRODUCTION .. 1
2.0 PARAMETER DEVELOPMENT PROCESS .. 3
3.0 PARAMETER DISTRIBUTIONS ... 4
 3.1 Uniform Distribution ... 4
 3.2 Loguniform Distribution .. 5
 3.3 Cumulative Distribution ... 6
 3.4 Logcumulative Distribution .. 7
 3.5 Triangular Distribution ... 8
 3.6 Delta Distribution .. 9
 3.7 Normal Distribution ... 9
 3.8 Lognormal Distribution ... 10
 3.9 Student’s t-Distribution ... 11
 3.10 Constants ... 12
4.0 PARAMETER CORRELATION ... 13
5.0 PARAMETER ADDITIONS AND MODIFICATIONS TO THE CRA19 18
 5.1 Changes to Parameters between the CRA14 and the CRA19 .. 18
 5.2 Changes to Parameters between the CRA19 and the CRA19_CL 18
6.0 LIST OF DATABASE PARAMETERS USED IN THE CRA-2019 PA 28
 6.1 Sampled Parameters .. 29
 6.2 Constant Parameters .. 29
7.0 WASTE STREAM INVENTORY DATA FOR THE CRA-2019 PA 134
8.0 REFERENCES ... 136
APPENDIX A – SAMPLED VALUES FOR PARAMETER DISTRIBUTIONS USED IN THE CRA-2019 PA .. 139
APPENDIX B – WASTE STREAM INVENTORY DATA USED IN THE CRA-2019 PA 332
LIST OF TABLES

Table 1 – Index of LHS Sampled Parameters for the CRA-2019 PA ...16
Table 2 – Parameter Changed for the CRA-2019 PA ...19
Table 3 – Parameter Changed for the CRA19_CL ..27
Table 4 – Parameters Sampled in LHS Code ..31
Table 5 – Borehole, Blowout and Drill Mud Parameters ..58
Table 6 – Borehole (Concrete Plug) Parameters ..60
Table 7 – Borehole (Open) Parameters ..61
Table 8 – Borehole (Silty Sand) Parameters ...62
Table 9 – Borehole (Creep) Parameters ..63
Table 10 – DRSPALL Parameters ...64
Table 11 – Shaft Material Parameters ...66
Table 12 – Panel Closure Parameters ...69
Table 13 – Santa Rosa Formation Parameters ...74
Table 14 – Dewey Lake Formation ..75
Table 15 – Forty-Niner Member of the Rustler Formation Parameters76
Table 16 – Magenta Member of the Rustler Formation Parameters ...77
Table 17 – Tamarisk Member of the Rustler Formation Parameters ...78
Table 18 – Culebra Member of the Rustler Formation Parameters ...79
Table 19 – Los Medanos (Unnamed Lower) Member of the Rustler Formation Parameters81
Table 20 – Salado Formation - Intact Halite - Parameters ...82
Table 21 – Salado Formation - Brine - Parameters ...83
Table 22 – Salado Formation - Marker Bed 138 - Parameters ..84
Table 23 – Salado Formation - Marker Bed 139 - Parameters ..86
Table 24 – Salado Formation - Anhydrite a and b, Intact and Fractured - Parameters88
Table 25 – Disturbed Rock Zone Parameters ...90
Table 26 – Waste Area and Waste Material Parameters ..98
Table 27 – Waste Chemistry Parameters ..100
Table 28 – Radionuclide Parameters ...106
Table 29 – Isotope Inventory ...110
Table 30 – Waste Container Parameters ...113
Table 31 – Stoichiometric Gas Generation Model Parameters ..114
Table 32 – Predisposal Cavities (Waste Area) Parameters ..115
Table 33 – Operations Region Parameters ...120
Table 34 – Area Parameters ..121
Table 35 – Castile Formation Parameters ..122
Table 36 – Castile Brine Reservoir Parameters ..123
Table 37 – Reference Constants ...124
Table 38 – Global Parameters ...133
LIST OF TABLES (continued)

<p>| Table A.1 – Sampled Values for Parameter GLOBAL:PBRINE (LHS Variable 1) | 140 |
| Table A.2 – Sampled Values for Parameter BOREHOLE:DOMEGA (LHS Variable 4) | 143 |
| Table A.3 – Sampled Values for Parameter BOREHOLE:TAUFAIL (LHS Variable 5) | 146 |
| Table A.4 – Sampled Values for Parameter SPALLMOD:REPIPERM (LHS Variable 8) | 149 |
| Table A.5 – Sampled Values for Parameter SPALLMOD:TENSLSTR (LHS Variable 9) | 152 |
| Table A.6 – Sampled Values for Parameter SPALLMOD:PARTDIAM (LHS Variable 10) | 155 |
| Table A.7 – Sampled Values for Parameter SPALLMOD:REPIPOR (LHS Variable 11) | 158 |
| Table A.8 – Sampled Values for Parameter SOLMOD3:SOLVAR (LHS Variable 15) | 161 |
| Table A.9 – Sampled Values for Parameter SOLMOD4:SOLVAR (LHS Variable 16) | 164 |
| Table A.10 – Sampled Values for Parameter GLOBAL:OXSTAT (LHS Variable 18) | 167 |
| Table A.11 – Sampled Values for Parameter STEEL:HUMCORR (LHS Variable 22) | 170 |
| Table A.12 – Sampled Values for Parameter CULEBRA:MINP_FAC (LHS Variable 23) | 173 |
| Table A.13 – Sampled Values for Parameter GLOBAL:TRANSIDX (LHS Variable 24) | 176 |
| Table A.14 – Sampled Values for Parameter GLOBAL:CLIMTIDX (LHS Variable 25) | 179 |
| Table A.15 – Sampled Values for Parameter CULEBRA:HMBLKLT (LHS Variable 26) | 182 |
| Table A.16 – Sampled Values for Parameter CULEBRA:APOROS (LHS Variable 27) | 185 |
| Table A.17 – Sampled Values for Parameter CULEBRA:DPOROS (LHS Variable 28) | 188 |
| Table A.18 – Sampled Values for Parameter U+6:MKD_U (LHS Variable 29) | 191 |
| Table A.19 – Sampled Values for Parameter U+4:MKD_U (LHS Variable 30) | 194 |
| Table A.20 – Sampled Values for Parameter PU+3:MKD_PU (LHS Variable 31) | 197 |
| Table A.21 – Sampled Values for Parameter PU+4:MKD_PU (LHS Variable 32) | 200 |
| Table A.22 – Sampled Values for Parameter TH+4:MKD_TH (LHS Variable 33) | 203 |
| Table A.23 – Sampled Values for Parameter AM+3:MKD_AM (LHS Variable 34) | 206 |
| Table A.24 – Sampled Values for Parameter GLOBAL:GDEPFAC (LHS Variable 35) | 209 |
| Table A.25 – Sampled Values for Parameter WAS_AREA:BRUCITEC (LHS Variable 36) | 212 |
| Table A.26 – Sampled Values for Parameter WAS_AREA:BRUCITES (LHS Variable 37) | 215 |
| Table A.27 – Sampled Values for Parameter WAS_AREA:BRUCITEH (LHS Variable 38) | 218 |
| Table A.28 – Sampled Values for Parameter STEEL:CORRMCO2 (LHS Variable 39) | 221 |
| Table A.29 – Sampled Values for Parameter WAS_AREA:PROBDEG (LHS Variable 40) | 224 |
| Table A.30 – Sampled Values for Parameter WAS_AREA:PROBMICI (LHS Variable 41) | 227 |
| Table A.31 – Sampled Values for Parameter WAS_AREA:GRATMICI (LHS Variable 42) | 230 |
| Table A.32 – Sampled Values for Parameter WAS_AREA:HYMAGCON (LHS Variable 43) | 233 |
| Table A.33 – Sampled Values for Parameter WAS_AREA:SAT_RGAS (LHS Variable 44) | 236 |
| Table A.34 – Sampled Values for Parameter WAS_AREA:SAT_RBRN (LHS Variable 45) | 239 |
| Table A.35 – Sampled Values for Parameter WAS_AREA:SAT_WICK (LHS Variable 46) | 242 |
| Table A.36 – Sampled Values for Parameter DRZ_PCS:PRMX_LOG (LHS Variable 47), DRZ_PCS:PRMY_LOG, and DRZ_PCS:PRMZ_LOG | 245 |
| Table A.37 – Sampled Values for Parameter PCS_T1:PRMX_LOG (LHS Variable 48), PCS_T1:PRMY_LOG, and PCS_T1:PRMZ_LOG | 248 |
| Table A.38 – Sampled Values for Parameter PCS_T1:SAT_RGAS (LHS Variable 49), PCS_T2:SAT_RGAS, and PCS_T3:SAT_RGAS | 251 |
| Table A.39 – Sampled Values for Parameter PCS_T1:SAT_RBRN (LHS Variable 50), PCS_T2:SAT_RBRN, and PCS_T3:SAT_RBRN | 254 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.40</td>
<td>Sampled Values for Parameter PCS_T1:PORE_DIS (LHS Variable 51), PCS_T2:PORE_DIS, and PCS_T3:PORE_DIS</td>
</tr>
<tr>
<td>A.41</td>
<td>Sampled Values for Parameter S_HALITE:POROSITY (LHS Variable 52)</td>
</tr>
<tr>
<td>A.42</td>
<td>Sampled Values for Parameter S_HALITE:PRMY_LOG (LHS Variable 53), S_HALITE:PRM_LOG</td>
</tr>
<tr>
<td>A.43</td>
<td>Sampled Values for Parameter S_HALITE:COMP_RCK (LHS Variable 54)</td>
</tr>
<tr>
<td>A.44</td>
<td>Sampled Values for Parameter S_MB139:PRMX_LOG (LHS Variable 55), S_MB139:PRMY_LOG, and S_MB139:PRMZ_LOG</td>
</tr>
<tr>
<td>A.45</td>
<td>Sampled Values for Parameter S_MB139:RELP_MOD (LHS Variable 56)</td>
</tr>
<tr>
<td>A.46</td>
<td>Sampled Values for Parameter S_MB139:SAT_RBRN (LHS Variable 57)</td>
</tr>
<tr>
<td>A.48</td>
<td>Sampled Values for Parameter S_HALITE:PRESSURE (LHS Variable 59)</td>
</tr>
<tr>
<td>A.49</td>
<td>Sampled Values for Parameter CASTILER:PRESSURE (LHS Variable 60)</td>
</tr>
<tr>
<td>A.50</td>
<td>Sampled Values for Parameter CASTILER:PRMX_LOG (LHS Variable 61), CASTILER:PRMY_LOG, and CASTILER:PRMZ_LOG</td>
</tr>
<tr>
<td>A.51</td>
<td>Sampled Values for Parameter CASTILER:COMP_RCK (LHS Variable 62)</td>
</tr>
<tr>
<td>A.52</td>
<td>Sampled Values for Parameter BH_SAND:PRMX_LOG (LHS Variable 63), BH_SAND:PRMY_LOG, and BH_SAND:PRMZ_LOG</td>
</tr>
<tr>
<td>A.53</td>
<td>Sampled Values for Parameter DRZ_1:PRMX_LOG (LHS Variable 64), DRZ_1:PRMY_LOG, and DRZ_1:PRMZ_LOG</td>
</tr>
<tr>
<td>A.54</td>
<td>Sampled Values for Parameter CONC_PLG:PRMX_LOG (LHS Variable 65), CONC_PLG:PRMY_LOG, and CONC_PLG:PRMZ_LOG</td>
</tr>
<tr>
<td>A.55</td>
<td>Sampled Values for Parameter SHFTU:SAT_RBRN (LHS Variable 66)</td>
</tr>
<tr>
<td>A.56</td>
<td>Sampled Values for Parameter SHFTU:SAT_RGAS (LHS Variable 67)</td>
</tr>
<tr>
<td>A.57</td>
<td>Sampled Values for Parameter SHFTU:PRMX_LOG (LHS Variable 68)</td>
</tr>
<tr>
<td>A.58</td>
<td>Sampled Values for Parameter SHFTL_T1:PRMX_LOG (LHS Variable 69)</td>
</tr>
<tr>
<td>A.59</td>
<td>Sampled Values for Parameter SHFTL_T2:PRMX_LOG (LHS Variable 70)</td>
</tr>
<tr>
<td>A.60</td>
<td>Sampled Values for Parameter WAS_AREA:BIOGENFC (LHS Variable 71)</td>
</tr>
<tr>
<td>A.61</td>
<td>Sampled Values for Parameter PCS_T1:POROSITY (LHS Variable 72)</td>
</tr>
<tr>
<td>A.62</td>
<td>Sampled Values for Parameter PCS_T2:POROSITY (LHS Variable 73)</td>
</tr>
<tr>
<td>A.63</td>
<td>Sampled Values for Parameter PCS_T3:POROSITY (LHS Variable 74)</td>
</tr>
<tr>
<td>A.64</td>
<td>Sampled Values for Parameter PCS_T2:POR2PERM (LHS Variable 75), PCS_T3:POR2PERM</td>
</tr>
</tbody>
</table>

Table B.1 – CH-TRU Waste Stream Inventory Data
Table B.2 – RH-TRU Waste Stream Inventory Data
ACRONYMS AND ABBREVIATIONS

CCA Compliance Certification Application
CDF Cumulative Distribution Function
CFR Code of Federal Regulations
CH Contact-handled
DOE U.S. Department of Energy
EPA U.S. Environmental Protection Agency
ERMS Electronic Records Management System
PA Performance assessment
PAVT Performance Assessment Verification Test
PABC Performance Assessment Baseline Calculation
PDF Probability Distribution Function
RH Remote-Handled
SNL Sandia National Laboratories
TRU TRansUranic
WIPP Waste Isolation Pilot Plant
WUF Waste Unit Factor
Executive Summary

The Land Withdrawal Act requires that the U.S. Department of Energy (DOE) apply for recertification of the Waste Isolation Pilot Plant (WIPP) every five years following the initial 1999 waste shipment. The 2019 Compliance Recertification Application (CRA-2019) is the fourth WIPP recertification application submitted for approval by the U.S. Environmental Protection Agency. A performance assessment (PA) has been executed by Sandia National Laboratories in support of the DOE submittal of the CRA-2019 PA. Results found in the CRA-2019 PA are compared to those obtained in the 2014 Compliance Recertification Application (CRA-2014) in order to assess repository performance in terms of the current regulatory baseline. This package documents the input parameters used in the CRA-2019 PA calculations. Zeitler (2019a) addressed changes included in the CRA-2019 PA.
This page intentionally left blank.
1.0 INTRODUCTION

The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA) according to the regulations set forth in Title 40 of the Code of Federal Regulations (CFR), Part 191. The DOE demonstrates compliance with the containment requirements according to the Certification Criteria in Title 40 CFR Part 194 by means of performance assessment (PA) calculations performed by Sandia National Laboratories (SNL). WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The models used in PA are maintained and updated with new information as part of an ongoing process. Improved information regarding important WIPP features, events, and processes typically results in refinements and modifications to PA models and the parameters used in them. Planned changes to the repository and/or the components therein also result in updates to WIPP PA models. WIPP PA models are used to support the repository recertification process that occurs at five-year intervals following the receipt of the first waste shipment at the site in 1999.

PA calculations were included in the 1996 Compliance Certification Application (CCA) (U.S. DOE 1996), and in a subsequent Performance Assessment Verification Test (PAVT) (MacKinnon and Freeze 1997a, 1997b and 1997c). Based in part on the CCA and PAVT PA calculations, the EPA certified that the WIPP met the regulatory containment criteria. The facility was approved for disposal of TRU waste in May 1998 (U.S. EPA 1998). PA calculations were an integral part of the 2004 Compliance Recertification Application (CRA-2004) (U.S. DOE 2004). During their review of the CRA-2004, the EPA requested an additional PA calculation, referred to as the CRA-2004 Performance Assessment Baseline Calculation (PABC) (Leigh et al. 2005), be conducted with modified assumptions and parameter values (Cotsworth 2005). Following review of the CRA-2004 and the CRA-2004 PABC, the EPA recertified the WIPP in March 2006 (U.S. EPA 2006).

PA calculations were completed for the second WIPP recertification and documented in the 2009 Compliance Recertification Application (CRA-2009). The CRA-2009 PA resulted from continued review of the CRA-2004 PABC, including a number of technical changes and corrections, as well as updates to parameters and improvements to the PA computer codes (Clayton et al. 2008). To incorporate additional information which was received after the CRA-2009 PA was completed, but before the submittal of the CRA-2009, the EPA has requested an additional PA calculation, referred to as the 2009 Compliance Recertification Application Performance Assessment Baseline Calculation (PABC-2009) (Clayton et al. 2010), be undertaken which included updated information (Cotsworth 2009). Following the completion and submission of the PABC-2009, the WIPP was recertified in 2010 (U.S. EPA 2010).
PA calculations were completed for the third WIPP recertification and documented in the 2014 Compliance Recertification Application (CRA-2014). Following the completion and submission of the CRA-2014, the WIPP was recertified in 2017 (U.S. EPA 2017).

The Land Withdrawal Act (U.S. Congress 1992) requires that the DOE apply for WIPP recertification every five years following the initial 1999 waste shipment. The 2019 Compliance Recertification Application (CRA-2019) is the fourth WIPP recertification application submitted by the DOE for EPA approval. The PA executed by SNL in support of the CRA-2019 is detailed in AP-181 (Zeitler 2019a). The CRA-2019 PA includes repository planned changes, parameter updates, and refinements to PA implementation. Results found in the CRA-2019 PA (hereafter, CRA19) are compared to those obtained in the CRA-2014 in order to assess repository performance in terms of the current regulatory baseline. This report documents information on parameters used by PA codes executed in support of the CRA19.
2.0 PARAMETER DEVELOPMENT PROCESS

The development of parameter values is controlled by the application of Nuclear Waste Management Program Procedure Parameters (NP 9-2 (Long 2017)). The process includes documentation of parameter development by those responsible for completion of a particular experimental investigation, development of a system design, or by staff involved in the PA modeling process. All of the references pertaining to parameter selection are contained within the three levels of parameter and data documentation: (1) Parameter Data Entry form NP 9-2-1, (2) analysis records packages, and (3) supporting data records packages.

The Parameter Data Entry form is the highest-level record documenting parameter development that includes application of statistics and interpretations. The Parameter Data Entry forms include a justification section, which is a pointer to supporting information including, where applicable, the analysis plan and source document. All values provided in this report were derived from the WIPP PA parameter database. The numbers from the WIPP PA parameter database may differ slightly from those contained in the Parameter Data Entry forms because of rounding.

The parameter supporting information package includes references to related information, such as analysis plans, SAND reports, analysis report, justifications, test plans, and related Electronic Records Management System (ERMS) file codes, and, where applicable, a summary on the experimental data collection (that is, method used, assumptions made in testing, and interpretation). The parameter supporting information packages point to the data records packages containing information such as the raw data, analysis, and data interpretation.

Each Parameter Data Entry form and parameter supporting information package are assigned unique ERMS numbers.
3.0 PARAMETER DISTRIBUTIONS

Probability distributions are used to characterize the uncertainty concerning the value of a parameter. Numbers that characterize a particular distribution include the range, the mean, median, and mode (only for triangular distributions).

- Range. The range of a distribution can be denoted by \((a, b)\), a pair of numbers in which \(a\) and \(b\) are minimum and maximum values of the parameter, respectively.
- Mean. The expectation of a random variable: i.e., the sum (or integral) of the product of the variable and the probability density function (PDF) over the range of the variable. There is distinction between the sample mean and the true mean of a distribution. The mean, \(\mu\), of a distribution is one measure of the central tendency of a distribution, analogous to the arithmetic average of a series of numbers. The sample mean, \(\bar{X}\), is the arithmetic average of value in an empirical data set.
- Median. The value of a random variable at which its cumulative distribution function (CDF) takes the value 0.5; i.e., the 50th percentile point.
- Mode. The value of a random variable at which its PDF takes its maximum value. The mode of a set of data is the value in the set that occurs most often.

Distributions used to characterize uncertainty in parameters of the PA include: uniform, loguniform, cumulative, logcumulative, triangular, delta, normal, lognormal, and Student’s \(t\). Constant is not a distribution type; however the database accepts constant as an identifier.

3.1 Uniform Distribution

A uniform distribution is described by the following equations.

Probability density function (PDF):

\[
f(x) = \frac{1}{b - a} \quad a \leq x \leq b \quad (1)
\]

Cumulative distribution function (CDF):

\[
F(x) = \frac{x - a}{b - a} \quad a \leq x \leq b \quad (2)
\]

Expected value:

\[
E(X) = \frac{a + b}{2} \quad (3)
\]

Variance:
Use of the uniform distribution is appropriate when all that is known about a parameter is its range \((a, b)\); the uniform distribution is the Maximum Entropy distribution under these circumstances (Tierney 1996).

3.2 Loguniform Distribution

If \(X\) has a loguniform distribution on the interval from \(a\) to \(b\) where \(b > a > 0\), then \(Y = \log_{10} X\) has a uniform distribution from \(\log_{10} a\) to \(\log_{10} b\) (Iman and Shortencarier 1984; Sandia WIPP Project 1992, Table 1.2-1). Although the program LHS uses base 10 logarithms, the following properties are stated in terms of natural logarithms in order to simplify the presentation.

Probability density function:

\[
f(x) = \frac{1}{x \ln b - \ln a} \quad a < x < b
\]

(6)

Cumulative distribution function:

\[
F(x) = \frac{\ln x - \ln a}{\ln b - \ln a} \quad a < x < b
\]

(7)

Expected value:

\[
E(X) = \frac{b - a}{\ln b - \ln a}
\]

(8)

Variance:

\[
V(X) = \frac{(b - a)^2}{12}
\]

(4)

\[
V(X) = (b - a) \left[\frac{(\ln b - \ln a)(b + a) - 2(b - a)}{2(\ln b - \ln a)^2} \right]
\]

(9)

Median:

\[
X_{0.5} = \frac{1}{2} (a + b)
\]

(10)

Use of the loguniform distribution is appropriate when all that is known about a parameter is its range \((a, b)\) and \(b/a > 100\); that is, the range \((a, b)\) spans more than two orders of magnitude.
3.3 Cumulative Distribution

A cumulative distribution (also called a constructed distribution) is described by a set of \(N\) ordered pairs:

\[(x_1, 0), (x_2, P_2), (x_3, P_3), \ldots, (x_N, 1)\] \(\{i.e., P_1 = 0 \text{ and } P_N = 1 \text{ always}\} \quad (11)\)

where \(x_1 < x_2 < x_3 < \cdots < x_N\) and \(0 < P_2 < P_3 < \cdots < P_{N-1} < 1\).

Because of the nature of the data, the PDF for this distribution takes the form:

\[
P(\xi) = \begin{cases}
0 & \text{if } \xi < x_1 \\
\frac{P_n - P_{n-1}}{x_n - x_{n-1}} & \text{if } x_{n-1} \leq \xi \leq x_n, \quad n = 2,3,\ldots,N \\
1 & \text{if } \xi > x_N
\end{cases} \quad (12)\]

and so, the CDF takes the form:

\[
P_n[\xi] \approx \Pi(\xi) = \begin{cases}
0 & \text{if } \xi < x_1 \\
P_{n-1} + \frac{(P_n - P_{n-1})(\xi - x_{n-1})}{x_n - x_{n-1}} & \text{if } x_{n-1} \leq \xi \leq x_n, \quad n = 2,3,\ldots,N \\
1 & \text{if } \xi > x_N
\end{cases} \quad (13)\]

Expected value:

\[
E(X) = \sum_{n=2}^{N} (P_n - P_{n-1}) \left(\frac{x_n + x_{n-1}}{2}\right) \quad (14)\]

Variance:

\[
V(X) = \sum_{n=2}^{N} (P_n - P_{n-1}) \left(\frac{x_n^2 + x_n x_{n-1} + x_{n-1}^2}{3}\right) - \{E(X)\}^2 \quad (15)\]

Median:

\[
X_{0.50} = x_{m-1} + (x_m - x_{m-1}) \frac{(0.50 - P_{m-1})}{(P_m - P_{m-1})} \quad \text{where } P_{m-1} \leq 0.50 < P_m \quad (16)\]

The cumulative distribution takes its name from the fact that it closely resembles the empirical CDF obtained by plotting the empirical percentiles of the data set \((x_1, x_2, x_3, \ldots, x_N)\) (Blom 1989, p. 216). The cumulative distribution used here is the result of plotting the subjectively determined percentile points \((x_1, P_1), (x_2, P_2), (x_3, P_3), \ldots\), that arise in a formal elicitation of expert opinion concerning the form of the distribution of the parameter in question. A simple
form of the cumulative distribution is used when the range \((a, c)\) of the parameter is known and the analyst believes that his or her best estimate value, \(b\), is also the median (or 50th percentile) of the unknown distribution. In this case, the subjectively determined percentile points take the form: \((a, 0.0), (b, 0.5), (c, 1.0)\) (Tierney 1996).

The cumulative distribution is the Maximum Entropy distribution associated with a set of percentile points \((x_1, P_1), (x_2, P_2), (x_3, P_3), \ldots, (x_N, P_N)\), no matter how that set of percentile points is obtained (that is, independent of whether the points are empirically or subjectively derived) (Tierney 1996).

3.4 Logcumulative Distribution

In this case, the independent variable is \(Y\), where \(Y = \ln X\). As with the cumulative distribution (Tierney 1996), the logcumulative distribution is described by a set of \(N\) ordered pairs:

\[
(y_1, 0), (y_2, P_2), (y_3, P_3), \ldots, (y_N, 1) \quad \text{\{i.e., } P_1 = 0 \text{ and } P_N = 1 \text{ always}\} \tag{17}
\]

where \(y_1 < y_2 < y_3 < \cdots < y_N\) and \(0 < P_2 < P_3 < \cdots < P_{N-1} < 1\).

Because of the nature of the data, the PDF for this distribution takes the form:

\[
P(\xi) = \begin{cases}
0 & \text{if } \xi < x_1 \\
\frac{P_n - P_{n-1}}{\ln x_n - \ln x_{n-1}} \left(\frac{1}{\xi} \right) & \text{if } x_{n-1} \leq \xi < x_n, \quad n = 2, 3, \ldots, N \\
0 & \text{if } \xi > x_N
\end{cases} \tag{18}
\]

and so the CDF takes the form:

\[
P_n[X \leq \xi] \approx \Pi(\xi) = \begin{cases}
0 & \text{if } \xi < x_1 \\
P_{n-1} + \frac{(P_n - P_{n-1})(\ln \xi - \ln x_{n-1})}{\ln x_n - \ln x_{n-1}} & \text{if } x_{n-1} \leq \xi < x_n, n = 2, 3, \ldots, N \\
1 & \text{if } \xi > x_N
\end{cases} \tag{19}
\]

Expected Value:

\[
E(X) = \sum_{n=2}^{N} (P_n - P_{n-1}) \left(\frac{x_n - x_{n-1}}{\ln x_n - \ln x_{n-1}}\right) \tag{20}
\]

Variance:

\[
V(X) = \left[\sum_{n=2}^{N} \frac{1}{2} (P_n - P_{n-1}) \left(\frac{x_n^2 - x_{n-1}^2}{\ln x_n - \ln x_{n-1}}\right)\right] - \{E(X)\}^2 \tag{21}
\]
Median:

\[X_{0.50} = 10^\left\{ x_{m-1} + (x_m - x_{m-1}) \left(\frac{0.50 - P_{m-1}}{P_m - P_{m-1}} \right) \right\} \quad \text{where } P_{m-1} \leq 0.50 < P_m \]

3.5 Triangular Distribution

The triangular distribution is defined on the range \((a, c)\) and has mode \(b\). The mode can equal either of two boundary values as described below (Iman and Shortencarier 1984).

Probability density function:

\[
f(x) = \begin{cases}
\frac{2(x - a)}{(c - a)(b - a)} & \text{if } a \leq x \leq b \\
\frac{2(c - x)}{(c - a)(c - b)} & \text{if } b \leq x \leq c
\end{cases}
\]

Cumulative distribution function:

\[
F(x) = \begin{cases}
\frac{(x - a)^2}{(c - a)(b - a)} & \text{if } a \leq x \leq b \\
\frac{b - a}{c - a} - \frac{(x + b - 2c)(x - b)}{(c - a)(c - b)} & \text{if } b \leq x \leq c
\end{cases}
\]

Expected value:

\[E(X) = \frac{a + b + c}{3} \]

Variance:

\[V(X) = \frac{a(a - b) + b(b - c) + c(c - a)}{18} \]

Median:

\[
X_{0.5} = \begin{cases}
a + \sqrt{\frac{(c - a)(b - a)}{2}} & \text{if } b \geq \frac{a + c}{2} \\
c - \sqrt{\frac{(c - b)(c - a)}{2}} & \text{if } b \leq \frac{a + c}{2}
\end{cases}
\]

Use of the triangular distribution is appropriate when the range, \((a, c)\), of the parameter is known and the analyst believes that his or her best estimate value, \(b\), is also the mode (or most probable value) of the unknown distribution.
3.6 Delta Distribution

The delta distribution is used to assign probabilities to the elements of some set of objects (Tierney 1996). For example, if the set consists of four alternative mathematical models of some phenomena and each model is labeled with one of the integers \(\{1,2,3,4\} \) such that the mathematical models are identified as \(M_1, M_2, M_3, \text{ and } M_4 \), then we might assign the vector of probabilities \(\{p_1, p_2, p_3, p_4\} \), where each \(p_i \) is a number between 0 and 1 and

\[
p_1 + p_2 + p_3 + p_4 = 1
\]

(28)

The CDF associated with this delta distribution can be symbolically expressed by

\[
F(x) = \sum_{n=1}^{4} p_n u(x - n)
\]

(29)

The function \(u \) is an indexing function that returns 0 if \((x - n) \) is negative. The graph of this CDF can be visualized as an ascending staircase starting at zero level for \(x \) less than one and having steps of height \(p_n \) at the points \(x = n \), where \(n = 1,2,3,4 \).

The notion of mean value and variance still apply to a delta distribution, but the meanings of these quantities may require careful interpretation. If the \(M_n \) represents four different functions (say, discharge as a function of pressure), then it makes sense to talk about mean and variance functions. For the example of the four alternative mathematical models, the mean mathematical model is the linear combination

\[
\bar{M} = \sum_{n=1}^{4} p_n M_n
\]

(30)

and the variance of the models is similarly defined:

\[
\Sigma^2 = \sum_{n=1}^{4} p_n (\bar{M} - M_n)^2
\]

(31)

3.7 Normal Distribution

A normal distribution (Kicker et al. 2013a) is described by the following equations.

Probability density function:
Input parameter report for the 2019 compliance recertification application performance assessment
Rev. 1, ERMS 571660

Cumulative distribution function:

\[F(x) = \int_{-\infty}^{x} f(t) dt \quad -\infty < x < \infty \quad (33) \]

Expected value:

\[E(X) = \mu \quad (34) \]

Variance:

\[V(X) = \sigma^2 \quad (35) \]

Median:

\[X_{0.5} = \mu \quad (36) \]

Mu and sigma (\(\mu \) and \(\sigma \)) are the mean and standard deviation of the distribution and are parameters of the distribution.

The WIPP PA Program employs a truncated normal distribution where data are concentrated within an interval (lowrange, hirange) (Iman and Shortencarier 1984). The parameters of the truncated distribution can be expressed as follows:

\[E(X) = \mu = \frac{\text{lowrange} + \text{hirange}}{2} \quad (37) \]

and

\[V(X) = \sigma^2 = \left(\frac{\text{hirange} - \text{lowrange}}{4.66} \right)^2 \quad (38) \]

where lowrange = 0.01 quantile and hirange = 0.99 quantile (Sandia WIPP Project 1992, Table 1.2-1).

Use of the normal distribution is appropriate when it is known that the parameter is the sum of independent, identically distributed random variables (this is seldom the case in practice) and there are a sufficient number of measurements of the parameter (\(N > 10 \)) to make accurate, unbiased estimates of the mean (\(\mu \)) and variance (\(\sigma^2 \)) (Tierney 1996).

3.8 Lognormal Distribution

A variable \(X \) has a lognormal distribution if the logarithm of the variable \(Y = e^X \) has a normal distribution with mean \(\mu \) and variance \(\sigma^2 \). The mean of the data set after transformation (\(\mu \)),

Information Only
obtained by taking the logarithm, is also called the location parameter; and the standard deviation of the data set after transformation (σ) is also known as the scale parameter (Kicker et al. 2013a).

Probability density function:

$$f(y) = \frac{1}{y\sigma\sqrt{2\pi}} \exp\left\{ -\frac{(lny - \mu)^2}{2\sigma^2} \right\} \quad y > 0$$

Cumulative distribution function:

$$F(y) = \int_{0}^{y} f(t)dt \quad y > 0$$

Expected value:

$$E(Y) = \exp\left(\mu + \frac{\sigma^2}{2}\right)$$

Variance:

$$V(Y) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$$

Median:

$$X_{0.5} = e^\mu$$

As with the normal distribution, the lognormal distribution requires lowrange and hirange values. These values are in logarithmic form and are utilized in a normal distribution to determine a mean (μ) and a variance (σ^2), which in turn are used to identify the expected value and variance for the lognormal distribution (Iman and Shortencarier 1984).

3.9 Student’s t-Distribution

A Student’s t-distribution is a distribution for the unknown mean value of a parameter. Its use is appropriate when one has measured values of the parameter available (in contrast to values obtained subjectively through elicitation of professional opinion). If N denotes the number of measurements available, and $x_1, x_2, x_3, \cdots, x_N$ denote the values of the measurements, then the expected value of the Student’s t-distribution is the sample mean and the standard error is the standard deviation divided by \sqrt{N}; the median value is equal to the mean value (Martell 1996).

The Student’s t-distribution applies when there are few measurements, say $3 < N < 10$. The t-distribution converges to the normal distribution as N becomes large, i.e., $N > 20$. WIPP PA employs a truncated Student’s t-distribution where data are concentrated within an interval.
(lowrange, hirange) similar to the implementation of the normal distribution as discussed in Section 3.7.

3.10 Constants

Parameters may also be assigned a constant value in the PA parameter database.
4.0 PARAMETER CORRELATION

The program LHS is used to sample the subjective distributions of parameters using a Latin Hypercube sampling design. Parameter correlations affect only the LHS sampled parameters (Table 1). Two types of parameter correlations are used. They are defined as explicit parameter correlation and induced parameter correlation. Correlations can be induced by the assignment of a sampled parameter value to a non-sampled value and by limiting the range of one sampled value by the value selected for another. This second method used to be implemented using LHS_EDIT to modify selected parameters after LHS has generated the sampled data (Kirchner 2013). For the CRA-2019 PA, however, LHS version 2.44 was used, in which the functionality of LHS_EDIT is included and the LHS_EDIT code is no longer needed (Zeitler, 2019b). This section addresses the following criteria concerning parameter correlations, as specified in 40 CFR § 194.23(c)(6):

(c) Documentation of all models and computer codes included, as part of any compliance application performance assessment calculation shall be provided. Such documentation shall include, but shall not be limited to:

(6) An explanation of the manner in which models and computer codes incorporate the effects of parameter correlation.

Explicit parameter correlations are introduced or prohibited in LHS by the restricted pairing technique of Iman and Conover (1982). Two parameter correlations are specified in this PA through this technique. These correlations are all related to rock compressibility and permeability. In the Salado Formation impure halite material region in BRAGFLO, rock compressibility (S_Halite:COMP_RCK) and intrinsic permeability (S_Halite:PRMX_LOG) are inverse correlated with a correlation coefficient of -0.99. In the Castile brine reservoir material region in BRAGFLO, rock compressibility (Castiler:COMP_RCK) and intrinsic permeability (Castiler:PRMX_LOG) are inverse correlated with a correlation coefficient of -0.75. Explicit parameter correlation is not used to correlate other sampled parameters.

Rock compressibilities and intrinsic permeabilities are correlated to be most consistent with interpretations of the hydraulic tests that have been performed in these units. In hydraulic testing, hydraulic diffusivity (the ratio of permeability to compressibility) is determined more precisely than either permeability or compressibility alone. Introducing the correlation of the permeability and compressibility parameters in PA better represents the knowledge of the formation gained from hydraulic testing than specifying no correlation whatsoever.

The LHS code is used to enforce a conditional relationship between variables such that parameters WAS_AREA:GRATMIC ≤ WAS_AREA:GRATMICH (Clayton 2008, Nemer and Stein 2005) and PCS_T3:POROSITY ≤ PCS_T2:POROSITY ≤ PCS_T1:POROSITY (Camphouse 2013). The relationships are enforced by rescaling the sampled value to the left of
the \(\leq \) symbol to the new controlled value using the equation (1) in a reference Zeitler (2019b, Section 3.3). Other conditional relationships between parameters are:

Humid (GRATMICH) and inundated (GRATMICI) rates for biodegradation of cellulose – WAS_AREA:GRATMICH \(\leq \) WAS_AREA:GRATMICI (Clayton 2008, Nemer and Stein 2005)

Humid (BRUCITEH) and inundated (BRUCITEC (for Castile brine) and BRUCITES (for Salado brine)) MgO hydration rates – WAS_AREA:BRUCITEH \(\leq \) WAS_AREA:BRUCITEC and WAS_AREA:BRUCITEH \(\leq \) WAS_AREA:BRUCITES

Humid (HUMCORR) and inundated (CORRMCO2) steel corrosion rates – STEEL:HUMCORR \(\leq \) STEEL:CORRMCO2.

An induced correlation in PA is created when a parameter sampled in LHS (the underlying variable) is used to define the values of other parameters (defined variables). This is a prevalent method of correlation in this PA. For example, uncertainty in dissolved actinide oxidation states is represented in LHS by sampling the OXSTAT parameter (GLOBAL:OXSTAT). The results of this sampling are used in part to determine actinide solubilities (NUTS, PANEL, and BRAGFLO), colloidal actinide concentrations (NUTS, PANEL, and BRAGFLO), and \(K_D \) values (SECOTP2D) used for a particular vector. Selected examples of other induced parameter correlations include:

- the underlying variable x-direction permeability and the defined variables y- and z-direction permeabilities in many materials (BRAGFLO),
- the underlying variable x-direction permeability and defined variable threshold pressure in many materials (BRAGFLO),
- the underlying variable Lower Salado Clay permeability and the defined variable permeabilities of other clay members of the shaft seal system (BRAGFLO),
- the underlying variable residual gas saturation (or other two-phase flow parameters) in many materials and the defined variable residual gas saturation (or other two-phase flow parameters) in other materials (BRAGFLO),
- the underlying variable americium properties and the defined variable curium properties (NUTS, PANEL, BRAGFLO, and SECOTP2D).

Induced correlations are also used to account for creep closure consolidation of the run-of-mine salt used in the panel closure system. As the panel closure run-of-mine salt reconsolidates, its permeability will not increase as time increases. Therefore, a conditional relationship is enforced in the CRA19 so that the permeability of material PCS_T2 (parameters PCS_T2:PRMX_LOG, PCS_T2:PRMY_LOG, and PCS_T2:PRMZ_LOG) is never greater than the permeability of material PCS_T1. Likewise, the permeability of material PCS_T3 is never greater than the permeability of material PCS_T2. Similarly, a relationship is implemented in the CRA19 to
enforce that the permeability of material DRZ_PCS is never greater than the permeability of material DRZ_1.

No correlations were used in this PA for certain parameters used to describe transport in the Culebra for which the possibility of correlation might be suspected. The treatment in PA is most consistent with available information, because, as discussed in CCA Appendix MASS (U.S. DOE 1996, Attachments MASS 15-6, p. 14; 15-10), correlation of well-to-well transmissivity versus well-to-well advective porosity and matrix block length is not evident in existing data, nor is the correlation between advective porosity and matrix block length.

The LHS sampled parameters are listed in Table 1. The table identifies the material name, property name, and the PA code that used the parameter.
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM+3</td>
<td>MKD_AM</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>BH_SAND</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>BOREHOLE</td>
<td>DOMEGA</td>
<td>CUTTINGS_S</td>
</tr>
<tr>
<td>BOREHOLE</td>
<td>TAUFAIL</td>
<td>CUTTINGS_S</td>
</tr>
<tr>
<td>CASTILER</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>CASTILER</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>CASTILER</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>CONC_PLG</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>CULEBRA</td>
<td>APOROS</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>CULEBRA</td>
<td>DPOROS</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>CULEBRA</td>
<td>HMBLKLKT</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>CULEBRA</td>
<td>MINP_FAC</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>DRZ_1</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>DRZ_PCS</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>CLIMTIDX</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>GDEPFAC</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>OXSTAT</td>
<td>BRAGFLO, PANEL, SECOTP2D</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>PBRINE</td>
<td>PRECCDFGF</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>TRANSIDX</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>PCS_T1</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T1</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T1</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T1</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T1</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T2</td>
<td>POR2PERM</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T2</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PCS_T3</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>PU+3</td>
<td>MKD_PU</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>PU+4</td>
<td>MKD_PU</td>
<td>SECOTP2D</td>
</tr>
<tr>
<td>SHFTL_T1</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>SHFTL_T2</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>SHFTU</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>SHFTU</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>SHFTU</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLVAR</td>
<td>BRAGFLO, PANEL</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLVAR</td>
<td>BRAGFLO, PANEL</td>
</tr>
<tr>
<td>SPALLMOD</td>
<td>PARTDIAM</td>
<td>DRSPELL</td>
</tr>
<tr>
<td>SPALLMOD</td>
<td>REPIPERM</td>
<td>DRSPELL</td>
</tr>
</tbody>
</table>
Table 1 – Index of LHS Sampled Parameters for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPALLMOD</td>
<td>REPIPOR</td>
<td>DRSPALL 2</td>
</tr>
<tr>
<td>SPALLMOD</td>
<td>TENSLTR</td>
<td>DRSPALL 2</td>
</tr>
<tr>
<td>STEEL</td>
<td>CORRMCO2</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>STEEL</td>
<td>HUMCORR</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_HALITE</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_HALITE</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_HALITE</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_HALITE</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_MB139</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_MB139</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_MB139</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>S_MB139</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>TH+4</td>
<td>MKD_TH</td>
<td>SECOTP2D 2</td>
</tr>
<tr>
<td>U+4</td>
<td>MKD_U</td>
<td>SECOTP2D 2</td>
</tr>
<tr>
<td>U+6</td>
<td>MKD_U</td>
<td>SECOTP2D 2</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>BIOGENFC</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>BRUCITEC</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>BRUCITEH</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>BRUCITES</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>GRATMICH</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>GRATMICI</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>HYMAGCON</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PROBDEG</td>
<td>BRAGFLO, PANEL</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>SAT_WICK</td>
<td>BRAGFLO</td>
</tr>
</tbody>
</table>

NOTES: 1 Parameters are identified using the format Material Name:Property Name.
2 PA codes DRSPALL and SECOTP2D were not executed as part of the CRA-2019 PA. No changes to the parameters associated with SECOTP2D were made since PABC-2009, and therefore the model results from these codes used in the PABC-2009 PA were also used in CRA-2019 PA. Repository pressures expected to be affected by changes implemented since CRA-2014 PA, including the addition of radiolytic gas generation and changes to iron corrosion rates. During computational code migration to the Solaris system in 2015, DRSPALL version 1.22 corrected an error found in previous versions. DRSPALL version 1.22 generated direct solids releases at initial repository pressure of 10, 12, 14, and 14.8 MPa, which were calculated by BRAGFLO as well as updated inventory information. These DRSPALL results will be used in the CRA-2019 PA (Zeitler, 2019a).
5.0 PARAMETER ADDITIONS AND MODIFICATIONS TO THE CRA19

A number of parameters and materials were updated or added since the CRA-2014 PA (hereafter, CRA14). Analyses that updated or added materials and database parameters are CRA14_SEN2, CRA14_SEN3, CRA14_SEN4, and APCS (Section 6.0). Section 5.1 describes the parameter modifications occurring between the CRA14 and the CRA19. Section 5.2 describes the parameter modifications occurring between the CRA19 and the CRA19_CL.

5.1. Changes to Parameters between the CRA14 and the CRA19

Parameters that were updated or added for the CRA19 are listed in Table 2. Further details of these parameters can be found in supporting CRA14 and CRA19 documents (Kicker et al. 2013a; Kicker et al. 2013b; Kicker 2019a; Zeitler 2019a;). Previously PANEL had not defined an initial inventory of ^{147}Sm because a decay chain reaction of $^{147}\text{Pm} \rightarrow ^{147}\text{Sm}$ would not affect total mobilization calculations. In Table 2, the SM147:INVCHD and SM147:INVRHD parameters representing initial inventories of the ^{147}Sm radionuclide in CH and RH waste, respectively, are introduced for the CRA-2019 PA due to its existence in the waste.

5.2. Changes to Parameters between the CRA19 and the CRA19_CL

Parameters that have been modified from the CRA19 are listed in Table 3. The table identifies the Material Name, Property Name, the Code that utilizes the parameter, and the type of modification to the parameter (changed or added). The WIPP parameter database carries the same parameter values for both the CRA19 and the CRA19_CL. Parameter changes in open areas for the CRA19_CL are applied as part of the CRA-2019 PA via the ALGEBRACDB input file modifications. Values of Parameters (CAP_MOD, COMP_RCK, PCT_A, PCT_EXP, POROSITY, PRESSURE, PRMX_LOG, PRMY_LOG, PRMZ_LOG, RELP_MOD, SAT_RBRN and SAT_RGAS) for the Salado Halite material are assigned to the corresponding property parameters for EXP_AREA, OPS_AREA and PCS_NO materials for the CRA19_CL calculations.
Table 2 – Parameter Changed for the CRA-2019 PA

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>CAPMIC</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>AM</td>
<td>CONCINT</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>AM</td>
<td>PROPMIC</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>AM241</td>
<td>DECAYNRG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>AM241</td>
<td>INVCHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>AM241L</td>
<td>INVRHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>AM243</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>AM243</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>BH_OPEN</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>BOREHOLE</td>
<td>TAUFAIL</td>
<td>CUTTINGS_S</td>
<td>Changed</td>
</tr>
<tr>
<td>BOREHOLE</td>
<td>WUF</td>
<td>EPAUNI,PRECCDFGF,NUTS,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>KPT</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PC_MAX</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PO_MIN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>SAT_IBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CAVITY_5</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>CF252</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CF252</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM243</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM243</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM244</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM244</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM245</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM245</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM248</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CM248</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CS137</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>CS137</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>KPT</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PC_MAX</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PO_MIN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>RELP.MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>SAT_IBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_0</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>KPT</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PC_MAX</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PO_MIN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>RELP.MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>SAT_IBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_OE_1</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
</tbody>
</table>

Information Only
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_PC_0</td>
<td>KPT</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PC_MAX</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PO_MIN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>SAT_IBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_0</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>KPT</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PC_MAX</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PO_MIN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>SAT_IBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>DRZ_PC_1</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>GDEPFAC</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>GH2AVG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>LAMBDAD</td>
<td>PRECCDFGF</td>
<td>Changed</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>ONEPLG</td>
<td>PRECCDFGF</td>
<td>Changed</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>PBRINE</td>
<td>PRECCDFGF</td>
<td>Changed</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>SRAD2</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>THREEPLG</td>
<td>PRECCDFGF</td>
<td>Changed</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>TWOPLG</td>
<td>PRECCDFGF</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>NITRATE</td>
<td>QINIT</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>NP</td>
<td>CAPMIC</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>NP</td>
<td>CONCINT</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>NP</td>
<td>PROPMIC</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>NP237</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>NP237</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PA231</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PA231</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PB210</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PB210</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>KPT</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PC_MAX</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PORE_DIS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PO_MIN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>SAT_IBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PHUMOX3</td>
<td>PHUMCIM</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PHUMOX3</td>
<td>PHUMSIM</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PHUMOX4</td>
<td>PHUMCIM</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PHUMOX4</td>
<td>PHUMSIM</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PM147</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PM147</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU</td>
<td>CAPMIC</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU</td>
<td>CONCINT</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU</td>
<td>PROPMIC</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU238</td>
<td>DECAYNRG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PU238</td>
<td>INVCHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU238</td>
<td>INVRHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU238L</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU238L</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU239</td>
<td>DECAYNRG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PU239</td>
<td>INVCHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU239</td>
<td>INVRHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU239L</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU239L</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU240</td>
<td>DECAYNRG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PU240</td>
<td>INVCHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU240</td>
<td>INVRHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU241</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU241</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU242</td>
<td>DECAYNRG</td>
<td>BRAGFLO</td>
<td>Added</td>
</tr>
<tr>
<td>PU242</td>
<td>INVCHD</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU244</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>PU244</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>RA226</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>RA226</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>RA228</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>RA228</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>REFCON</td>
<td>STCO_31</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>REFCON</td>
<td>STCO_32</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>REFCON</td>
<td>STCO_35</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>REFCON</td>
<td>STCO_36</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>REFCON</td>
<td>STCO_43</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>REFCON</td>
<td>STCO_46</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>SM147</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Added</td>
</tr>
<tr>
<td>SM147</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Added</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLCOH</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLCOH2</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLCOH3</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLCOH4</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLCOH5</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLMOD3</td>
<td>SOLSOH</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLSOH2</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLSOH3</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLSOH4</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLSOH5</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD3</td>
<td>SOLVAR</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLCOH</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLCOH2</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLCOH3</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLCOH4</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLCOH5</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLSOH</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLSOH2</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLSOH3</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLSOH4</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLSOH5</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD4</td>
<td>SOLVAR</td>
<td>BRAGFLO,PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLCOH</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLCOH2</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLCOH3</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLCOH4</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLCOH5</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLSOH</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLSOH2</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLSOH3</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLSOH4</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SOLMOD5</td>
<td>SOLSOH5</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SR90</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>SR90</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>STEEL</td>
<td>CORRMCO2</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>STEEL</td>
<td>HUMCORR</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>SULFATE</td>
<td>QINIT</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>TH</td>
<td>CAPMIC</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH</td>
<td>CONCINT</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH</td>
<td>PROPMIC</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH229</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH229</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH230</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH230</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH230L</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH230L</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH232</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>TH232</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U</td>
<td>CAPMIC</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U</td>
<td>CONCINT</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U</td>
<td>PROPMIC</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U233</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U233</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U234</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U234</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U234L</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U234L</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U235</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U235</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U236</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U236</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U238</td>
<td>INVCHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>U238</td>
<td>INVRHD</td>
<td>PANEL</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>CELCCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>CELCRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>CELECHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>CELERHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>CELCHHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>CELLHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>HYMAGCON</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>IRNCCCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>IRNCRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>IRONCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>IRONRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PLASCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PLASRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PLSCCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PLSCRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PLSECHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>PLSERHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>RUBBCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 2 – Parameter Changed for the CRA-2019 PA (continued)

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS_AREA</td>
<td>RUBBRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>RUBCCHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>RUBCRHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>RUBECHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>WAS_AREA</td>
<td>RUBERHW</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
</tbody>
</table>
Table 3 – Parameter Changed for the CRA19_CL

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Property Name</th>
<th>Code</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP_AREA</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>EXP_AREA</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>OPS_AREA</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>CAP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>COMP_RCK</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PCT_A</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PCT_EXP</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>POROSITY</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRESSURE</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRMX_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRMY_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>PRMZ_LOG</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>RELP_MOD</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>SAT_RBRN</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
<tr>
<td>PCS_NO</td>
<td>SAT_RGAS</td>
<td>BRAGFLO</td>
<td>Changed</td>
</tr>
</tbody>
</table>
6.0 LIST OF DATABASE PARAMETERS USED IN THE CRA-2019 PA

The parameters used as input to the CRA19 are listed in this section. Parameter distribution values are developed based on experimental data, literature data obtained from journal articles, technical references from reference books, or other source information as documented in the PA parameter database. The CRA19 uses a total of 1238 parameters as follows:

- 64 parameters have an assigned distribution of values that are sampled using the LHS code.
- 29 parameters inherit a LHS sampled value.
- 50 parameters have an assigned distribution, but use a default constant value for all vectors.
- 43 parameters have a constant value for all vectors and are used by PA codes DRSPALL and SECOTP2D, which were not executed as part of the CRA19. No changes associated with SECOTP2D were made since PABC-2009, and therefore the model results from these codes used in the PABC-2009 PA were also used in the CRA19. During computation code migration to the Solaris system in 2015, DRSPALL version 1.22 corrected an error found in previous versions. DRSPALL version 1.22 generated direct solids releases at various initial repository pressures, which were calculated by BRAGFLO as well as updated inventory information. The generated DRSPALL results are used in the CRA19 (Zeitler, 2019a).
- 1102 parameters have a constant value for all vectors and are used for PA codes executed for the CRA19.

Each parameter is listed using its Version Name that identifies the associated analysis in which the parameter was added or changed. The CRA19 parameters include the following Version Names:

- CCA – 1996 Compliance Certification Application Performance Assessment
- TBM – 2002 Technical Baseline Migration
- AP106 – 2003 Testing of a Proposed BRAGFLO Grid to be Used for the Compliance Recertification Application Performance Assessment Calculations
- CRA1 – 2004 Compliance Recertification Application
- CRA1BC – 2004 Compliance Recertification Application Performance Assessment Baseline Calculation
- AP131 – 2006 Modification of the Waste Strength Parameter and Direct Brine Release Parameters
- AP132 – 2009 Compliance Recertification Application Performance Assessment
- PABC09 – 2009 Compliance Recertification Application Performance Assessment Baseline Calculation
6.1. Sampled Parameters

The value of several parameters is not known with certainty; therefore a distribution of parameter values is provided. The code LHS (Zeitler 2019b) is used to sample the distributions and provide 100 vectors for 3 replicates. The sampled parameters used in the CRA19 and their associated statistical summary values are listed in Table 4. The table identifies the parameter name, definition, version name, and the value and units for a range of attributes (which typically includes distribution type, maximum value, mean value, median value, minimum value, and standard deviation). The sampled values for each of the parameter distributions, tabulated over 3 replicates with 100 vectors in each replicate, are listed in Appendix A.

6.2. Constant Parameters

The constant parameters used in the CRA19 have been sorted according to the following categories and are presented as follows:

- Borehole, blowout, and drill mud parameters (Table 5)
- Borehole (concrete plug) parameters (Table 6)
- Borehole (open) parameters (Table 7)
- Borehole (silty sand) parameters (Table 8)
- Borehole (creep) parameters (Table 9)
- DRSPALL parameters (Table 10)
- Shaft material parameters (Table 11)
- Panel closure parameters (Table 12)
- Santa Rosa Formation parameters (Table 13)
- Dewey Lake Formation parameters (Table 14)
- Forty-Niner Member of the Rustler Formation parameters (Table 15)
- Magenta Member of the Rustler Formation parameters (Table 16)
- Tamarisk Member of the Rustler Formation parameters (Table 17)
- Culebra Member of the Rustler Formation parameters (Table 18)
- Los Medanos (Unnamed Lower) Member of the Rustler Formation parameters (Table 19)
- Salado Formation - intact halite - parameters (Table 20)
- Salado Formation - brine - parameters (Table 21)
- Salado Formation - Marker Bed 138 - parameters (Table 22)
- Salado Formation - Marker Bed 139 - parameters (Table 23)
- Salado Formation - anhydrite a and b, intact and fractured - parameters (Table 24)
- Disturbed rock zone parameters (Table 25)
- Waste area and waste material parameters (Table 26)
- Waste chemistry parameters (Table 27)
- Radionuclide parameters (Table 28)
- Isotope inventory parameters (Table 29)
- Waste container parameters (Table 30)
- Stoichiometric gas generation model parameters (Table 31)
- Predisposal cavities (waste area) parameters (Table 32)
- Operations region parameters (Table 33)
- Area parameters (Table 34)
- Castile Formation parameters (Table 35)
- Castile brine reservoir parameters (Table 36)
- Reference constants (Table 37)
- Global parameters (Table 38).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM+3:MKD_AM</td>
<td>Americium III, Matrix Partition Coefficient for Americium</td>
<td>PABC09</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>4.00E-01</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>9.00E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>4.50E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>5.00E-03</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.00E-01</td>
<td>m³/kg</td>
</tr>
<tr>
<td>BH_SAND:PRMX_LOG</td>
<td>Borehole filled with silty sand, Log of intrinsic permeability, X-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.37E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.37E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.63E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.53E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_SAND:PRMY_LOG</td>
<td>Borehole filled with silty sand, Log of intrinsic permeability, Y-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.37E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.37E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.63E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.53E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_SAND:PRMZ_LOG</td>
<td>Borehole filled with silty sand, Log of intrinsic permeability, Z-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.37E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.37E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.63E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.53E+00</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOREHOLE:DOMEGA</td>
<td>Borehole and Fill, Drill string angular velocity (0)</td>
<td>CCA</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.30E+01</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>8.63E+00</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>7.80E+00</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>4.20E+00</td>
<td>rad/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>3.16E+00</td>
<td>rad/s</td>
</tr>
<tr>
<td>BOREHOLE:TAUFAIL</td>
<td>Borehole and Fill, Effective shear strength for erosion (rfail)</td>
<td>CRA14_SEN4</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>7.70E+01</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>3.93E+01</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>3.93E+01</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.60E+00</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.18E+01</td>
<td>Pa</td>
</tr>
<tr>
<td>CASTILER:COMP_RCK</td>
<td>Castile Brine Reservoir, Bulk Compressibility</td>
<td>TBM</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E-10</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.30E-11</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>2.00E-11</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>4.00E-11</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.70E-11</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td>CASTILER:PRESSURE</td>
<td>Castile Brine Reservoir, Brine far-field pore pressure</td>
<td>CCA</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.70E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.36E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.11E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>1.27E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.25E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>CASTILER:PRMX_LOG</td>
<td>Castile Brine Reservoir, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-9.80E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.21E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.47E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>-1.18E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.01E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CASTILER:PRMY_LOG</td>
<td>Castile Brine Reservoir, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-9.80E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.21E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.47E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>-1.18E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.01E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CASTILER:PRMZ_LOG</td>
<td>Castile Brine Reservoir, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-9.80E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.21E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.47E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>-1.18E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.01E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CONC_PLG:PRMX_LOG</td>
<td>Concrete Plug, surface and Rustler, Log of intrinsic permeability, X-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.90E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.80E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>CONC_PLG:PRMY_LOG</td>
<td>Concrete Plug, surface and Rustler, Log of intrinsic permeability, Y-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.70E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.80E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.80E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.90E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.80E-01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td>CONC_PLG:PRMZ_LOG</td>
<td>Concrete Plug, surface and Rustler, Log of intrinsic permeability, Z-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.70E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.80E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.80E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.90E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.80E-01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td>CULEBRA:APOROS</td>
<td>Culebra member of the Rustler formation, Culebra Adveutive Porosity</td>
<td>CCA</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.10E-03</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.00E-03</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E-04</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.50E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:DPOROS</td>
<td>Culebra member of the Rustler formation, Diffusive Porosity for Culebra Dolomite</td>
<td>CCA</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.60E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.60E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>3.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>CULEBRA:HMBLKL T</td>
<td>Culebra member of the Rustler formation, Culebra Half Matrix-Block Length</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.00E-01</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.75E-01</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.75E-01</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>5.00E-02</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.30E-01</td>
<td>m</td>
</tr>
<tr>
<td>CULEBRA:MINP_FAC</td>
<td>Culebra member of the Rustler formation, Mining Transmissivity Multiplier</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+03</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.01E+02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.01E+02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.88E+02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:PRMX_LOG</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Log of intrinsic permeability, X-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.60E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.60E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.94E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_1:PRMY_LOG ¹</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Log of intrinsic permeability, Y-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.60E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.60E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.94E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.00E+00</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_1:PRMZ_LOG</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Log of intrinsic permeability, Z-direction</td>
<td>TBM</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.60E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.60E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.94E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PCS:PRMX_LOG</td>
<td>DRZ directly above the panel closure system, Log of intrinsic permeability, X-direction</td>
<td>SDI</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.88E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.07E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>-1.87E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>7.55E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PCS:PRMY_LOG</td>
<td>DRZ directly above the panel closure system, Log of intrinsic permeability, Y-direction</td>
<td>SDI</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.88E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.07E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>-1.87E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>7.55E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PCS:PRMZ_LOG</td>
<td>DRZ directly above the panel closure system, Log of intrinsic permeability, Z-direction</td>
<td>SDI</td>
<td>Distribution</td>
<td>Triangular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.88E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.07E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>-1.87E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>7.55E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>GLOBAL:CLIMTIDX</td>
<td>Information that applies globally, Climate Index</td>
<td>CCA</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.25E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.31E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.17E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>3.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:GDEPFAC</td>
<td>Information that applies globally, Energy deposition probability for wetted solid radionuclides</td>
<td>CRA19</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:OXSTAT</td>
<td>Information that applies globally, Index for the Oxidation State</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.89E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:PBRINE</td>
<td>Information that applies globally, Prob. that Drilling Intrusion In Excavated Area Encounters Pressurized Brine</td>
<td>CRA14_SE N4</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.70E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.63E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.45E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>4.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.29E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>GLOBAL:TRANSIDX</td>
<td>Information that applies globally, Index for selecting realizations of the Transmissivity Field</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.89E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T1:PORE_DIS</td>
<td>Panel Closure System for an initial time duration, Brooks-Corey pore distribution parameter</td>
<td>AP129</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>8.10E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.52E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.48E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T1:POROSITY</td>
<td>Panel Closure System for an initial time duration, Effective porosity</td>
<td>AP161</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.87E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.27E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>6.60E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T1:PRMX_LOG</td>
<td>Panel Closure System for an initial time duration, Log of intrinsic permeability, X-direction</td>
<td>CRA14BL</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.20E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.64E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.64E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.08E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.55E+00</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS_T1:PRMY_LOG</td>
<td>Panel Closure System for an initial time duration, Log of intrinsic permeability, Y-direction</td>
<td>CRA14BL</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.20E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.64E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.64E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.08E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>2.55E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>PCS_T1:PRMZ_LOG</td>
<td>Panel Closure System for an initial time duration, Log of intrinsic permeability, Z-direction</td>
<td>CRA14BL</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.20E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.64E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.64E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.08E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>2.55E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>PCS_T1:SAT_RBRN</td>
<td>Panel Closure System for an initial time duration, Residual Brine Saturation</td>
<td>AP129</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>6.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.76E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T1:SAT_RGAS</td>
<td>Panel Closure System for an initial time duration, Residual Gas Saturation</td>
<td>AP129</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>4.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.16E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>PCS_T2:POR2PERM</td>
<td>Panel Closure System for a secondary time duration, Distribution used to calculate permeability from sampled porosity values</td>
<td>AP161</td>
<td>Distribution</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.72E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.72E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>8.60E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T2:PORE_DIS²</td>
<td>Panel Closure System for a secondary time duration, Brooks-Corey pore distribution parameter</td>
<td>AP129</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>8.10E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.52E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.48E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T2:POROSITY</td>
<td>Panel Closure System for a secondary time duration, Effective porosity</td>
<td>AP161</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>7.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>2.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T2:SAT_RBRN²</td>
<td>Panel Closure System for a secondary time duration, Residual Brine Saturation</td>
<td>AP129</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>6.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.76E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------</td>
<td>---------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>PCS_T2:SAT_RGAS</td>
<td>Panel Closure System for a secondary time duration, Residual Gas Saturation</td>
<td>AP129</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>4.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.16E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T3:POR2PERM</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Distribution used to calculate permeability from sampled porosity values</td>
<td>AP161</td>
<td>Distribution</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.72E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.72E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>8.60E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>8.10E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.52E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.48E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.19E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.65E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name 3</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>PCS_T3:SAT_RBRN ²</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Residual Brine Saturation</td>
<td>AP161</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>6.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.76E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>4.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.16E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PU+3:MKD_PU</td>
<td>Plutonium III, Matrix Partition Coefficient for Plutonium</td>
<td>PABC09</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>4.00E-01</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>9.00E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>4.50E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>5.00E-03</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.00E-01</td>
<td>m³/kg</td>
</tr>
<tr>
<td>PU+4:MKD_PU</td>
<td>Plutonium IV, Matrix Partition Coefficient for Plutonium</td>
<td>PABC09</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+01</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.00E+00</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>7.10E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>5.00E-04</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.00E+00</td>
<td>m³/kg</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHFTL_T1:PRMX_LOG</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Log of intrinsic permeability, X-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.65E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.82E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.97E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTL_T1:PRMY_LOG</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Log of intrinsic permeability, Y-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.65E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.82E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.97E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTL_T1:PRMZ_LOG</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Log of intrinsic permeability, Z-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.65E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.82E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.97E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTL_T2:PRMX_LOG</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Log of intrinsic permeability, X-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.98E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-2.01E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>9.37E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>SHFTL_T2:PRMY_LOG</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Log of intrinsic permeability, Y-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.98E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-2.01E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>9.37E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTL_T2:PRMZ_LOG</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Log of intrinsic permeability, Z-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.80E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.98E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-2.01E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>9.37E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTU:PRMX_LOG</td>
<td>Upper portion of simplified shaft, Log of intrinsic permeability, X-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.65E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.82E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.83E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.05E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>7.94E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTU:PRMY_LOG</td>
<td>Upper portion of simplified shaft, Log of intrinsic permeability, Y-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.65E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.82E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.83E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.05E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>7.94E-01</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHFTU:PRMZ_LOG</td>
<td>Upper portion of simplified shaft, Log of intrinsic permeability, Z-direction</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.65E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.82E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.83E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.05E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>7.94E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SHFTU:SAT_RBRN</td>
<td>Upper portion of simplified shaft, Residual Brine Saturation</td>
<td>AP106</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>6.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.76E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:SAT_RGAS</td>
<td>Upper portion of simplified shaft, Residual Gas Saturation</td>
<td>AP106</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>4.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.16E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLMOD3:SOLVAR</td>
<td>Oxidation state III model, Solubility Multiplier</td>
<td>CRA19</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.97E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>6.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>3.46E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-1.14E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>9.78E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SOLMOD4:SOLVAR</td>
<td>Oxidation state IV model, Solubility Multiplier</td>
<td>CRA19</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.43E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-4.86E-03</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-9.96E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.01E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>7.66E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:PARTDIAM</td>
<td>Material developed for DRSPALL, Particle diameter of disaggregated waste</td>
<td>CRA1</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E-01</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.15E-02</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.00E-02</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E-03</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.50E-02</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:REPIPERM</td>
<td>Material developed for DRSPALL, Waste permeability to gas local to intrusion borehole</td>
<td>CRA1</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.40E-12</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.16E-13</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.40E-13</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>2.40E-14</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>6.00E-13</td>
<td>m²</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>SPALLMOD:REPIPOR</td>
<td>Material developed for DRSPALL, Waste porosity at time of drilling intrusion</td>
<td>CRA1</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>6.60E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.05E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.05E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>3.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>8.95E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:TENSLSTR</td>
<td>Material developed for DRSPALL, Tensile strength of waste</td>
<td>CRA1</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.70E+05</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.45E+05</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.45E+05</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.20E+05</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.44E+04</td>
<td>Pa</td>
</tr>
<tr>
<td>STEEL:CORRMCO2</td>
<td>Generic steel in waste, Inundated corrosion rate for steel without CO2</td>
<td>CRA19</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td></td>
<td>Maximum</td>
<td>7.92E-14</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.33E-14</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.12E-14</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.08E-14</td>
<td>m/s</td>
</tr>
<tr>
<td>STEEL:HUMCRR</td>
<td>Generic steel in waste, Humid corrosion rate for steel</td>
<td>CRA19</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.03E-15</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.43E-16</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.90E-16</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.47E-16</td>
<td>m/s</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_HALITE:COMP_RCK</td>
<td>Salado halite, intact, Bulk Compressibility</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.92E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>9.75E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>9.75E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>2.94E-12</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.46E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>S_HALITE:POROSITY</td>
<td>Salado halite, intact, Effective porosity</td>
<td>AP132</td>
<td>Distribution</td>
<td>Cumulative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.19E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.82E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E-03</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.54E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_HALITE:PRESSURE</td>
<td>Salado halite, intact, Brine far-field pore pressure</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.39E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.25E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.25E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.10E+07</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>8.23E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>S_HALITE:PRMX_LOG</td>
<td>Salado halite, intact, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-2.10E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-2.25E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-2.25E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.40E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>8.66E-01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td>S_HALITE:PRMY_LOG</td>
<td>Salado halite, intact, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-2.10E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-2.25E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-2.25E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.40E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>8.66E-01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td>S_HALITE:PRMZ_LOG</td>
<td>Salado halite, intact, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-2.10E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-2.25E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-2.25E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.40E+01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>8.66E-01</td>
<td>log(m^2)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>S_MB139:PORE_DIS</td>
<td>Salado marker bed 139, intact and fractured, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>Distribution</td>
<td>Student</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>8.42E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>4.91E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Population Standard Dev</td>
<td>1.09E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.19E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Error</td>
<td>4.86E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degrees of Freedom</td>
<td>5.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:PRMX_LOG</td>
<td>Salado marker bed 139, intact and fractured, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>Distribution</td>
<td>Student</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>-1.71E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.89E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.89E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.10E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Population Standard Dev</td>
<td>1.20E+00</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.30E+00</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Error</td>
<td>5.30E-01</td>
<td>log(m2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degrees of Freedom</td>
<td>5.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_MB139:PRMY_LOG</td>
<td>Salado marker bed 139, intact and fractured, Log of intrinsic permeability,</td>
<td>CCA</td>
<td>Distribution</td>
<td>Student</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y-direction</td>
<td></td>
<td>Maximum</td>
<td>-1.71E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Population Standard Dev</td>
<td>1.20E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Dev</td>
<td>1.30E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Error</td>
<td>5.30E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degrees of Freedom</td>
<td>5.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:PRMZ_LOG</td>
<td>Salado marker bed 139, intact and fractured, Log of intrinsic permeability,</td>
<td>CCA</td>
<td>Distribution</td>
<td>Student</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z-direction</td>
<td></td>
<td>Maximum</td>
<td>-1.71E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>-2.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Population Standard Dev</td>
<td>1.20E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Dev</td>
<td>1.30E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Error</td>
<td>5.30E-01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degrees of Freedom</td>
<td>5.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:RELP_MOD</td>
<td>Salado marker bed 139, intact and fractured, Model number, relative</td>
<td>CCA</td>
<td>Distribution</td>
<td>Delta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability model</td>
<td></td>
<td>Maximum</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Dev</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>S_MB139:SAT_RBRN</td>
<td>Salado marker bed 139, intact and fractured, Residual Brine Saturation</td>
<td>CCA</td>
<td>Distribution</td>
<td>Student</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.74E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>7.78E-03</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Population Standard Dev</td>
<td>5.01E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>5.49E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Error</td>
<td>2.24E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Degrees of Freedom</td>
<td>5.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>TH+4:MKD_TH</td>
<td>Thorium IV, Matrix Partition Coefficient for Thorium</td>
<td>PABC09</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+01</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.00E+00</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>7.10E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>5.00E-04</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.00E+00</td>
<td>m³/kg</td>
</tr>
<tr>
<td>U+4:MKD_U</td>
<td>Uranium IV, Matrix Partition Coefficient for Uranium</td>
<td>PABC09</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+01</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.00E+00</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>7.10E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>5.00E-04</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.00E+00</td>
<td>m³/kg</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+6:MKD_U</td>
<td>Uranium VI, Matrix Partition Coefficient for Uranium</td>
<td>TBM</td>
<td>Distribution</td>
<td>Loguniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.00E-02</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>3.10E-03</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>7.70E-04</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>3.00E-05</td>
<td>m³/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>4.60E-03</td>
<td>m³/kg</td>
</tr>
<tr>
<td>WAS_AREA:BIOGENFC</td>
<td>Waste Panel and Waste, Probability of attaining sampled microbial-gas-generation rates</td>
<td>CRA1BC</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.89E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:BRUCITEC</td>
<td>Waste Panel and Waste, MgO inundated hydration rate in ERDA-6 brine</td>
<td>CRA14</td>
<td>Distribution</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.64E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.20E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.20E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>4.76E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>5.20E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.89E-09</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>WAS_AREA:BRUCITEH</td>
<td>Waste Panel and Waste, MgO humid hydration rate</td>
<td>CRA14</td>
<td>Distribution</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.19E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.00E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.00E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.81E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>2.00E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>8.15E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td>WAS_AREA:BRUCITES</td>
<td>Waste Panel and Waste, MgO inundated hydration rate in GWB brine</td>
<td>CRA14</td>
<td>Distribution</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>6.13E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.20E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.20E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>4.27E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>5.20E-08</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>StandardDeviation</td>
<td>3.99E-09</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td>WAS_AREA:GRATMICH</td>
<td>Waste Panel and Waste, Humid biodegradation rate for cellulose</td>
<td>CRA1BC</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.03E-09</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.14E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.14E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.97E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version Name</td>
<td>Attribute</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>WAS_AREA:GRATMICI</td>
<td>Waste Panel and Waste, Inundated biodegradation rate for cellulose</td>
<td>CRA1BC</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.57E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.94E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.94E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>3.08E-11</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.52E-10</td>
<td>moles/(kg*s)</td>
</tr>
<tr>
<td>WAS_AREA:HYMAGCON</td>
<td>Waste Panel and Waste, Rate of conversion of hydromagnesite to magnesite</td>
<td>CRA19</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>3.40E-10</td>
<td>mol/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.70E-10</td>
<td>mol/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.70E-10</td>
<td>mol/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>mol/(kg*s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>9.82E-11</td>
<td>mol/(kg*s)</td>
</tr>
<tr>
<td>WAS_AREA:PROBDEG</td>
<td>Waste Panel and Waste, Probability of plastics and rubber biodegradation in event of microbial gas generation</td>
<td>CRA1BC</td>
<td>Distribution</td>
<td>Delta</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>1.25E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>1.25E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 4 – Parameters Sampled in LHS Code (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version Name</th>
<th>Attribute</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS_AREA:SAT_RBRN</td>
<td>Waste Panel and Waste, Residual Brine Saturation</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>5.52E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>2.76E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>2.76E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>1.59E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:SAT_RGAS</td>
<td>Waste Panel and Waste, Residual Gas Saturation</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>7.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>7.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>4.33E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:SAT_WICK</td>
<td>Waste Panel and Waste, Index for computing wicking</td>
<td>CCA</td>
<td>Distribution</td>
<td>Uniform</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maximum</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Median</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard Deviation</td>
<td>2.89E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:
1. Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
2. Only one time duration was sampled in LHS for this parameter. The corresponding parameters for a secondary or tertiary time duration (T2 or T3) were set equal to the previous time duration.
3. The Version Name identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
4. The sampled permeability value of material DRZ_PCS is compared to the sampled permeability value for DRZ_1. If the sampled value for DRZ_PCS is greater than that sampled for DRZ_1, then DRZ_PCS retains the sampled DRZ_1 value.
The corresponding parameters for the SHFTL_T1 and SHFTL_T2 materials are set equal to the sampled parameter for SHFTU during the ALGEBRACDB process.

The corresponding parameters for the all waste area REPOSIT:WAS_AREA material are set equal to the sampled parameter for WAS_AREA during the ALGEBRACDB process.
Table 5 – Borehole, Blowout and Drill Mud Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOWOUT:GAS_MIN</td>
<td>Material for direct brine release calculations, Gas rate cut-off</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>mscf/day</td>
</tr>
<tr>
<td>BLOWOUT:HREPO</td>
<td>Material for direct brine release calculations, Height of repository at</td>
<td>CCA</td>
<td>3.96E+00</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>burial time in CUTTINGS model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOWOUT:MAXFLOW</td>
<td>Material for direct brine release calculations, Maximum blowout flow</td>
<td>AP131</td>
<td>3.89E+05</td>
<td>s</td>
</tr>
<tr>
<td>BLOWOUT:MINFLOW</td>
<td>Material for direct brine release calculations, Minimum blowout flow</td>
<td>CCA</td>
<td>2.59E+05</td>
<td>s</td>
</tr>
<tr>
<td>BLOWOUT:PARTDIA</td>
<td>Material for direct brine release calculations, Waste Particle Diameter</td>
<td>CCA</td>
<td>2.80E-03</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>in CUTTINGS Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOWOUT:RE_CAST</td>
<td>Material for direct brine release calculations, External drainage radius</td>
<td>CCA</td>
<td>1.14E+02</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>for the Castile formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOWOUT:RGAS</td>
<td>Material for direct brine release calculations, Gas Constant for</td>
<td>CCA</td>
<td>4.12E+03</td>
<td>N*m/kg/K</td>
</tr>
<tr>
<td></td>
<td>Hydrogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOWOUT:RHOS</td>
<td>Material for direct brine release calculations, Waste Particle Density</td>
<td>CCA</td>
<td>2.65E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td></td>
<td>in CUTTINGS_S Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOWOUT:THCK_CAS</td>
<td>Material for direct brine release calculations, Thickness of the Castile</td>
<td>CRA1</td>
<td>1.26E+02</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Brine Reservoir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOWOUT:TREPO</td>
<td>Material for direct brine release calculations, Temperature of</td>
<td>CCA</td>
<td>3.00E+02</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>repository in CUTTINGS model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOREHOLE:CAP_MOD</td>
<td>Borehole and Fill, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:COLDIA</td>
<td>Borehole and Fill, Drill collar diameter in CUTTINGS model</td>
<td>CCA</td>
<td>2.03E-01</td>
<td>m</td>
</tr>
<tr>
<td>BOREHOLE:COMP_RCK</td>
<td>Borehole and Fill, Bulk Compressibility</td>
<td>CCA</td>
<td>2.64E-09</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>BOREHOLE:DIAMMOD</td>
<td>Borehole and Fill, Modern or current diameter</td>
<td>CCA</td>
<td>3.11E-01</td>
<td>m</td>
</tr>
<tr>
<td>BOREHOLE:KPT</td>
<td>Borehole and Fill, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:L1</td>
<td>Borehole and Fill, Drill collar length in CUTTINGS model</td>
<td>CCA</td>
<td>1.83E+02</td>
<td>m</td>
</tr>
<tr>
<td>BOREHOLE:PCT_A</td>
<td>Borehole and Fill, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>5.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>BOREHOLE:PCT_EXP</td>
<td>Borehole and Fill, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.46E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:PC_MAX</td>
<td>Borehole and Fill, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>BOREHOLE:PIPED</td>
<td>Borehole and Fill, Drill pipe diameter in CUTTINGS model</td>
<td>CCA</td>
<td>1.14E-01</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOREHOLE:PORE_DIS</td>
<td>Borehole and Fill, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 5 – Borehole, Blowout and Drill Mud Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOREHOLE:POROSITY</td>
<td>Borehole and Fill, Effective porosity</td>
<td>CCA</td>
<td>5.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:PO_MIN</td>
<td>Borehole and Fill, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>BOREHOLE:PRMX_LOG</td>
<td>Borehole and Fill, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BOREHOLE:PRMY_LOG</td>
<td>Borehole and Fill, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BOREHOLE:PRMZ_LOG</td>
<td>Borehole and Fill, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.25E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BOREHOLE:RELP_MOD</td>
<td>Borehole and Fill, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:SAT_RBRN</td>
<td>Borehole and Fill, Residual Brine Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:SAT_RGAS</td>
<td>Borehole and Fill, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BOREHOLE:WUF</td>
<td>Borehole and Fill, Unit of Waste</td>
<td>CRA19</td>
<td>3.30E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRILLMUD:DNSFLUID</td>
<td>Drilling Mud, Brine Density</td>
<td>CCA</td>
<td>1.21E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>DRILLMUD:MUDFLWRT</td>
<td>Drilling Mud, drilling mud flow rate per unit length of the drillbit</td>
<td>CRA1BC</td>
<td>9.94E-02</td>
<td>m³/(s*m)</td>
</tr>
<tr>
<td>DRILLMUD:SHEARRT</td>
<td>Drilling Mud, Shear rate of drilling fluid for the CUTTINGS_S cavings</td>
<td>CRA1BC</td>
<td>1.02E+03</td>
<td>1/s</td>
</tr>
<tr>
<td>DRILLMUD:VISCO</td>
<td>Drilling Mud, Viscosity</td>
<td>CCA</td>
<td>9.17E-03</td>
<td>Pa*s</td>
</tr>
<tr>
<td>DRILLMUD:YLDSTRSS</td>
<td>Drilling Mud, Yield Stress Point</td>
<td>CCA</td>
<td>4.40E+00</td>
<td>Pa</td>
</tr>
</tbody>
</table>

NOTES:

1. This parameter has an assigned distribution but uses the default constant value for all vectors.
2. This parameter provided input to the DRSPALL model, which was not run in the CRA-2019 PA. No changes associated with DRSPALL were made since 2015 Code Migration (see footnote 2 in Table 1), and therefore the DRSPALL model results generated in 2015 Code Migration were used in CRA-2019.
3. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 6 – Borehole (Concrete Plug) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONC_PLG:CAP_MOD</td>
<td>Concrete Plug, surface and Rustler, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:COMP_RCK</td>
<td>Concrete Plug, surface and Rustler, Bulk Compressibility</td>
<td>CRA1</td>
<td>3.80E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CONC_PLG:KPT</td>
<td>Concrete Plug, surface and Rustler, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:PCT_A</td>
<td>Concrete Plug, surface and Rustler, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CONC_PLG:PCT_EXP</td>
<td>Concrete Plug, surface and Rustler, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:PC_MAX</td>
<td>Concrete Plug, surface and Rustler, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CONC_PLG:PORE_DIS</td>
<td>Concrete Plug, surface and Rustler, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:POROSITY</td>
<td>Concrete Plug, surface and Rustler, Effective porosity</td>
<td>CCA</td>
<td>3.20E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:PO_MIN</td>
<td>Concrete Plug, surface and Rustler, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CONC_PLG:RELP_MOD</td>
<td>Concrete Plug, surface and Rustler, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:SAT_RBRN</td>
<td>Concrete Plug, surface and Rustler, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_PLG:SAT_RGAS</td>
<td>Concrete Plug, surface and Rustler, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 7 – Borehole (Open) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ¹</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH_OPEN:CAP_MOD</td>
<td>Borehole Unrestricted, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:COMP_RCK</td>
<td>Borehole Unrestricted, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>BH_OPEN:KPT</td>
<td>Borehole Unrestricted, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:PCT_A</td>
<td>Borehole Unrestricted, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_OPEN:PCT_EXP</td>
<td>Borehole Unrestricted, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:PC_MAX</td>
<td>Borehole Unrestricted, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_OPEN:PORE_DIS</td>
<td>Borehole Unrestricted, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:POROSITY</td>
<td>Borehole Unrestricted, Effective porosity</td>
<td>CCA</td>
<td>3.20E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:PO_MIN</td>
<td>Borehole Unrestricted, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_OPEN:PRMX_LOG</td>
<td>Borehole Unrestricted, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-9.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_OPEN:PRMY_LOG</td>
<td>Borehole Unrestricted, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-9.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_OPEN:PRMZ_LOG</td>
<td>Borehole Unrestricted, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-9.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_OPEN:RELP_MOD</td>
<td>Borehole Unrestricted, Model number, relative permeability model</td>
<td>CRA19</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:SAT_RBRN</td>
<td>Borehole Unrestricted, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_OPEN:SAT_RGAS</td>
<td>Borehole Unrestricted, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: ¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 8 – Borehole (Silty Sand) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH_SAND:CAP_MOD</td>
<td>Borehole filled with silty sand, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:COMP_RCK</td>
<td>Borehole filled with silty sand, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>BH_SAND:KPT</td>
<td>Borehole filled with silty sand, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:PCT_A</td>
<td>Borehole filled with silty sand, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_SAND:PCT_EXP</td>
<td>Borehole filled with silty sand, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:PC_MAX</td>
<td>Borehole filled with silty sand, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_SAND:PORE_DIS</td>
<td>Borehole filled with silty sand, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:POROSITY</td>
<td>Borehole filled with silty sand, Effective porosity</td>
<td>CCA</td>
<td>3.20E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:PO_MIN</td>
<td>Borehole filled with silty sand, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_SAND:RELP_MOD</td>
<td>Borehole filled with silty sand, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:SAT_RBRN</td>
<td>Borehole filled with silty sand, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_SAND:SAT_RGAS</td>
<td>Borehole filled with silty sand, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: ¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 9 – Borehole (Creep) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version 2</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH_CREEP:CAP_MOD</td>
<td>Creep Borehole Fill, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:COMP_RCK</td>
<td>Creep Borehole Fill, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>BH_CREEP:KPT</td>
<td>Creep Borehole Fill, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:PCT_A</td>
<td>Creep Borehole Fill, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_CREEP:PCT_EXP</td>
<td>Creep Borehole Fill, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:PC_MAX</td>
<td>Creep Borehole Fill, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_CREEP:PORE_DIS</td>
<td>Creep Borehole Fill, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:POROSITY</td>
<td>Creep Borehole Fill, Effective porosity</td>
<td>CCA</td>
<td>3.20E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:PO_MIN</td>
<td>Creep Borehole Fill, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>BH_CREEP:PRMX_LOG¹</td>
<td>Creep Borehole Fill, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.35E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_CREEP:PRMY_LOG¹</td>
<td>Creep Borehole Fill, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.35E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_CREEP:PRMZ_LOG¹</td>
<td>Creep Borehole Fill, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.35E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>BH_CREEP:RELPMOD</td>
<td>Creep Borehole Fill, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:SAT_RBRN</td>
<td>Creep Borehole Fill, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>BH_CREEP:SAT_RGAS</td>
<td>Creep Borehole Fill, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:
¹This parameter has an assigned distribution but uses the default constant value for all vectors.
²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPALLMOD:ANNUROUG</td>
<td>Material developed for DRSPALL, Absolute wall roughness of wellbore annulus</td>
<td>CRA1</td>
<td>5.00E-05</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:BIOTBETA</td>
<td>Material developed for DRSPALL, Biot's beta for waste</td>
<td>CRA1</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:COHESION</td>
<td>Material developed for DRSPALL, Cohesion of waste</td>
<td>CRA1</td>
<td>1.40E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SPALLMOD:DDZPERM</td>
<td>Material developed for DRSPALL, Permeability of drilling-damaged zone (DDZ)</td>
<td>CRA1</td>
<td>1.00E-14</td>
<td>m²</td>
</tr>
<tr>
<td>SPALLMOD:DDZTHICK</td>
<td>Material developed for DRSPALL, Thickness of drilling-damaged zone (DDZ)</td>
<td>CRA1</td>
<td>1.60E-01</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:DRILRATE</td>
<td>Material developed for DRSPALL, Drill penetration rate through Salado</td>
<td>CRA1</td>
<td>4.45E-03</td>
<td>m/s</td>
</tr>
<tr>
<td>SPALLMOD:DRZPERM</td>
<td>Material developed for DRSPALL, DRZ Permeability for DRSPALL</td>
<td>CRA1</td>
<td>1.00E-15</td>
<td>m²</td>
</tr>
<tr>
<td>SPALLMOD:DRZTCK</td>
<td>Material developed for DRSPALL, Thickness of DRZ above waste room in DRSPALL model</td>
<td>CRA1</td>
<td>8.50E-01</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:FFSTRESS</td>
<td>Material developed for DRSPALL, Isotropic in-situ stress in waste area</td>
<td>CRA1</td>
<td>1.49E+07</td>
<td>Pa</td>
</tr>
<tr>
<td>SPALLMOD:FRCBETA</td>
<td>Material developed for DRSPALL, Forchheimer Beta</td>
<td>CRA1</td>
<td>1.15E-06</td>
<td>m²</td>
</tr>
<tr>
<td>SPALLMOD:FRICTANG</td>
<td>Material developed for DRSPALL, Friction angle of waste</td>
<td>CRA1</td>
<td>4.58E+01</td>
<td>deg</td>
</tr>
<tr>
<td>SPALLMOD:MUDPRATE</td>
<td>Material developed for DRSPALL, Typical volumetric mud pumping rate for drilling in Salado</td>
<td>CRA1</td>
<td>2.02E-02</td>
<td>(m³)/s</td>
</tr>
<tr>
<td>SPALLMOD:MUDSOLMX</td>
<td>Material developed for DRSPALL, Solids volume fraction in drill mud that causes choking of flow</td>
<td>CRA1</td>
<td>6.15E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:MUDSOLVE</td>
<td>Material developed for DRSPALL, Exponent on mud slurry viscosity power law</td>
<td>CRA1</td>
<td>-1.50E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:PIPEID</td>
<td>Material developed for DRSPALL, Inner diameter of drill pipe (where OD = 0.1143 m)</td>
<td>CRA1</td>
<td>9.72E-02</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:PIPEROUG</td>
<td>Material developed for DRSPALL, Absolute wall roughness of drill pipe</td>
<td>CRA1</td>
<td>5.00E-05</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:POISRAT</td>
<td>Material developed for DRSPALL, Poisson's ratio for waste</td>
<td>CRA1</td>
<td>3.80E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:REFPRS</td>
<td>Material developed for DRSPALL, Atmospheric pressure at sea level</td>
<td>CRA1</td>
<td>1.02E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SPALLMOD:REPOSTCK</td>
<td>Material developed for DRSPALL, Repository thickness</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:REPOSTOP</td>
<td>Material developed for DRSPALL, Elevation of roof in excavated area</td>
<td>CRA1</td>
<td>3.85E+02</td>
<td>m</td>
</tr>
</tbody>
</table>
Table 10 – DRSPALL Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPALLMOD:REPORTRAD</td>
<td>Material developed for DRSPALL, Repository outer radius</td>
<td>CRA1</td>
<td>1.92E+01</td>
<td>m</td>
</tr>
<tr>
<td>SPALLMOD:SALTDENS</td>
<td>Material developed for DRSPALL, Density of solid cuttings from the Salado</td>
<td>CRA1</td>
<td>2.18E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>SPALLMOD:SHAPEFAC</td>
<td>Material developed for DRSPALL, Shape factor for disaggregated waste particles</td>
<td>CRA1</td>
<td>1.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SPALLMOD:STPDVOLR</td>
<td>Material developed for DRSPALL, Mud ejection rate that turns off drilling</td>
<td>CRA1</td>
<td>1.00E+03</td>
<td>(m³)/s</td>
</tr>
<tr>
<td>SPALLMOD:STPPVOLR</td>
<td>Material developed for DRSPALL, Mud ejection rate that turns off mud pump</td>
<td>CRA1</td>
<td>1.00E+03</td>
<td>(m³)/s</td>
</tr>
<tr>
<td>SPALLMOD:SURFELEV</td>
<td>Material developed for DRSPALL, Elevation of land surface at WIPP site</td>
<td>CRA1</td>
<td>1.04E+03</td>
<td>m</td>
</tr>
</tbody>
</table>

NOTES:
1 This parameter provided input to the DRSPALL model. No changes associated with DRSPALL were made since 2015 Code Migration (see footnote 2 in Table 1), and therefore the DRSPALL model results generated in 2015 Code Migration were used in CRA-2019.

2 The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONC_MON:CAP_MOD</td>
<td>Concrete Monolith, Model number, capillary pressure model</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:COMP_RCK</td>
<td>Concrete Monolith, Bulk Compressibility</td>
<td>CRA1</td>
<td>6.00E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CONC_MON:KPT</td>
<td>Concrete Monolith, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:PCT_A</td>
<td>Concrete Monolith, Threshold Pressure Linear Parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CONC_MON:PCT_EXP</td>
<td>Concrete Monolith, Threshold pressure exponential parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:PC_MAX</td>
<td>Concrete Monolith, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CONC_MON:PORE_DIS</td>
<td>Concrete Monolith, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>9.40E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:POROSITY</td>
<td>Concrete Monolith, Effective porosity</td>
<td>CCA</td>
<td>5.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:PO_MIN</td>
<td>Concrete Monolith, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CONC_MON:PRMX_LOG</td>
<td>Concrete Monolith, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.40E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CONC_MON:PRMY_LOG</td>
<td>Concrete Monolith, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.40E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CONC_MON:PRMZ_LOG</td>
<td>Concrete Monolith, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.40E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CONC_MON:RELP_MOD</td>
<td>Concrete Monolith, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:SAT_IBRN</td>
<td>Concrete Monolith, Initial Brine Saturation</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:SAT_RBRN</td>
<td>Concrete Monolith, Residual Brine Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CONC_MON:SAT_RGAS</td>
<td>Concrete Monolith, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T1:CAP_MOD</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Model number, capillary pressure model</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T1:COMP_POR</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Pore volume compressibility</td>
<td>AP106</td>
<td>4.28E-09</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>SHFTL_T1:KPT</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Flag for Permeability Determined Threshold</td>
<td>AP106</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T1:PCT_A</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Threshold Pressure Linear Parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTL_T1:PCT_EXP</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Threshold pressure exponential parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T1:PC_MAX</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Maximum allowable capillary pressure</td>
<td>AP106</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
</tbody>
</table>
Table 11 – Shaft Material Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHFTL_T1:POROSITY</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Effective porosity</td>
<td>AP106</td>
<td>1.13E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T1:PO_MIN</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Minimum brine pressure for capillary model KPC=3</td>
<td>AP106</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTL_T1:RELP_MOD</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Model number, relative permeability model</td>
<td>AP106</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T1:SAT_IBRN</td>
<td>Lower portion of simplified shaft from 0 - 200 years, Initial Brine Saturation</td>
<td>AP106</td>
<td>5.34E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T2:CAP_MOD</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Model number, capillary pressure model</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T2:COMP_POR</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Pore volume compressibility</td>
<td>AP106</td>
<td>4.28E-09</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>SHFTL_T2:KPT</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Flag for Permeability Determined Threshold</td>
<td>AP106</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T2:PCT_A</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Threshold Pressure Linear Parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTL_T2:PCT_EXP</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Threshold pressure exponential parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T2:PC_MAX</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Maximum allowable capillary pressure</td>
<td>AP106</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTL_T2:POROSITY</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Effective porosity</td>
<td>AP106</td>
<td>1.13E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T2:PO_MIN</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Minimum brine pressure for capillary model KPC=3</td>
<td>AP106</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTL_T2:RELP_MOD</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Model number, relative permeability model</td>
<td>AP106</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTL_T2:SAT_IBRN</td>
<td>Lower portion of simplified shaft from 200 - 10,000 years, Initial Brine Saturation</td>
<td>AP106</td>
<td>5.34E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:CAP_MOD</td>
<td>Upper portion of simplified shaft, Model number, capillary pressure model</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:COMP_POR</td>
<td>Upper portion of simplified shaft, Pore volume compressibility</td>
<td>AP106</td>
<td>2.05E-08</td>
<td>Pa⁻¹</td>
</tr>
</tbody>
</table>
Table 11 – Shaft Material Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHFTU:KPT</td>
<td>Upper portion of simplified shaft, Flag for Permeability Determined Threshold</td>
<td>AP106</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:PCT_A</td>
<td>Upper portion of simplified shaft, Threshold Pressure Linear Parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTU:PCT_EXP</td>
<td>Upper portion of simplified shaft, Threshold pressure exponential parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:PC_MAX</td>
<td>Upper portion of simplified shaft, Maximum allowable capillary pressure</td>
<td>AP106</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTU:POROSITY</td>
<td>Upper portion of simplified shaft, Effective porosity</td>
<td>AP106</td>
<td>2.91E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:PO_MIN</td>
<td>Upper portion of simplified shaft, Minimum brine pressure for capillary model KPC=3</td>
<td>AP106</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SHFTU:RELP_MOD</td>
<td>Upper portion of simplified shaft, Model number, relative permeability model</td>
<td>AP106</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SHFTU:SAT_IBRN</td>
<td>Upper portion of simplified shaft, Initial Brine Saturation</td>
<td>AP106</td>
<td>7.96E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:
1. This parameter has an assigned distribution but uses the default constant value for all vectors. The corresponding parameters for the shaft materials (SHFTL_T1, SHFTL_T2, and SHFTU) are set equal to the CONC_MON shaft material during the ALGEBRAICDB process.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
3. This parameter has an assigned distribution but uses the default constant value for all vectors. However, the corresponding parameters for the CONC_MON material are set equal to the sampled parameter for SHFTU during the ALGEBRAICDB process.
Table 12 – Panel Closure Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_PCS:CAP_MOD</td>
<td>DRZ directly above the panel closure system, Model number, capillary pressure model</td>
<td>TBM</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:COMP_RCK</td>
<td>DRZ directly above the panel closure system, Bulk Compressibility</td>
<td>TBM</td>
<td>7.41E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DRZ_PCS:KPT</td>
<td>DRZ directly above the panel closure system, Flag for Permeability Determined Threshold</td>
<td>TBM</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:PCT_A</td>
<td>DRZ directly above the panel closure system, Threshold Pressure Linear Parameter</td>
<td>TBM</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PCS:PCT_EXP</td>
<td>DRZ directly above the panel closure system, Threshold pressure exponential parameter</td>
<td>TBM</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:PC_MAX</td>
<td>DRZ directly above the panel closure system, Maximum allowable capillary pressure</td>
<td>TBM</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PCS:PORE_DIS</td>
<td>DRZ directly above the panel closure system, Brooks-Corey pore distribution parameter</td>
<td>TBM</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:POROSITY¹</td>
<td>DRZ directly above the panel closure system, Effective porosity</td>
<td>AP132</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:PO_MIN</td>
<td>DRZ directly above the panel closure system, Minimum brine pressure for capillary model KPC=3</td>
<td>TBM</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PCS:RELP_MOD¹</td>
<td>DRZ directly above the panel closure system, Model number, relative permeability model</td>
<td>CRA14BL</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:SAT_RBRN</td>
<td>DRZ directly above the panel closure system, Residual Brine Saturation</td>
<td>TBM</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PCS:SAT_RGAS</td>
<td>DRZ directly above the panel closure system, Residual Gas Saturation</td>
<td>TBM</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:CAP_MOD</td>
<td>Abandoned panel closure areas, Model number, capillary pressure model</td>
<td>APCS</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:COMP_RCK</td>
<td>Abandoned panel closure areas, Bulk Compressibility</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:KPT</td>
<td>Abandoned panel closure areas, Flag for Permeability Determined Threshold</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PCT_A</td>
<td>Abandoned panel closure areas, Threshold Pressure Linear Parameter</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PCT_EXP</td>
<td>Abandoned panel closure areas, Threshold pressure exponential parameter</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 12 – Panel Closure Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS_NO:PC_MAX</td>
<td>Abandoned panel closure areas, Maximum allowable capillary pressure</td>
<td>APCS</td>
<td>1.00E+08</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PORE_DIS</td>
<td>Abandoned panel closure areas, Brooks-Corey pore distribution parameter</td>
<td>APCS</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:POROSITY</td>
<td>Abandoned panel closure areas, Effective porosity</td>
<td>APCS</td>
<td>1.80E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PO_MIN</td>
<td>Abandoned panel closure areas, Minimum brine pressure for capillary model KPC=3</td>
<td>APCS</td>
<td>1.01E+05</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PRESSURE</td>
<td>Abandoned panel closure areas, Brine far-field pore pressure</td>
<td>APCS</td>
<td>1.01E+05</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PRMX_LOG</td>
<td>Abandoned panel closure areas, Log of intrinsic permeability, X-direction</td>
<td>APCS</td>
<td>-1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PRMY_LOG</td>
<td>Abandoned panel closure areas, Log of intrinsic permeability, Y-direction</td>
<td>APCS</td>
<td>-1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:PRMZ_LOG</td>
<td>Abandoned panel closure areas, Log of intrinsic permeability, Z-direction</td>
<td>APCS</td>
<td>-1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:RELP_MOD</td>
<td>Abandoned panel closure areas, Model number, relative permeability model</td>
<td>APCS</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:SAT_IBRN</td>
<td>Abandoned panel closure areas, Initial Brine Saturation</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:SAT_RBRN</td>
<td>Abandoned panel closure areas, Residual Brine Saturation</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_NO:SAT_RGAS</td>
<td>Abandoned panel closure areas, Residual Gas Saturation</td>
<td>APCS</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T1:CAP_MOD</td>
<td>Panel Closure System for an initial time duration, Model number, capillary pressure model</td>
<td>PC3R</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T1:COMP_RCK</td>
<td>Panel Closure System for an initial time duration, Bulk Compressibility</td>
<td>AP129</td>
<td>8.00E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>PCS_T1:KPT</td>
<td>Panel Closure System for an initial time duration, Flag for Permeability Determined Threshold</td>
<td>AP129</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 12 – Panel Closure Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS_T1:PCT_A</td>
<td>Panel Closure System for an initial time duration, Threshold Pressure</td>
<td>PC3R</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>Linear Parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T1:PCT_EXP</td>
<td>Panel Closure System for an initial time duration, Threshold pressure</td>
<td>PC3R</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>exponential parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T1:PC_MAX</td>
<td>Panel Closure System for an initial time duration, Maximum allowable</td>
<td>AP129</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>capillary pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T1:PO_MIN</td>
<td>Panel Closure System for an initial time duration, Minimum brine</td>
<td>AP129</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>pressure for capillary model KPC=3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T1:REL_P_MOD</td>
<td>Panel Closure System for an initial time duration, Model number,</td>
<td>AP129</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>relative permeability model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:CAP_MOD</td>
<td>Panel Closure System for a secondary time duration, Model number,</td>
<td>PC3R</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>capillary pressure model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:COMP_RCK</td>
<td>Panel Closure System for a secondary time duration, Bulk Compressibility</td>
<td>AP129</td>
<td>8.00E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>PCS_T2:KPT</td>
<td>Panel Closure System for a secondary time duration, Flag for</td>
<td>AP129</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>Permeability Determined Threshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:PCT_A</td>
<td>Panel Closure System for a secondary time duration, Threshold Pressure</td>
<td>PC3R</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>Linear Parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:PCT_EXP</td>
<td>Panel Closure System for a secondary time duration, Threshold pressure</td>
<td>PC3R</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td>exponential parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:PC_MAX</td>
<td>Panel Closure System for a secondary time duration, Maximum allowable</td>
<td>AP129</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>capillary pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:PO_MIN</td>
<td>Panel Closure System for a secondary time duration, Minimum brine</td>
<td>AP129</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td></td>
<td>pressure for capillary model KPC=3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS_T2:PRMX_LOG</td>
<td>Panel Closure System for a secondary time duration, Log of intrinsic</td>
<td>AP161</td>
<td>-1.86E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td></td>
<td>permeability, X-direction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12 – Panel Closure Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS_T2:PRMY_LOG</td>
<td>Panel Closure System for a secondary time duration, Log of intrinsic permeability, Y-direction</td>
<td>AP161</td>
<td>-1.86E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>PCS_T2:PRMZ_LOG</td>
<td>Panel Closure System for a secondary time duration, Log of intrinsic permeability, Z-direction</td>
<td>AP161</td>
<td>-1.86E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>PCS_T2:RELP_MOD</td>
<td>Panel Closure System for a secondary time duration, Model number, relative permeability model</td>
<td>AP129</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T3:CAP_MOD</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Model number, capillary pressure model</td>
<td>AP161</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T3:COMP_RCK</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Bulk Compressibility</td>
<td>AP161</td>
<td>8.00E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>PCS_T3:KPT</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Flag for Permeability Determined Threshold</td>
<td>AP161</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T3:PCT_A</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Threshold Pressure Linear Parameter</td>
<td>AP161</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>PCS_T3:PCT_EXP</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Threshold pressure exponential parameter</td>
<td>AP161</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>PCS_T3:PC_MAX</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Maximum allowable capillary pressure</td>
<td>AP161</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>PCS_T3:PO_MIN</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Minimum brine pressure for capillary model KPC=3</td>
<td>AP161</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>PCS_T3:PRMX_LOG</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Log of intrinsic permeability, X-direction</td>
<td>AP161</td>
<td>-1.91E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>PCS_T3:PRMY_LOG</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Log of intrinsic permeability, Y-direction</td>
<td>AP161</td>
<td>-1.91E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>PCS_T3:PRMZ_LOG</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Log of intrinsic permeability, Z-direction</td>
<td>AP161</td>
<td>-1.91E+01</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>
Table 12 – Panel Closure Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ²</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS_T3:RELP_MOD</td>
<td>Run-of-Mine Panel Closure System, Tertiary Time Period, Model number, relative permeability model</td>
<td>AP161</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This parameter has an assigned distribution but uses the default constant value for all vectors.
²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
³Permeabilities of PCS_T2 and PCS_T3 in the X, Y, and Z directions are calculated from the sampled porosities of PCS_T2 and PCS_T3, respectively, as described in Camphouse et al. (2012). A constant default log-permeability is specified, however, to allow for parameter traceability in CRA-2019 PA input files as compared to those used in the CRA-2014. The specified default value is the average of the minimum and maximum values listed in Camphouse et al. (2012, Table 5).
Table 13 – Santa Rosa Formation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANTAROS:CAP_MOD</td>
<td>Santa Rosa Formation, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:COMP_RCK</td>
<td>Santa Rosa Formation, Bulk Compressibility</td>
<td>CCA</td>
<td>1.00E-08</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>SANTAROS:KPT</td>
<td>Santa Rosa Formation, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:PCT_A</td>
<td>Santa Rosa Formation, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>SANTAROS:PCT_EXP</td>
<td>Santa Rosa Formation, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:PC_MAX</td>
<td>Santa Rosa Formation, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>SANTAROS:PORE_DIS</td>
<td>Santa Rosa Formation, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:POROSITY</td>
<td>Santa Rosa Formation, Effective porosity</td>
<td>CCA</td>
<td>1.75E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:PO_MIN</td>
<td>Santa Rosa Formation, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SANTAROS:PRESSURE</td>
<td>Santa Rosa Formation, Brine far-field pore pressure</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>SANTAROS:PRMX_LOG</td>
<td>Santa Rosa Formation, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SANTAROS:PRMY_LOG</td>
<td>Santa Rosa Formation, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SANTAROS:PRMZ_LOG</td>
<td>Santa Rosa Formation, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>SANTAROS:RELP_MOD</td>
<td>Santa Rosa Formation, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:SAT_IBRN</td>
<td>Santa Rosa Formation, Initial Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:SAT_RBRN</td>
<td>Santa Rosa Formation, Residual Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>SANTAROS:SAT_RGAS</td>
<td>Santa Rosa Formation, Residual Brine Saturation</td>
<td>CCA</td>
<td>7.71E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 14 – Dewey Lake Formation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEWYLAKE:CAP_MOD</td>
<td>Dewey Lake Red Beds, Model number, capillary pressure model</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:COMP_RCK</td>
<td>Dewey Lake Red Beds, Bulk Compressibility</td>
<td>CCA</td>
<td>1.00E-08</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DEWYLAKE:KPT</td>
<td>Dewey Lake Red Beds, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:PCT_A</td>
<td>Dewey Lake Red Beds, Threshold Pressure Linear Parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DEWYLAKE:PCT_EXP</td>
<td>Dewey Lake Red Beds, Threshold pressure exponential parameter</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:PC_MAX</td>
<td>Dewey Lake Red Beds, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DEWYLAKE:PORE_DIS</td>
<td>Dewey Lake Red Beds, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:POROSITY¹</td>
<td>Dewey Lake Red Beds, Effective porosity</td>
<td>CCA</td>
<td>1.43E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:PO_MIN</td>
<td>Dewey Lake Red Beds, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DEWYLAKE:PRMX_LOG</td>
<td>Dewey Lake Red Beds, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.63E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DEWYLAKE:PRMY_LOG</td>
<td>Dewey Lake Red Beds, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.63E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DEWYLAKE:PRMZ_LOG</td>
<td>Dewey Lake Red Beds, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.63E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DEWYLAKE:RELP_MOD</td>
<td>Dewey Lake Red Beds, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:SAL_USAT</td>
<td>Dewey Lake Red Beds, Average saturation, unsaturated zones</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:SAT_IBRN</td>
<td>Dewey Lake Red Beds, Initial Brine Saturation</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:SAT_RBRN</td>
<td>Dewey Lake Red Beds, Residual Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DEWYLAKE:SAT_RGAS</td>
<td>Dewey Lake Red Beds, Residual Gas Saturation</td>
<td>CCA</td>
<td>7.71E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This parameter has an assigned distribution but uses the default constant value for all vectors.

²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 15 – Forty-Niner Member of the Rustler Formation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ²</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTYNIN:CAP_MOD</td>
<td>Forty Niner Member, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN:COMP_RCK</td>
<td>Forty Niner Member, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>FORTYNIN:KPT</td>
<td>Forty Niner Member, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN:PCT_A</td>
<td>Forty Niner Member, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>FORTYNIN:PCT_EXP</td>
<td>Forty Niner Member, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN:PC_MAX</td>
<td>Forty Niner Member, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>FORTYNIN:PORE_DIS</td>
<td>Forty Niner Member, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN:POROSITY ¹</td>
<td>Forty Niner Member, Effective porosity</td>
<td>CCA</td>
<td>8.20E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN:PO_MIN</td>
<td>Forty Niner Member, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>FORTYNIN:PRMX_LOG</td>
<td>Forty Niner Member, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>FORTYNIN:PRMY_LOG</td>
<td>Forty Niner Member, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>FORTYNIN:PRMZ_LOG</td>
<td>Forty Niner Member, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>FORTYNIN:RELP_MOD</td>
<td>Forty Niner Member, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN: SAT_RBRN</td>
<td>Forty Niner Member, Residual Brine Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>FORTYNIN: SAT_RGAS</td>
<td>Forty Niner Member, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This parameter has an assigned distribution but uses the default constant value for all vectors.
²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGENTA:CAP_MOD</td>
<td>Magenta member of the Rustler formation, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:COMP_RCK</td>
<td>Magenta member of the Rustler formation, Bulk Compressibility</td>
<td>CCA</td>
<td>2.64E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>MAGENTA:KPT</td>
<td>Magenta member of the Rustler formation, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:PCT_A</td>
<td>Magenta member of the Rustler formation, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>2.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>MAGENTA:PCT_EXP</td>
<td>Magenta member of the Rustler formation, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:PC_MAX</td>
<td>Magenta member of the Rustler formation, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>MAGENTA:PORE_DIS</td>
<td>Magenta member of the Rustler formation, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:POROSITY</td>
<td>Magenta member of the Rustler formation, Effective porosity</td>
<td>CCA</td>
<td>1.38E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:PO_MIN</td>
<td>Magenta member of the Rustler formation, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>MAGENTA:PRESSURE</td>
<td>Magenta member of the Rustler formation, Brine far-field pore pressure</td>
<td>PABC09</td>
<td>9.63E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>MAGENTA:PRMX_LOG</td>
<td>Magenta member of the Rustler formation, Log of intrinsic permeability, X-direction</td>
<td>PABC09</td>
<td>-1.47E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>MAGENTA:PRMY_LOG</td>
<td>Magenta member of the Rustler formation, Log of intrinsic permeability, Y-direction</td>
<td>PABC09</td>
<td>-1.47E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>MAGENTA:PRMZ_LOG</td>
<td>Magenta member of the Rustler formation, Log of intrinsic permeability, Z-direction</td>
<td>PABC09</td>
<td>-1.47E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>MAGENTA:RELP_MOD</td>
<td>Magenta member of the Rustler formation, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:SAT_RBRN</td>
<td>Magenta member of the Rustler formation, Residual Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>MAGENTA:SAT_RGAS</td>
<td>Magenta member of the Rustler formation, Residual Gas Saturation</td>
<td>CCA</td>
<td>7.71E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This has an assigned distribution but uses the default constant value for all vectors.
²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 17 – Tamarisk Member of the Rustler Formation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMARISK:CAP_MOD</td>
<td>Tamarisk Member, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:COMP_RCK</td>
<td>Tamarisk Member, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>TAMARISK:KPT</td>
<td>Tamarisk Member, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:PCT_A</td>
<td>Tamarisk Member, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>TAMARISK:PCT_EXP</td>
<td>Tamarisk Member, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:PC_MAX</td>
<td>Tamarisk Member, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>TAMARISK:PORE_DIS</td>
<td>Tamarisk Member, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:POROSITY</td>
<td>Tamarisk Member, Effective porosity</td>
<td>CCA</td>
<td>6.40E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:PO_MIN</td>
<td>Tamarisk Member, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>TAMARISK:PRMX_LOG</td>
<td>Tamarisk Member, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>TAMARISK:PRMY_LOG</td>
<td>Tamarisk Member, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>TAMARISK:PRMZ_LOG</td>
<td>Tamarisk Member, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>TAMARISK:RELP_MOD</td>
<td>Tamarisk Member, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:SAT_RBRN</td>
<td>Tamarisk Member, Residual Brine Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>TAMARISK:SAT_RGAS</td>
<td>Tamarisk Member, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:

1. This parameter has an assigned distribution but uses the default constant value for all vectors.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULEBRA:CAP_MOD</td>
<td>Culebra member of the Rustler formation, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:COMP_RCK</td>
<td>Culebra member of the Rustler formation, Bulk Compressibility</td>
<td>CCA</td>
<td>1.00E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CULEBRA:DISPT_L</td>
<td>Culebra member of the Rustler formation, Transverse dispersivity</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>m</td>
</tr>
<tr>
<td>CULEBRA:DISP_L</td>
<td>Culebra member of the Rustler formation, Longitudinal dispersivity</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>m</td>
</tr>
<tr>
<td>CULEBRA:DNSGRAIN</td>
<td>Culebra member of the Rustler formation, Material Grain Density</td>
<td>CCA</td>
<td>2.82E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>CULEBRA:DTORT</td>
<td>Culebra member of the Rustler formation, Diffusive Tortuosity</td>
<td>CCA</td>
<td>1.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:FTORT</td>
<td>Culebra member of the Rustler formation, Fracture Tortuosity</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:KPT</td>
<td>Culebra member of the Rustler formation, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:PCT_A</td>
<td>Culebra member of the Rustler formation, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>2.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>CULEBRA:PCT_EXP</td>
<td>Culebra member of the Rustler formation, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:PC_MAX</td>
<td>Culebra member of the Rustler formation, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CULEBRA:PORE_DIS</td>
<td>Culebra member of the Rustler formation, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:POROSITY</td>
<td>Culebra member of the Rustler formation, Effective porosity</td>
<td>CCA</td>
<td>1.51E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:PO_MIN</td>
<td>Culebra member of the Rustler formation, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CULEBRA:PRESSURE</td>
<td>Culebra member of the Rustler formation, Brine far-field pore pressure</td>
<td>PABC09</td>
<td>9.33E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CULEBRA:PRMX_LOG</td>
<td>Culebra member of the Rustler formation, Log of intrinsic permeability, X-direction</td>
<td>PABC09</td>
<td>-1.40E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CULEBRA:PRMY_LOG</td>
<td>Culebra member of the Rustler formation, Log of intrinsic permeability, Y-direction</td>
<td>PABC09</td>
<td>-1.40E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CULEBRA:PRMZ_LOG</td>
<td>Culebra member of the Rustler formation, Log of intrinsic permeability, Z-direction</td>
<td>PABC09</td>
<td>-1.40E+01</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>
Table 18 – Culebra Member of the Rustler Formation Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULEBRA:RELP_MOD</td>
<td>Culebra member of the Rustler formation, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:SAT_IBRN</td>
<td>Culebra member of the Rustler formation, Initial Brine Saturation</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:SAT_RBRN</td>
<td>Culebra member of the Rustler formation, Residual Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:SAT_RGAS</td>
<td>Culebra member of the Rustler formation, Residual Gas Saturation</td>
<td>CCA</td>
<td>7.71E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>CULEBRA:SKIN_RES</td>
<td>Culebra member of the Rustler formation, Skin Resistance</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:
1 This parameter provided input to the SECOTP2D model. No changes associated with SECOTP2D were made since PABC-2009, and therefore the SECOTP2D model results used in the PABC-2009 were also used in CRA-2019.
2 The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 19 – Los Medanos (Unnamed Lower) Member of the Rustler Formation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ²</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNNAMED:CAP_MOD</td>
<td>Unnamed Lower Member of Rustler Formation, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:COMP_RCK</td>
<td>Unnamed Lower Member of Rustler Formation, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>UNNAMED:KPT</td>
<td>Unnamed Lower Member of Rustler Formation, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:PCT_A</td>
<td>Unnamed Lower Member of Rustler Formation, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>UNNAMED:PCT_EXP</td>
<td>Unnamed Lower Member of Rustler Formation, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:PC_MAX</td>
<td>Unnamed Lower Member of Rustler Formation, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>UNNAMED:PORE_DIS</td>
<td>Unnamed Lower Member of Rustler Formation, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:POROSITY ¹</td>
<td>Unnamed Lower Member of Rustler Formation, Effective porosity</td>
<td>CCA</td>
<td>1.81E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:PO_MIN</td>
<td>Unnamed Lower Member of Rustler Formation, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>UNNAMED:PRMX_LOG</td>
<td>Unnamed Lower Member of Rustler Formation, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>UNNAMED:PRMY_LOG</td>
<td>Unnamed Lower Member of Rustler Formation, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>UNNAMED:PRMZ_LOG</td>
<td>Unnamed Lower Member of Rustler Formation, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>UNNAMED:RELP_MOD</td>
<td>Unnamed Lower Member of Rustler Formation, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:SAT_RBRN</td>
<td>Unnamed Lower Member of Rustler Formation, Residual Brine Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>UNNAMED:SAT_RGAS</td>
<td>Unnamed Lower Member of Rustler Formation, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This parameter has an assigned distribution but uses the default constant value for all vectors. ²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 20 – Salado Formation - Intact Halite - Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version 2</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_HALITE:CAP_MOD</td>
<td>Salado halite, intact, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_HALITE:KPT</td>
<td>Salado halite, intact, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_HALITE:PCT_A</td>
<td>Salado halite, intact, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>5.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>S_HALITE:PCT_EXP</td>
<td>Salado halite, intact, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>5.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>S_HALITE:PC_MAX</td>
<td>Salado halite, intact, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>S_HALITE:PORE_DIS</td>
<td>Salado halite, intact, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_HALITE:PO_MIN</td>
<td>Salado halite, intact, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>S_HALITE:RELP_MOD</td>
<td>Salado halite, intact, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_HALITE:SAT_RBRN</td>
<td>Salado halite, intact, Residual Brine Saturation</td>
<td>CCA</td>
<td>3.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_HALITE:SAT_RGAS</td>
<td>Salado halite, intact, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This parameter has an assigned distribution but uses the default constant value for all vectors. ²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 21 – Salado Formation - Brine - Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ²</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRINESAL:COMPRES</td>
<td>Salado Brine, Brine Compressibility</td>
<td>CCA</td>
<td>3.10E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>BRINESAL:DNSFLUID</td>
<td>Salado Brine, Brine Density</td>
<td>CCA</td>
<td>1.22E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>BRINESAL:REF_PRES</td>
<td>Salado Brine, Reference pressure for porosity</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>BRINESAL:REF_TEMP</td>
<td>Salado Brine, Reference Temperature</td>
<td>CCA</td>
<td>3.00E+02</td>
<td>K</td>
</tr>
<tr>
<td>BRINESAL:VISCO</td>
<td>Salado Brine, Viscosity</td>
<td>CCA</td>
<td>2.10E-03</td>
<td>Pa*s</td>
</tr>
<tr>
<td>BRINESAL:WTF ¹</td>
<td>Salado Brine, Mass fraction of salt in brine</td>
<td>CCA</td>
<td>3.24E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:

²This parameter has an assigned distribution but uses the default constant value for all vectors.

²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_MB138:CAP_MOD</td>
<td>Salado marker bed 138, intact and fractured, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:COMP_RCK</td>
<td>Salado marker bed 138, intact and fractured, Bulk Compressibility</td>
<td>CRA1BC</td>
<td>2.23E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>S_MB138:DPHIMAX</td>
<td>Salado marker bed 138, intact and fractured, Incremental increase in porosity relative to intact conditions</td>
<td>CCA</td>
<td>3.90E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:IFRX</td>
<td>Salado marker bed 138, intact and fractured, Index for fracture perm. enhancement in X-direction</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:IFRY</td>
<td>Salado marker bed 138, intact and fractured, Index for fracture perm. enhancement in Y-direction</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:IFRZ</td>
<td>Salado marker bed 138, intact and fractured, Index for fracture perm. enhancement in Z-direction</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:KMAXLOG</td>
<td>Salado marker bed 138, intact and fractured, Log of Maximum Permeability in Altered Anhydrite Flow Model Anhydrites</td>
<td>CCA</td>
<td>-9.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_MB138:KPT</td>
<td>Salado marker bed 138, intact and fractured, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:PCT_A</td>
<td>Salado marker bed 138, intact and fractured, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>2.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB138:PCT_EXP</td>
<td>Salado marker bed 138, intact and fractured, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:PC_MAX</td>
<td>Salado marker bed 138, intact and fractured, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB138:PF_DELTA</td>
<td>Salado marker bed 138, intact and fractured, Incremental pressure for full fracture development</td>
<td>CCA</td>
<td>3.80E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB138:PI_DELTA</td>
<td>Salado marker bed 138, intact and fractured, Fracture initiation pressure increment</td>
<td>CCA</td>
<td>2.00E+05</td>
<td>Pa</td>
</tr>
</tbody>
</table>
Table 22 – Salado Formation - Marker Bed 138 - Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_MB138:PORE_DIS</td>
<td>Salado marker bed 138, intact and fractured, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:POROSITY</td>
<td>Salado marker bed 138, intact and fractured, Effective porosity</td>
<td>CCA</td>
<td>1.10E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:PO_MIN</td>
<td>Salado marker bed 138, intact and fractured, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB138:PRMX_LOG</td>
<td>Salado marker bed 138, intact and fractured, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_MB138:PRMY_LOG</td>
<td>Salado marker bed 138, intact and fractured, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_MB138:PRMZ_LOG</td>
<td>Salado marker bed 138, intact and fractured, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_MB138:RELP_MOD</td>
<td>Salado marker bed 138, intact and fractured, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:SAT_RBRN</td>
<td>Salado marker bed 138, intact and fractured, Residual Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB138:SAT_RGAS</td>
<td>Salado marker bed 138, intact and fractured, Residual Gas Saturation</td>
<td>CRA1BC</td>
<td>5.50E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:
1. This parameter has an assigned distribution but uses the default constant value for all vectors. However, the corresponding parameters for the S_MB138 are set equal to the sampled parameter for S_MB139 during the ALGEBRACDB process.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
3. This parameter has an assigned distribution but uses the default constant value for all vectors.
4. This parameter has a constant value for all vectors. However, the corresponding parameters for the S_MB138 are set equal to the constant parameter for S_MB139 during the ALGEBRACDB process.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_MB139:BKLINK</td>
<td>Salado marker bed 139, intact and fractured, Klinkenberg B Correction Parameters for H2 gas</td>
<td>CCA</td>
<td>2.71E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB139:CAP_MOD</td>
<td>Salado marker bed 139, intact and fractured, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:COMP_RCK</td>
<td>Salado marker bed 139, intact and fractured, Bulk Compressibility</td>
<td>CRA1BC</td>
<td>2.23E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>S_MB139:DPHIMAX</td>
<td>Salado marker bed 139, intact and fractured, Incremental increase in porosity relative to intact conditions</td>
<td>CCA</td>
<td>3.90E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:EXPKLINK</td>
<td>Salado marker bed 139, intact and fractured, Klinkenberg b correction parameters for H2 gas</td>
<td>CCA</td>
<td>-3.41E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:IFRX</td>
<td>Salado marker bed 139, intact and fractured, Index for fracture perm. enhancement in X-direction</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:IFRY</td>
<td>Salado marker bed 139, intact and fractured, Index for fracture perm. enhancement in Y-direction</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:IFRZ</td>
<td>Salado marker bed 139, intact and fractured, Index for fracture perm. enhancement in Z-direction</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:KMAXLOG</td>
<td>Salado marker bed 139, intact and fractured, Log of Maximum Permeability in Altered Anhydrite Flow Model Anhydrites</td>
<td>CCA</td>
<td>-9.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_MB139:KPT</td>
<td>Salado marker bed 139, intact and fractured, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:PCT_A</td>
<td>Salado marker bed 139, intact and fractured, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>2.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB139:PCT_EXP</td>
<td>Salado marker bed 139, intact and fractured, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:PC_MAX</td>
<td>Salado marker bed 139, intact and fractured, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB139:PF_DELTA</td>
<td>Salado marker bed 139, intact and fractured, Incremental pressure for full fracture development</td>
<td>CCA</td>
<td>3.80E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB139:PI_DELTA</td>
<td>Salado marker bed 139, intact and fractured, Fracture initiation pressure increment</td>
<td>CCA</td>
<td>2.00E+05</td>
<td>Pa</td>
</tr>
</tbody>
</table>
Table 23 – Salado Formation - Marker Bed 139 - Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_MB139:POROSITY</td>
<td>Salado marker bed 139, intact and fractured, Effective porosity</td>
<td>CCA</td>
<td>1.10E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_MB139:PO_MIN</td>
<td>Salado marker bed 139, intact and fractured, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>S_MB139:SAT_RGAS</td>
<td>Salado marker bed 139, intact and fractured, Residual Gas Saturation</td>
<td>CRA1BC</td>
<td>5.50E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:

1. This parameter has an assigned distribution but uses the default constant value for all vectors.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 24 – Salado Formation - Anhydrite a and b, Intact and Fractured - Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ²</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_ANH_AB:CAP_MOD</td>
<td>Salado anhydrite beds A and B, intact and fractured, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:COMP_RCK</td>
<td>Salado anhydrite beds A and B, intact and fractured, Bulk Compressibility</td>
<td>CRA1BC</td>
<td>2.23E-11</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>S_ANH_AB:DPHIMAX</td>
<td>Salado anhydrite beds A and B, intact and fractured, Incremental increase in porosity relative to intact conditions</td>
<td>CCA</td>
<td>2.39E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:IFRX</td>
<td>Salado anhydrite beds A and B, intact and fractured, Index for fracture perm. enhancement in X-direction</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:IFRY</td>
<td>Salado anhydrite beds A and B, intact and fractured, Index for fracture perm. enhancement in Y-direction</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:IFRZ</td>
<td>Salado anhydrite beds A and B, intact and fractured, Index for fracture perm. enhancement in Z-direction</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:KMAXLOG</td>
<td>Salado anhydrite beds A and B, intact and fractured, Log of Maximum Permeability in Altered Anhydrite Flow Model Anhydrites</td>
<td>CCA</td>
<td>-9.00E+00</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_ANH_AB:KPT</td>
<td>Salado anhydrite beds A and B, intact and fractured, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:PCT_A</td>
<td>Salado anhydrite beds A and B, intact and fractured, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>2.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>S_ANH_AB:PCT_EXP</td>
<td>Salado anhydrite beds A and B, intact and fractured, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:PC_MAX</td>
<td>Salado anhydrite beds A and B, intact and fractured, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>S_ANH_AB:PF_DELTA</td>
<td>Salado anhydrite beds A and B, intact and fractured, Incremental pressure for full fracture development</td>
<td>CCA</td>
<td>3.80E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>S_ANH_AB:PI_DELTA</td>
<td>Salado anhydrite beds A and B, intact and fractured, Fracture initiation pressure increment</td>
<td>CCA</td>
<td>2.00E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>S_ANH_AB:PORE_DIS ¹</td>
<td>Salado anhydrite beds A and B, intact and fractured, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>6.44E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 24 – Salado Formation - Anhydrite a and b, Intact and Fractured - Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_ANH_AB:POROSITY</td>
<td>Salado anhydrite beds A and B, intact and fractured, Effective porosity</td>
<td>CCA</td>
<td>1.10E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:PO_MIN</td>
<td>Salado anhydrite beds A and B, intact and fractured, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>S_ANH_AB:PRMX_LOG</td>
<td>Salado anhydrite beds A and B, intact and fractured, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_ANH_AB:PRMY_LOG</td>
<td>Salado anhydrite beds A and B, intact and fractured, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_ANH_AB:PRMZ_LOG</td>
<td>Salado anhydrite beds A and B, intact and fractured, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.89E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>S_ANH_AB:RELP_MOD</td>
<td>Salado anhydrite beds A and B, intact and fractured, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:SAT_RBRN</td>
<td>Salado anhydrite beds A and B, intact and fractured, Residual Brine Saturation</td>
<td>CCA</td>
<td>8.36E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>S_ANH_AB:SAT_RGAS</td>
<td>Salado anhydrite beds A and B, intact and fractured, Residual Gas Saturation</td>
<td>CRA1BC</td>
<td>5.50E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:

1. This parameter has an assigned distribution but uses the default constant value for all vectors. However, the corresponding parameters for the S_ANH_AB are set equal to the sampled parameter for S_MB139 during the ALGEBRACDB process.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
3. This parameter has an assigned distribution but uses the default constant value for all vectors.
4. This parameter has a constant value for all vectors. However, the corresponding parameters for the S_ANH_AB are set equal to the constant parameter for S_MB139 during the ALGEBRACDB process.
Table 25 – Disturbed Rock Zone Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version (^2)</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_0:ADDPOR</td>
<td>Disturbed rock zone; time period -5 to 0 years, Additional porosity in the DRZ caused by fracturing.</td>
<td>PABC09</td>
<td>2.90E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:CAP_MOD</td>
<td>Disturbed rock zone; time period -5 to 0 years, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:COMP_RCK</td>
<td>Disturbed rock zone; time period -5 to 0 years, Bulk Compressibility</td>
<td>CCA</td>
<td>7.41E-10</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td>DRZ_0:DPHIMAX</td>
<td>Disturbed rock zone; time period -5 to 0 years, Incremental increase in porosity relative to intact conditions</td>
<td>PABC09</td>
<td>3.90E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:IFRX (^1)</td>
<td>Disturbed rock zone; time period -5 to 0 years, Index for fracture perm. enhancement in X-direction</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:IFRY (^1)</td>
<td>Disturbed rock zone; time period -5 to 0 years, Index for fracture perm. enhancement in Y-direction</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:IFRZ (^1)</td>
<td>Disturbed rock zone; time period -5 to 0 years, Index for fracture perm. enhancement in Z-direction</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:KMAXLOG (^1)</td>
<td>Disturbed rock zone; time period -5 to 0 years, Log of Maximum Permeability in Altered Anhydrite Flow Model Anhydrites</td>
<td>PABC09</td>
<td>-9.00E+00</td>
<td>log(m(^2))</td>
</tr>
<tr>
<td>DRZ_0:KPT</td>
<td>Disturbed rock zone; time period -5 to 0 years, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:PCT_A</td>
<td>Disturbed rock zone; time period -5 to 0 years, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_0:PCT_EXP</td>
<td>Disturbed rock zone; time period -5 to 0 years, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:PC_MAX</td>
<td>Disturbed rock zone; time period -5 to 0 years, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_0:PF_DELTA (^1)</td>
<td>Disturbed rock zone; time period -5 to 0 years, Incremental pressure for full fracture development</td>
<td>PABC09</td>
<td>3.80E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_0:PI_DELTA (^1)</td>
<td>Disturbed rock zone; time period -5 to 0 years, Fracture initiation pressure increment</td>
<td>PABC09</td>
<td>2.00E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_0:PORE_DIS</td>
<td>Disturbed rock zone; time period -5 to 0 years, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 25 – Disturbed Rock Zone Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_0:POROSITY</td>
<td>Disturbed rock zone; time period -5 to 0 years, Effective porosity</td>
<td>AP132</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:PO_MIN</td>
<td>Disturbed rock zone; time period -5 to 0 years, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_0:PRMX_LOG</td>
<td>Disturbed rock zone; time period -5 to 0 years, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_0:PRMY_LOG</td>
<td>Disturbed rock zone; time period -5 to 0 years, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_0:PRMZ_LOG</td>
<td>Disturbed rock zone; time period -5 to 0 years, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_0:RELP_MOD</td>
<td>Disturbed rock zone; time period -5 to 0 years, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:SAT_RBRN</td>
<td>Disturbed rock zone; time period -5 to 0 years, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_0:SAT_RGAS</td>
<td>Disturbed rock zone; time period -5 to 0 years, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:CAP_MOD</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:COMP_RCK</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Bulk Compressibility</td>
<td>CCA</td>
<td>7.41E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DRZ_1:EHEIGHT</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Effective height for DBR calculations.</td>
<td>SDI</td>
<td>4.35E+01</td>
<td>m</td>
</tr>
<tr>
<td>DRZ_1:KPT</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>DRZ_1:PCT_A</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_1:PCT_EXP</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:PC_MAX</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_1:PORE_DIS</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:POROSITY</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Effective porosity</td>
<td>AP132</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:PO_MIN</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_1:RELP_MOD</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:SAT_RBRN</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_1:SAT_RGAS</td>
<td>Disturbed rock zone during the time period that begins with facility closure (0 years) and ends when DRZ healing is complete, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:CAP_MOD</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Model number, capillary pressure model</td>
<td>CRA14_SEN4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>DRZ_OE_0:COMP_RCK</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Bulk Compressibility</td>
<td>CRA14_SE N4</td>
<td>7.41E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DRZ_OE_0:KPT</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Flag for Permeability Determined Threshold</td>
<td>CRA14_SE N2</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:PCT_A</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Threshold Pressure Linear Parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_OE_0:PCT_EXP</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Threshold pressure exponential parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:PC_MAX</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Maximum allowable capillary pressure</td>
<td>CRA14_SE N2</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_OE_0:PORE_DIS</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Brooks-Corey pore distribution parameter</td>
<td>CRA14_SE N2</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:POROSITY</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Effective porosity</td>
<td>CRA14_SE N4</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:PO_MIN</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Minimum brine pressure for capillary model KPC=3</td>
<td>CRA14_SE N2</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_OE_0:PRMX_LOG</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Log of intrinsic permeability, X-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_OE_0:PRMY_LOG</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Log of intrinsic permeability, Y-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_OE_0:PRMZ_LOG</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Log of intrinsic permeability, Z-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_OE_0:RELP_MOD</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Model number, relative permeability model</td>
<td>CRA14_SE N2</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:SAT_IBRN</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Initial Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 25 – Disturbed Rock Zone Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_OE_0:SAT_RBRN</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Residual Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_0:SAT_RGAS</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; -5 to 0 years, Residual Gas Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:CAP_MOD</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Model number, capillary pressure model</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:COMP_RCK</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Bulk Compressibility</td>
<td>CRA14_SE N4</td>
<td>7.41E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DRZ_OE_1:KPT</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Flag for Permeability Determined Threshold</td>
<td>CRA14_SE N2</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:PCT_A</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Threshold Pressure Linear Parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_OE_1:PCT_EXP</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Threshold pressure exponential parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:PC_MAX</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Maximum allowable capillary pressure</td>
<td>CRA14_SE N2</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_OE_1:PORE_DIS</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Brooks-Corey pore distribution parameter</td>
<td>CRA14_SE N2</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:POROSITY</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Effective porosity</td>
<td>CRA14_SE N4</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:PO_MIN</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Minimum brine pressure for capillary model KPC=3</td>
<td>CRA14_SE N2</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_OE_1:PRMX_LOG</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Log of intrinsic permeability, X-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_OE_1:PRMY_LOG</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Log of intrinsic permeability, Y-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_OE_1:PRMZ_LOG</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Log of intrinsic permeability, Z-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_OE_1:RELP_MOD</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Model number, relative permeability model</td>
<td>CRA14_SE N2</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:SAT_IBRN</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Initial Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:SAT_RBRN</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Residual Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_OE_1:SAT_RGAS</td>
<td>Disturbed Rock Zone Around Operations/Experimental Area; 0 to 10,000 years, Residual Gas Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:CAP_MOD</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Model number, capillary pressure model</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:COMP_RCK</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Bulk Compressibility</td>
<td>CRA14_SE N4</td>
<td>7.41E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DRZ_PC_0:KPT</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Flag for Permeability Determined Threshold</td>
<td>CRA14_SE N3</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:PCT_A</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Threshold Pressure Linear Parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PC_0:PCT_EXP</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Threshold pressure exponential parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:PC_MAX</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Maximum allowable capillary pressure</td>
<td>CRA14_SE N3</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PC_0:PORE_DIS</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Brooks-Corey pore distribution parameter</td>
<td>CRA14_SE N3</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:POROSITY</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Effective porosity</td>
<td>CRA14_SE N4</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 25 – Disturbed Rock Zone Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_PC_0:PO_MIN</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Minimum brine pressure for capillary model KPC=3</td>
<td>CRA14_SE N3</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PC_0:PRMX_LOG</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Log of intrinsic permeability, X-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PC_0:PRMY_LOG</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Log of intrinsic permeability, Y-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PC_0:PRMZ_LOG</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Log of intrinsic permeability, Z-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PC_0:RELP_MOD</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Model number, relative permeability model</td>
<td>CRA14_SE N3</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:SAT_IBRN</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Initial Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:SAT_RBRN</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Residual Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_0:SAT_RGAS</td>
<td>Disturbed Rock Zone Around PCS Areas; -5 to 0 years, Residual Gas Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:CAP_MOD</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Model number, capillary pressure model</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:COMP_RCK</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Bulk Compressibility</td>
<td>CRA14_SE N4</td>
<td>7.41E-10</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>DRZ_PC_1:KPT</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Flag for Permeability Determined Threshold</td>
<td>CRA14_SE N3</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:PCT_A</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Threshold Pressure Linear Parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PC_1:PCT_EXP</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Threshold pressure exponential parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 25 – Disturbed Rock Zone Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRZ_PC_1:PC_MAX</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Maximum allowable capillary pressure</td>
<td>CRA14_SE N3</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PC_1:PORE_DIS</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Brooks-Corey pore distribution parameter</td>
<td>CRA14_SE N3</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:POROSITY</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Effective porosity</td>
<td>CRA14_SE N4</td>
<td>1.29E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:PO_MIN</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Minimum brine pressure for capillary model KPC=3</td>
<td>CRA14_SE N3</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>DRZ_PC_1:PRMX_LOG</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Log of intrinsic permeability, X-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PC_1:PRMY_LOG</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Log of intrinsic permeability, Y-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PC_1:PRMZ_LOG</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Log of intrinsic permeability, Z-direction</td>
<td>CRA14_SE N4</td>
<td>-1.70E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>DRZ_PC_1:RELP_MOD</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Model number, relative permeability model</td>
<td>CRA14_SE N3</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:SAT_IBRN</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Initial Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:SAT_RBRN</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Residual Brine Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>DRZ_PC_1:SAT_RGAS</td>
<td>Disturbed Rock Zone Around PCS Areas; 0 to 10,000 years, Residual Gas Saturation</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹The corresponding parameters for the disturbed rock zone materials (DRZ_OE_0, DRZ_OE_1, DRZ_PC_0, DRZ_PC_1, and DRZ_1) are set equal to the DRZ_0 during the ALGEBRACDB process.
²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
³This parameter has an assigned distribution but uses the default constant value for all vectors.
Table 26 – Waste Area and Waste Material Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAS_AREA:ABSROUGH 1</td>
<td>Waste Panel and Waste, Absolute roughness of material</td>
<td>CCA</td>
<td>2.50E-02</td>
<td>m</td>
</tr>
<tr>
<td>WAS_AREA:CAP_MOD</td>
<td>Waste Panel and Waste, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:CELCCHW</td>
<td>Waste Panel and Waste, Mass of cellulosics in CH waste container materials</td>
<td>CRA19</td>
<td>1.47E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:CELCRHW</td>
<td>Waste Panel and Waste, Mass of cellulosics in RH waste container materials</td>
<td>CRA19</td>
<td>0.00E+00</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:CELECHW</td>
<td>Waste Panel and Waste, Mass of cellulosics in CH waste emplacement materials</td>
<td>CRA19</td>
<td>2.24E+05</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:CELERHW</td>
<td>Waste Panel and Waste, Mass of cellulosics in RH waste emplacement materials</td>
<td>CRA19</td>
<td>0.00E+00</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:CELLCHW</td>
<td>Waste Panel and Waste, Mass of cellulosics in CH waste</td>
<td>CRA19</td>
<td>4.10E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:CELLRHW</td>
<td>Waste Panel and Waste, Mass of cellulosics in RH waste</td>
<td>CRA19</td>
<td>1.70E+05</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:COMP_RCK</td>
<td>Waste Panel and Waste, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>WAS_AREA:IRNCCHW</td>
<td>Waste Panel and Waste, Mass of iron containers, CH waste</td>
<td>CRA19</td>
<td>3.12E+07</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:IRNCRHW</td>
<td>Waste Panel and Waste, Mass of iron containers, RH waste</td>
<td>CRA19</td>
<td>1.65E+07</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:IRONCHW</td>
<td>Waste Panel and Waste, Mass of iron-based material in CH waste.</td>
<td>CRA19</td>
<td>1.41E+07</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:IRONRHW</td>
<td>Waste Panel and Waste, Mass of iron-based material in RH waste.</td>
<td>CRA19</td>
<td>1.33E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:KPT</td>
<td>Waste Panel and Waste, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:MGO_EF</td>
<td>Waste Panel and Waste, MgO Excess Factor: ratio of MgO to organic carbon in CPR</td>
<td>AP132</td>
<td>1.20E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:PCT_A</td>
<td>Waste Panel and Waste, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>WAS_AREA:PCT_EXP</td>
<td>Waste Panel and Waste, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:PC_MAX</td>
<td>Waste Panel and Waste, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>WAS_AREA:PLASCHW</td>
<td>Waste Panel and Waste, Mass of plastics in CH waste</td>
<td>CRA19</td>
<td>5.32E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:PLASRHW</td>
<td>Waste Panel and Waste, Mass of plastics in RH waste</td>
<td>CRA19</td>
<td>4.14E+05</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:PLSCCHW</td>
<td>Waste Panel and Waste, Mass of plastic liners, CH waste</td>
<td>CRA19</td>
<td>2.83E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:PLSCRHW</td>
<td>Waste Panel and Waste, Mass of plastic liners, RH waste</td>
<td>CRA19</td>
<td>4.68E+05</td>
<td>kg</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>WAS_AREA:PLSECHW</td>
<td>Waste Panel and Waste, Mass of plastic in CH waste emplacement materials</td>
<td>CRA19</td>
<td>1.55E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:PLSERHW</td>
<td>Waste Panel and Waste, Mass of plastic in RH waste emplacement materials</td>
<td>CRA19</td>
<td>0.00E+00</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:PORE_DIS 1</td>
<td>Waste Panel and Waste, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>2.89E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:POROSITY</td>
<td>Waste Panel and Waste, Effective porosity</td>
<td>CCA</td>
<td>8.48E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:PO_MIN</td>
<td>Waste Panel and Waste, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>WAS_AREA:PRMX_LOG</td>
<td>Waste Panel and Waste, Log of intrinsic permeability, X-direction</td>
<td>TBM</td>
<td>-1.26E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>WAS_AREA:PRMY_LOG</td>
<td>Waste Panel and Waste, Log of intrinsic permeability, Y-direction</td>
<td>TBM</td>
<td>-1.26E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>WAS_AREA:PRMZ_LOG</td>
<td>Waste Panel and Waste, Log of intrinsic permeability, Z-direction</td>
<td>TBM</td>
<td>-1.26E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>WAS_AREA:RELP_MOD</td>
<td>Waste Panel and Waste, Model number, relative permeability model AP132</td>
<td>AP132</td>
<td>1.20E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:RUBBCHW</td>
<td>Waste Panel and Waste, Mass of rubber in CH waste</td>
<td>CRA19</td>
<td>1.09E+06</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:RUBCCHW</td>
<td>Waste Panel and Waste, Mass of rubber in CH waste container materials</td>
<td>CRA19</td>
<td>7.28E+04</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:RUBCRHW</td>
<td>Waste Panel and Waste, Mass of rubber in RH waste container materials</td>
<td>CRA19</td>
<td>5.73E+03</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:RUBECHW</td>
<td>Waste Panel and Waste, Mass of rubber in CH waste emplacement materials</td>
<td>CRA19</td>
<td>4.79E+03</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:RUBERHW</td>
<td>Waste Panel and Waste, Mass of rubber in RH waste emplacement materials</td>
<td>CRA19</td>
<td>0.00E+00</td>
<td>kg</td>
</tr>
<tr>
<td>WAS_AREA:SAT_IBRN</td>
<td>Waste Panel and Waste, Initial Brine Saturation</td>
<td>CCA</td>
<td>1.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>WAS_AREA:SMIC_CO2</td>
<td>Waste Panel and Waste, Moles of CO2 produced per mole of organic carbon consumed.</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES: ¹This parameter has an assigned distribution but uses the default constant value for all vectors.
²The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM+3:MD0</td>
<td>Americium III, Molecular diffusion in pure fluid</td>
<td>CCA</td>
<td>3.00E-10</td>
<td>m²/s</td>
</tr>
<tr>
<td>AM:CAPHUM</td>
<td>Americium, Maximum Concentration of Actinide with Mobile Humic Colloids</td>
<td>CCA</td>
<td>1.10E-05</td>
<td>moles/liter</td>
</tr>
<tr>
<td>AM:CAPMIC</td>
<td>Americium, Maximum Concentration of Actinide on Microbe Colloids</td>
<td>CRA19</td>
<td>2.30E-09</td>
<td>moles/liter</td>
</tr>
<tr>
<td>AM:CONCINT</td>
<td>Americium, Actinide Concentration with Mobile Actinide Intrinsic Colloids</td>
<td>CRA19</td>
<td>9.50E-09</td>
<td>moles/liter</td>
</tr>
<tr>
<td>AM:CONCMIN</td>
<td>Americium, Actinide Concentration with Mobile Mineral Fragment Colloids</td>
<td>CCA</td>
<td>2.60E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>AM:PROPMIC</td>
<td>Americium, Moles of Actinide Mobilized on Microbe Colloids per Moles Dissolved</td>
<td>CRA19</td>
<td>3.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>CELLULS:FBETA</td>
<td>Cellulose, Factor beta for microbial reaction rates</td>
<td>CCA</td>
<td>5.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>NP:CAPHUM</td>
<td>Neptunium, Maximum Concentration of Actinide with Mobile Humic Colloids</td>
<td>CCA</td>
<td>1.10E-05</td>
<td>moles/liter</td>
</tr>
<tr>
<td>NP:CAPMIC</td>
<td>Neptunium, Maximum Concentration of Actinide on Microbe Colloids</td>
<td>CRA19</td>
<td>3.80E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>NP:CONCINT</td>
<td>Neptunium, Actinide Concentration with Mobile Actinide Intrinsic Colloids</td>
<td>CRA19</td>
<td>4.30E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>NP:CONCMIN</td>
<td>Neptunium, Actinide Concentration with Mobile Mineral Fragment Colloids</td>
<td>CCA</td>
<td>2.60E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>NP:PROPMIC</td>
<td>Neptunium, Moles of Actinide Mobilized on Microbe Colloids per Moles Dissolved</td>
<td>CRA19</td>
<td>2.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX3:PHUMCIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state III, Proportionality Const., Humic Colloids, Castile Brine, MgO controls pH</td>
<td>CRA19</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX3:PHUMSIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state III, Proportionality Const. of Actinides in Salado Brine w/Humic Colloids, Inorganic</td>
<td>CRA19</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX4:PHUMCIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state IV, Proportionality Const., Humic Colloids, Castile Brine, MgO controls pH</td>
<td>CRA19</td>
<td>1.00E-02</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 27 – Waste Chemistry Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHUMOX4:PHUMSIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state IV, Proportionality Const. of Actinides in Salado Brine w/Humic Colloids, Inorganic</td>
<td>CRA19</td>
<td>1.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX5:PHUMCIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state V, Proportionality Const., Humic Colloids, Castile Brine, MgO controls pH</td>
<td>CCA</td>
<td>7.40E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX5:PHUMSIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state V, Proportionality Const. of Actinides in Salado Brine w/Humic Colloids, Inorganic</td>
<td>CCA</td>
<td>9.10E-04</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX6:PHUMCIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state VI, Proportionality Const., Humic Colloids, Castile Brine, MgO controls pH</td>
<td>CCA</td>
<td>5.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PHUMOX6:PHUMSIM</td>
<td>Proportionality constant with humic colloids for actinides in oxidation state VI, Proportionality Const. of Actinides in Salado Brine w/Humic Colloids, Inorganic</td>
<td>CCA</td>
<td>1.20E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>PU+3:MD0</td>
<td>Plutonium III, Molecular diffusion in pure fluid</td>
<td>CCA</td>
<td>3.00E-10</td>
<td>m²/s</td>
</tr>
<tr>
<td>PU+4:MD0</td>
<td>Plutonium IV, Molecular diffusion in pure fluid</td>
<td>CCA</td>
<td>1.53E-10</td>
<td>m²/s</td>
</tr>
<tr>
<td>PU:CAPHUM</td>
<td>Plutonium, Maximum Concentration of Actinide with Mobile Humic Colloids</td>
<td>CCA</td>
<td>1.10E-05</td>
<td>moles/liter</td>
</tr>
<tr>
<td>PU:CAPMIC</td>
<td>Plutonium, Maximum Concentration of Actinide on Microbe Colloids</td>
<td>CRA19</td>
<td>3.80E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>PU:CONCINT</td>
<td>Plutonium, Actinide Concentration with Mobile Actinide Intrinsic Colloids</td>
<td>CRA19</td>
<td>4.30E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>PU:CONCMIN</td>
<td>Plutonium, Actinide Concentration with Mobile Mineral Fragment Colloids</td>
<td>CCA</td>
<td>2.60E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>PU:PROPMIC</td>
<td>Plutonium, Moles of Actinide Mobilized on Microbe Colloids per Moles Dissolved</td>
<td>CRA19</td>
<td>2.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>SOLMOD3:SOLCOH</td>
<td>Oxidation state III model, Solubility in Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.78E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>SOLMOD3:SOLCOH2</td>
<td>Oxidation state III model, Solubility in 2 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.63E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLCOH3</td>
<td>Oxidation state III model, Solubility in 3 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.58E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLCOH4</td>
<td>Oxidation state III model, Solubility in 4 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.54E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLCOH5</td>
<td>Oxidation state III model, Solubility in 5 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.52E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLSOH</td>
<td>Oxidation state III model, Solubility in Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.63E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLSOH2</td>
<td>Oxidation state III model, Solubility in 2 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.58E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLSOH3</td>
<td>Oxidation state III model, Solubility in 3 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.56E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLSOH4</td>
<td>Oxidation state III model, Solubility in 4 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.55E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD3:SOLSOH5</td>
<td>Oxidation state III model, Solubility in 5 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.54E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLCOH</td>
<td>Oxidation state IV model, Solubility in Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.44E-08</td>
<td>moles/liter</td>
</tr>
</tbody>
</table>
Table 27 – Waste Chemistry Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLMOD4:SOLCOH2</td>
<td>Oxidation state IV model, Solubility in 2 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.44E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLCOH3</td>
<td>Oxidation state IV model, Solubility in 3 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.44E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLCOH4</td>
<td>Oxidation state IV model, Solubility in 4 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.44E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLCOH5</td>
<td>Oxidation state IV model, Solubility in 5 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.44E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLSOH</td>
<td>Oxidation state IV model, Solubility in Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.45E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLSOH2</td>
<td>Oxidation state IV model, Solubility in 2 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.45E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLSOH3</td>
<td>Oxidation state IV model, Solubility in 3 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.45E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLSOH4</td>
<td>Oxidation state IV model, Solubility in 4 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.45E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD4:SOLSOH5</td>
<td>Oxidation state IV model, Solubility in 5 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.45E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLCOH</td>
<td>Oxidation state V model, Solubility in Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>1.20E-06</td>
<td>moles/liter</td>
</tr>
</tbody>
</table>
Table 27 – Waste Chemistry Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLMOD5:SOLCOH2</td>
<td>Oxidation state V model, Solubility in 2 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>7.27E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLCOH3</td>
<td>Oxidation state V model, Solubility in 3 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>5.52E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLCOH4</td>
<td>Oxidation state V model, Solubility in 4 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>4.61E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLCOH5</td>
<td>Oxidation state V model, Solubility in 5 X the minimum volume of Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>4.05E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLSOH</td>
<td>Oxidation state V model, Solubility in Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>4.02E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLSOH2</td>
<td>Oxidation state V model, Solubility in 2 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>2.83E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLSOH3</td>
<td>Oxidation state V model, Solubility in 3 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>2.42E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLSOH4</td>
<td>Oxidation state V model, Solubility in 4 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>2.21E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD5:SOLSOH5</td>
<td>Oxidation state V model, Solubility in 5 X the minimum volume of Salado Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA19</td>
<td>2.09E-07</td>
<td>moles/liter</td>
</tr>
<tr>
<td>SOLMOD6:SOLCOH</td>
<td>Oxidation state VI model, Solubility in Castile Brine with Organics included Controlled by Mg(OH)2/Hydromagnisite buffer(5424)</td>
<td>CRA1BC</td>
<td>1.00E-03</td>
<td>moles/liter</td>
</tr>
</tbody>
</table>
Table 27 – Waste Chemistry Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ³</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLMOD6:SOLSOH</td>
<td>Oxidation state VI model, Solubility in Salado Brine with Organics included Controlled by Mg(OH)²/Hydromagnisite buffer(S424)</td>
<td>CRA1BC</td>
<td>1.00E-03</td>
<td>moles/liter</td>
</tr>
<tr>
<td>TH+4:MD0</td>
<td>Thorium IV, Molecular diffusion in pure fluid</td>
<td>CCA</td>
<td>1.53E-10</td>
<td>m²/s</td>
</tr>
<tr>
<td>TH:CAPHUM</td>
<td>Thorium, Maximum Concentration of Actinide with Mobile Humic Colloids</td>
<td>CCA</td>
<td>1.10E-05</td>
<td>moles/liter</td>
</tr>
<tr>
<td>TH:CAPMIC</td>
<td>Thorium, Maximum Concentration of Actinide on Microbe Colloids</td>
<td>CRA19</td>
<td>3.80E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>TH:CONCINT</td>
<td>Thorium, Actinide Concentration with Mobile Actinide Intrinsic Colloids</td>
<td>CRA19</td>
<td>4.30E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>TH:CONCMIN</td>
<td>Thorium, Actinide Concentration with Mobile Mineral Fragment Colloids</td>
<td>CCA</td>
<td>2.60E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>TH:PROPMC</td>
<td>Thorium, Moles of Actinide Mobilized on Microbe Colloids per Moles Dissolved</td>
<td>CRA19</td>
<td>2.10E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>U+4:MD0</td>
<td>Uranium IV, Molecular diffusion in pure fluid</td>
<td>CCA</td>
<td>1.53E-10</td>
<td>m²/s</td>
</tr>
<tr>
<td>U+6:MD0</td>
<td>Uranium VI, Molecular diffusion in pure fluid</td>
<td>CCA</td>
<td>4.26E-10</td>
<td>m²/s</td>
</tr>
<tr>
<td>U:CAPHUM</td>
<td>Uranium, Maximum Concentration of Actinide with Mobile Humic Colloids</td>
<td>CCA</td>
<td>1.10E-05</td>
<td>moles/liter</td>
</tr>
<tr>
<td>U:CAPMIC</td>
<td>Uranium, Maximum Concentration of Actinide on Microbe Colloids</td>
<td>CRA19</td>
<td>3.80E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>U:CONCINT</td>
<td>Uranium, Actinide Concentration with Mobile Actinide Intrinsic Colloids</td>
<td>CRA19</td>
<td>1.40E-06</td>
<td>moles/liter</td>
</tr>
<tr>
<td>U:CONCMIN</td>
<td>Uranium, Actinide Concentration with Mobile Mineral Fragment Colloids</td>
<td>CCA</td>
<td>2.60E-08</td>
<td>moles/liter</td>
</tr>
<tr>
<td>U:PROPMC</td>
<td>Uranium, Moles of Actinide Mobilized on Microbe Colloids per Moles Dissolved</td>
<td>CRA19</td>
<td>2.10E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:

¹This parameter provided input to the SECOTP2D model. No changes associated with SECOTP2D were made since PABC-2009, and therefore the SECOTP2D model results used in the PABC-2009 were also used in CRA-2019.

²This parameter has an assigned distribution but uses the default constant value for all vectors.

³The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 28 – Radionuclide Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM241:ATWEIGHT</td>
<td>Americium 241, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.41E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>AM241:DECAYNRG</td>
<td>Americium 241, Radionuclide disintegration energy</td>
<td>CRA19</td>
<td>5.64E+00</td>
<td>MeV</td>
</tr>
<tr>
<td>AM241:EPAREL</td>
<td>Americium 241, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>AM241:HALFLIFE</td>
<td>Americium 241, Halflife</td>
<td>CCA</td>
<td>1.36E+10</td>
<td>s</td>
</tr>
<tr>
<td>AM243:ATWEIGHT</td>
<td>Americium 243, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.43E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>AM243:EPAREL</td>
<td>Americium 243, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>AM243:HALFLIFE</td>
<td>Americium 243, Halflife</td>
<td>CCA</td>
<td>2.33E+11</td>
<td>s</td>
</tr>
<tr>
<td>CF252:ATWEIGHT</td>
<td>Californium 252, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.52E+01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>CF252:EPAREL</td>
<td>Californium 252, EPA Release Limit</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>CF252:HALFLIFE</td>
<td>Californium 252, Halflife</td>
<td>CCA</td>
<td>8.33E+07</td>
<td>s</td>
</tr>
<tr>
<td>CM243:ATWEIGHT</td>
<td>Curium 243, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.43E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>CM243:EPAREL</td>
<td>Curium 243, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>CM243:HALFLIFE</td>
<td>Curium 243, Halflife</td>
<td>CCA</td>
<td>8.99E+08</td>
<td>s</td>
</tr>
<tr>
<td>CM244:ATWEIGHT</td>
<td>Curium 244, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.44E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>CM244:EPAREL</td>
<td>Curium 244, EPA Release Limit</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>CM244:HALFLIFE</td>
<td>Curium 244, Halflife</td>
<td>CCA</td>
<td>5.72E+08</td>
<td>s</td>
</tr>
<tr>
<td>CM245:ATWEIGHT</td>
<td>Curium 245, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.45E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>CM245:EPAREL</td>
<td>Curium 245, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>CM245:HALFLIFE</td>
<td>Curium 245, Halflife</td>
<td>CCA</td>
<td>2.68E+11</td>
<td>s</td>
</tr>
<tr>
<td>CM248:ATWEIGHT</td>
<td>Curium 248, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.48E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>CM248:EPAREL</td>
<td>Curium 248, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>CM248:HALFLIFE</td>
<td>Curium 248, Halflife</td>
<td>CCA</td>
<td>1.07E+13</td>
<td>s</td>
</tr>
<tr>
<td>CS137:ATWEIGHT</td>
<td>Cesium 137, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>1.37E+01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>CS137:EPAREL</td>
<td>Cesium 137, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+03</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>CS137:HALFLIFE</td>
<td>Cesium 137, Halflife</td>
<td>CCA</td>
<td>9.47E+08</td>
<td>s</td>
</tr>
<tr>
<td>NP237:ATWEIGHT</td>
<td>Neptunium 237, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.37E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>NP237:EPAREL</td>
<td>Neptunium 237, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>NP237:HALFLIFE</td>
<td>Neptunium 237, Halflife</td>
<td>CCA</td>
<td>6.75E+13</td>
<td>s</td>
</tr>
<tr>
<td>PA231:ATWEIGHT</td>
<td>Protactinium 231, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.31E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PA231:EPAREL</td>
<td>Protactinium 231, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PA231:HALFLIFE</td>
<td>Protactinium 231, Halflife</td>
<td>CCA</td>
<td>1.03E+12</td>
<td>s</td>
</tr>
<tr>
<td>PB210:ATWEIGHT</td>
<td>Lead 210, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.10E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PB210:EPAREL</td>
<td>Lead 210, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PB210:HALFLIFE</td>
<td>Lead 210, Halflife</td>
<td>CCA</td>
<td>7.04E+08</td>
<td>s</td>
</tr>
<tr>
<td>PM147:ATWEIGHT</td>
<td>Promethium 147, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>1.47E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PM147:EPAREL</td>
<td>Promethium 147, EPA Release Limit</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PM147:HALFLIFE</td>
<td>Promethium 147, Halflife</td>
<td>CCA</td>
<td>8.28E+07</td>
<td>s</td>
</tr>
<tr>
<td>PU238:ATWEIGHT</td>
<td>Plutonium 238, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.38E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PU238:DECAYNRG</td>
<td>Plutonium 238, Radionuclide disintegration energy</td>
<td>CRA19</td>
<td>5.59E+00</td>
<td>MeV</td>
</tr>
<tr>
<td>PU238:EPAREL</td>
<td>Plutonium 238, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PU238:HALFLIFE</td>
<td>Plutonium 238, Halflife</td>
<td>CCA</td>
<td>2.77E+09</td>
<td>s</td>
</tr>
<tr>
<td>PU239:ATWEIGHT</td>
<td>Plutonium 239, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.39E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PU239:DECAYNRG</td>
<td>Plutonium 239, Radionuclide disintegration energy</td>
<td>CRA19</td>
<td>5.24E+00</td>
<td>MeV</td>
</tr>
<tr>
<td>PU239:EPAREL</td>
<td>Plutonium 239, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PU239:HALFLIFE</td>
<td>Plutonium 239, Halflife</td>
<td>CCA</td>
<td>7.59E+11</td>
<td>s</td>
</tr>
<tr>
<td>PU240:ATWEIGHT</td>
<td>Plutonium 240, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.40E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PU240:DECAYNRG</td>
<td>Plutonium 240, Radionuclide disintegration energy</td>
<td>CRA19</td>
<td>5.26E+00</td>
<td>MeV</td>
</tr>
<tr>
<td>PU240:EPAREL</td>
<td>Plutonium 240, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PU240:HALFLIFE</td>
<td>Plutonium 240, Halflife</td>
<td>CCA</td>
<td>2.06E+11</td>
<td>s</td>
</tr>
<tr>
<td>PU241:ATWEIGHT</td>
<td>Plutonium 241, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.41E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PU241:EPAREL</td>
<td>Plutonium 241, EPA Release Limit</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PU241:HALFLIFE</td>
<td>Plutonium 241, Halflife</td>
<td>CCA</td>
<td>4.54E+08</td>
<td>s</td>
</tr>
<tr>
<td>PU242:ATWEIGHT</td>
<td>Plutonium 242, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.42E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PU242:DECAYNRG</td>
<td>Plutonium 242, Radionuclide disintegration energy</td>
<td>CRA19</td>
<td>4.99E+00</td>
<td>MeV</td>
</tr>
</tbody>
</table>
Table 28 – Radionuclide Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU242:EPAREL</td>
<td>Plutonium 242, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PU242:HALFLIFE</td>
<td>Plutonium 242, Halflife</td>
<td>CCA</td>
<td>1.22E+13</td>
<td>s</td>
</tr>
<tr>
<td>PU244:ATWEIGHT</td>
<td>Plutonium 244, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.44E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>PU244:EPAREL</td>
<td>Plutonium 244, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>PU244:HALFLIFE</td>
<td>Plutonium 244, Halflife</td>
<td>CCA</td>
<td>2.61E+15</td>
<td>s</td>
</tr>
<tr>
<td>RA226:ATWEIGHT</td>
<td>Radium 226, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.26E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>RA226:EPAREL</td>
<td>Radium 226, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>RA226:HALFLIFE</td>
<td>Radium 226, Halflife</td>
<td>CCA</td>
<td>5.05E+10</td>
<td>s</td>
</tr>
<tr>
<td>RA228:ATWEIGHT</td>
<td>Radium 228, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.28E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>RA228:EPAREL</td>
<td>Radium 228, EPA Release Limit</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>RA228:HALFLIFE</td>
<td>Radium 228, Halflife</td>
<td>CCA</td>
<td>2.11E+08</td>
<td>s</td>
</tr>
<tr>
<td>SM147:ATWEIGHT</td>
<td>Samarium 147, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>1.47E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>SM147:EPAREL</td>
<td>Samarium 147, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>SM147:HALFLIFE</td>
<td>Samarium 147, Halflife</td>
<td>CCA</td>
<td>3.38E+18</td>
<td>s</td>
</tr>
<tr>
<td>SR90:ATWEIGHT</td>
<td>Strontium 90, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>8.99E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>SR90:EPAREL</td>
<td>Strontium 90, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+03</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>SR90:HALFLIFE</td>
<td>Strontium 90, Halflife</td>
<td>CCA</td>
<td>9.19E+08</td>
<td>s</td>
</tr>
<tr>
<td>TH229:ATWEIGHT</td>
<td>Thorium 229, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.29E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>TH229:EPAREL</td>
<td>Thorium 229, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>TH229:HALFLIFE</td>
<td>Thorium 229, Halflife</td>
<td>CCA</td>
<td>2.32E+11</td>
<td>s</td>
</tr>
<tr>
<td>TH230:ATWEIGHT</td>
<td>Thorium 230, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.30E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>TH230:EPAREL</td>
<td>Thorium 230, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+01</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>TH230:HALFLIFE</td>
<td>Thorium 230, Halflife</td>
<td>CCA</td>
<td>2.43E+12</td>
<td>s</td>
</tr>
<tr>
<td>TH232:ATWEIGHT</td>
<td>Thorium 232, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.32E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>TH232:EPAREL</td>
<td>Thorium 232, EPA Release Limit</td>
<td>CCA</td>
<td>1.00E+01</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>TH232:HALFLIFE</td>
<td>Thorium 232, Halflife</td>
<td>CCA</td>
<td>4.43E+17</td>
<td>s</td>
</tr>
<tr>
<td>U233:ATWEIGHT</td>
<td>Uranium 233, Atomic Weight in kg/mole</td>
<td>CCA</td>
<td>2.33E-01</td>
<td>kg/mole</td>
</tr>
</tbody>
</table>
Table 28 – Radionuclide Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version 2</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>U233:EPAREL</td>
<td>Uranium 233, EPA Release Limit</td>
<td></td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>U233:HALFLIFE</td>
<td>Uranium 233, Halflife</td>
<td></td>
<td>5.00E+12</td>
<td>s</td>
</tr>
<tr>
<td>U234:ATWEIGHT</td>
<td>Uranium 234, Atomic Weight in kg/mole</td>
<td></td>
<td>2.34E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>U234:EPAREL</td>
<td>Uranium 234, EPA Release Limit</td>
<td></td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>U234:HALFLIFE</td>
<td>Uranium 234, Halflife</td>
<td></td>
<td>7.72E+12</td>
<td>s</td>
</tr>
<tr>
<td>U235:ATWEIGHT</td>
<td>Uranium 235, Atomic Weight in kg/mole</td>
<td></td>
<td>2.35E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>U235:EPAREL</td>
<td>Uranium 235, EPA Release Limit</td>
<td></td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>U236:ATWEIGHT</td>
<td>Uranium 236, Atomic Weight in kg/mole</td>
<td></td>
<td>2.36E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>U236:EPAREL</td>
<td>Uranium 236, EPA Release Limit</td>
<td></td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>U238:ATWEIGHT</td>
<td>Uranium 238, Atomic Weight in kg/mole</td>
<td></td>
<td>2.38E-01</td>
<td>kg/mole</td>
</tr>
<tr>
<td>U238:EPAREL</td>
<td>Uranium 238, EPA Release Limit</td>
<td></td>
<td>1.00E+02</td>
<td>Curies/wuf</td>
</tr>
<tr>
<td>U238:HALFLIFE</td>
<td>Uranium 238, Halflife</td>
<td></td>
<td>1.41E+17</td>
<td>s</td>
</tr>
</tbody>
</table>

NOTE: 1 The corresponding parameters for the lumped radionuclides (AM241L, PU238L, PU239L, TH230L, and U234L) are set equal to the parameters for radionuclides (AM241, PU238, PU239, TH230, and U234) during the ALGEBRACDB process, respectively.

2 The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 29 – Isotope Inventory

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM241:INVCHD</td>
<td>Americium 241, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.13E+06</td>
<td>Curies</td>
</tr>
<tr>
<td>AM241:INVRHD</td>
<td>Americium 241, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.30E+04</td>
<td>Curies</td>
</tr>
<tr>
<td>AM241L:INVCHD</td>
<td>Americium 241 Lumped with Plutonium 241, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.19E+06</td>
<td>Curies</td>
</tr>
<tr>
<td>AM241L:INVRHD</td>
<td>Americium 241 Lumped with Plutonium 241, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.45E+04</td>
<td>Curies</td>
</tr>
<tr>
<td>AM243:INVCHD</td>
<td>Americium 243, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>2.24E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>AM243:INVRHD</td>
<td>Americium 243, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>4.12E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>CF252:INVCHD</td>
<td>Californium 252, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>5.07E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>CF252:INVRHD</td>
<td>Californium 252, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.76E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>CM243:INVCHD</td>
<td>Curium 243, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>2.54E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>CM243:INVRHD</td>
<td>Curium 243, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>3.61E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>CM244:INVCHD</td>
<td>Curium 244, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>6.19E+03</td>
<td>Curies</td>
</tr>
<tr>
<td>CM244:INVRHD</td>
<td>Curium 244, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>3.32E+04</td>
<td>Curies</td>
</tr>
<tr>
<td>CM245:INVCHD</td>
<td>Curium 245, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>2.97E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>CM245:INVRHD</td>
<td>Curium 245, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.15E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>CM248:INVCHD</td>
<td>Curium 248, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>4.63E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>CM248:INVRHD</td>
<td>Curium 248, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.31E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>CS137:INVCHD</td>
<td>Cesium 137, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>6.16E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>CS137:INVRHD</td>
<td>Cesium 137, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.50E+05</td>
<td>Curies</td>
</tr>
<tr>
<td>NP237:INVCHD</td>
<td>Neptunium 237, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>2.75E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>NP237:INVRHD</td>
<td>Neptunium 237, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>6.96E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>PA231:INVCHD</td>
<td>Protactinium 231, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.59E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>PA231:INVRHD</td>
<td>Protactinium 231, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.04E-03</td>
<td>Curies</td>
</tr>
<tr>
<td>PB210:INVCHD</td>
<td>Lead 210, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>9.79E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>PB210:INVRHD</td>
<td>Lead 210, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.45E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>PM147:INVCHD</td>
<td>Promethium 147, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>4.40E-01</td>
<td>Curies</td>
</tr>
</tbody>
</table>
Table 29 – Isotope Inventory (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM147:INVRHD</td>
<td>Promethium 147, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.54E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>PU238:INVCHD</td>
<td>Plutonium 238, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>9.42E+05</td>
<td>Curies</td>
</tr>
<tr>
<td>PU238:INVRHD</td>
<td>Plutonium 238, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.25E+04</td>
<td>Curies</td>
</tr>
<tr>
<td>PU238L:INVCHD</td>
<td>Plutonium 238 Equals Plutonium 238 Inventory, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>9.42E+05</td>
<td>Curies</td>
</tr>
<tr>
<td>PU238L:INVRHD</td>
<td>Plutonium 238 Equals Plutonium 238 Inventory, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.25E+04</td>
<td>Curies</td>
</tr>
<tr>
<td>PU239:INVCHD</td>
<td>Plutonium 239, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>8.70E+05</td>
<td>Curies</td>
</tr>
<tr>
<td>PU239:INVRHD</td>
<td>Plutonium 239, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>4.22E+03</td>
<td>Curies</td>
</tr>
<tr>
<td>PU239L:INVCHD</td>
<td>Plutonium 239 Lumped with Plutonium 240 and Plutonium 242, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.19E+06</td>
<td>Curies</td>
</tr>
<tr>
<td>PU239L:INVRHD</td>
<td>Plutonium 239 Lumped with Plutonium 240 and Plutonium 242, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>7.63E+03</td>
<td>Curies</td>
</tr>
<tr>
<td>PU240:INVCHD</td>
<td>Plutonium 240, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>3.16E+05</td>
<td>Curies</td>
</tr>
<tr>
<td>PU240:INVRHD</td>
<td>Plutonium 240, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>3.16E+03</td>
<td>Curies</td>
</tr>
<tr>
<td>PU241:INVRHD</td>
<td>Plutonium 241, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.82E+06</td>
<td>Curies</td>
</tr>
<tr>
<td>PU241:INVRHD</td>
<td>Plutonium 241, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>4.53E+04</td>
<td>Curies</td>
</tr>
<tr>
<td>PU242:INVCHD</td>
<td>Plutonium 242, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.48E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>PU242:INVRHD</td>
<td>Plutonium 242, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.59E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>PU244:INVCHD</td>
<td>Plutonium 244, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>5.80E-03</td>
<td>Curies</td>
</tr>
<tr>
<td>PU244:INVRHD</td>
<td>Plutonium 244, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.82E-02</td>
<td>Curies</td>
</tr>
<tr>
<td>RA226:INVCHD</td>
<td>Radium 226, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.78E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>RA226:INVRHD</td>
<td>Radium 226, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.85E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>RA228:INVCHD</td>
<td>Radium 228, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>9.03E-02</td>
<td>Curies</td>
</tr>
<tr>
<td>RA228:INVRHD</td>
<td>Radium 228, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>4.55E-02</td>
<td>Curies</td>
</tr>
<tr>
<td>SM147:INVCHD</td>
<td>Samarium 147, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.23E-09</td>
<td>Curies</td>
</tr>
<tr>
<td>SM147:INVRHD</td>
<td>Samarium 147, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>9.40E-08</td>
<td>Curies</td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR90:INVCHD</td>
<td>Strontium 90, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>8.18E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>SR90:INVRHD</td>
<td>Strontium 90, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.96E+05</td>
<td>Curies</td>
</tr>
<tr>
<td>TH229:INVCHD</td>
<td>Thorium 229, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>3.80E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>TH229:INVRHD</td>
<td>Thorium 229, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>8.74E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>TH230:INVCHD</td>
<td>Thorium 230, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>3.98E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>TH230:INVRHD</td>
<td>Thorium 230, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.26E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>TH230L:INVCHD</td>
<td>Thorium 230 Lumped with Thorium 229, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>7.78E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>TH230L:INVRHD</td>
<td>Thorium 230 Lumped with Thorium 229, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>3.13E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>TH232:INVCHD</td>
<td>Thorium 232, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>9.60E-02</td>
<td>Curies</td>
</tr>
<tr>
<td>TH232:INVRHD</td>
<td>Thorium 232, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.26E-02</td>
<td>Curies</td>
</tr>
<tr>
<td>U233:INVCHD</td>
<td>Uranium 233, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>1.10E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>U233:INVRHD</td>
<td>Uranium 233, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.72E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>U234:INVCHD</td>
<td>Uranium 234, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>4.77E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>U234:INVRHD</td>
<td>Uranium 234, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>9.70E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>U234L:INVCHD</td>
<td>Uranium 234 Lumped with Uranium 233, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>5.86E+02</td>
<td>Curies</td>
</tr>
<tr>
<td>U234L:INVRHD</td>
<td>Uranium 234 Lumped with Uranium 233, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.69E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>U235:INVCHD</td>
<td>Uranium 235, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>4.56E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>U235:INVRHD</td>
<td>Uranium 235, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>1.85E+00</td>
<td>Curies</td>
</tr>
<tr>
<td>U236:INVCHD</td>
<td>Uranium 236, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>4.24E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>U236:INVRHD</td>
<td>Uranium 236, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>2.53E-01</td>
<td>Curies</td>
</tr>
<tr>
<td>U238:INVCHD</td>
<td>Uranium 238, Inventory of Contact Handled Design</td>
<td>CRA19</td>
<td>3.92E+01</td>
<td>Curies</td>
</tr>
<tr>
<td>U238:INVRHD</td>
<td>Uranium 238, Inventory of Remote Handled Design</td>
<td>CRA19</td>
<td>3.13E+00</td>
<td>Curies</td>
</tr>
</tbody>
</table>

NOTE: The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 30 – Waste Container Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON:ASDRUM</td>
<td>Reference Constant, Surface area of corrodable metal per drum</td>
<td>CCA</td>
<td>6.00E+00</td>
<td>m²</td>
</tr>
<tr>
<td>REFCON:DRROOM</td>
<td>Reference Constant, Number of drums, per room, in ideal packing</td>
<td>CCA</td>
<td>6.80E+03</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: ¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 31 – Stoichiometric Gas Generation Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ¹</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2:VISCO</td>
<td>Hydrogen Gas, Viscosity</td>
<td>CCA</td>
<td>8.93E-06</td>
<td>Pa*s</td>
</tr>
<tr>
<td>NITRATE:QINIT ²</td>
<td>Nitrate, Initial quantity of material in waste</td>
<td>CRA19</td>
<td>2.72E+07</td>
<td>moles</td>
</tr>
<tr>
<td>STEEL:STOIFX</td>
<td>Generic steel in waste, Stoichiometric factor - X</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>SULFATE:QINIT ²</td>
<td>Sulfate, Initial quantity of material in waste</td>
<td>CRA19</td>
<td>4.73E+06</td>
<td>moles</td>
</tr>
</tbody>
</table>

NOTE:

¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.

²The WAS_AREA:MOL_NO3 and WAS_AREA:MOL.SO4 are set equal to the NITRATE:QINIT and SULFATE:QINIT, respectively, during the ALGEBRACDB process.
Table 32 – Predisposal Cavities (Waste Area) Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ¹</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVITY_1:CAP_MOD</td>
<td>Cavity for Waste Panel, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:COMP_RCK</td>
<td>Cavity for Waste Panel, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CAVITY_1:KPT</td>
<td>Cavity for Waste Panel, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:PCT_A</td>
<td>Cavity for Waste Panel, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_1:PCT_EXP</td>
<td>Cavity for Waste Panel, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:PC_MAX</td>
<td>Cavity for Waste Panel, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_1:PORE_DIS</td>
<td>Cavity for Waste Panel, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:POROSITY</td>
<td>Cavity for Waste Panel, Effective porosity</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:PO_MIN</td>
<td>Cavity for Waste Panel, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_1:PRESSURE</td>
<td>Cavity for Waste Panel, Brine far-field pore pressure</td>
<td>PABC09</td>
<td>1.28E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_1:PRMX_LOG</td>
<td>Cavity for Waste Panel, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_1:PRMY_LOG</td>
<td>Cavity for Waste Panel, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_1:PRMZ_LOG</td>
<td>Cavity for Waste Panel, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_1:RELP_MOD</td>
<td>Cavity for Waste Panel, Model number, relative permeability model</td>
<td>AP132</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:SAT_IBRN</td>
<td>Cavity for Waste Panel, Initial Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:SAT_RBRN</td>
<td>Cavity for Waste Panel, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_1:SAT_RGAS</td>
<td>Cavity for Waste Panel, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:CAP_MOD</td>
<td>Cavity for Rest of Repository Waste Panels, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:COMP_RCK</td>
<td>Cavity for Rest of Repository Waste Panels, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CAVITY_2:KPT</td>
<td>Cavity for Rest of Repository Waste Panels, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:PCT_A</td>
<td>Cavity for Rest of Repository Waste Panels, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_2:PCT_EXP</td>
<td>Cavity for Rest of Repository Waste Panels, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:PC_MAX</td>
<td>Cavity for Rest of Repository Waste Panels, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVITY_2:PORE_DIS</td>
<td>Cavity for Rest of Repository Waste Panels, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:POROSITY</td>
<td>Cavity for Rest of Repository Waste Panels, Effective porosity</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:PO_MIN</td>
<td>Cavity for Rest of Repository Waste Panels, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_2:PRESSURE</td>
<td>Cavity for Rest of Repository Waste Panels, Brine far-field pore pressure</td>
<td>PABC09</td>
<td>1.28E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_2:PRMX_LOG</td>
<td>Cavity for Rest of Repository Waste Panels, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td>CAVITY_2:PRMY_LOG</td>
<td>Cavity for Rest of Repository Waste Panels, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td>CAVITY_2:PRMZ_LOG</td>
<td>Cavity for Rest of Repository Waste Panels, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m2)</td>
</tr>
<tr>
<td>CAVITY_2:RELP_MOD</td>
<td>Cavity for Rest of Repository Waste Panels, Model number, relative permeability model</td>
<td>AP132</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:SAT_IBRN</td>
<td>Cavity for Rest of Repository Waste Panels, Initial Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:SAT_RBRN</td>
<td>Cavity for Rest of Repository Waste Panels, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_2:SAT_RGAS</td>
<td>Cavity for Rest of Repository Waste Panels, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:CAP_MOD</td>
<td>Cavity for Operations and Experimental Areas, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:COMP_RCK</td>
<td>Cavity for Operations and Experimental Areas, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa$^{-1}$</td>
</tr>
<tr>
<td>CAVITY_3:KPT</td>
<td>Cavity for Operations and Experimental Areas, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:PCT_A</td>
<td>Cavity for Operations and Experimental Areas, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_3:PCT_EXP</td>
<td>Cavity for Operations and Experimental Areas, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:PC_MAX</td>
<td>Cavity for Operations and Experimental Areas, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
</tbody>
</table>
Table 32 – Predisposal Cavities (Waste Area) Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVITY_3:PORE_DIS</td>
<td>Cavity for Operations and Experimental Areas, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:POROSITY</td>
<td>Cavity for Operations and Experimental Areas, Effective porosity</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:PO_MIN</td>
<td>Cavity for Operations and Experimental Areas, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_3:PRESSURE</td>
<td>Cavity for Operations and Experimental Areas, Brine far-field pore pressure</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_3:PRMX_LOG</td>
<td>Cavity for Operations and Experimental Areas, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_3:PRMY_LOG</td>
<td>Cavity for Operations and Experimental Areas, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_3:PRMZ_LOG</td>
<td>Cavity for Operations and Experimental Areas, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_3:RELP_MOD</td>
<td>Cavity for Operations and Experimental Areas, Model number, relative permeability model</td>
<td>AP132</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:SAT_IBRN</td>
<td>Cavity for Operations and Experimental Areas, Initial Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:SAT_RBRN</td>
<td>Cavity for Operations and Experimental Areas, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_3:SAT_RGAS</td>
<td>Cavity for Operations and Experimental Areas, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:CAP_MOD</td>
<td>Cavity for Panel Closures and Shaft, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:COMP_RCK</td>
<td>Cavity for Panel Closures and Shaft, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CAVITY_4:KPT</td>
<td>Cavity for Panel Closures and Shaft, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:PCT_A</td>
<td>Cavity for Panel Closures and Shaft, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_4:PCT_EXP</td>
<td>Cavity for Panel Closures and Shaft, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 32 – Predisposal Cavities (Waste Area) Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version 1</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAVITY_4:PC_MAX</td>
<td>Cavity for Panel Closures and Shaft, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_4:PORE_DIS</td>
<td>Cavity for Panel Closures and Shaft, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:POROSITY</td>
<td>Cavity for Panel Closures and Shaft, Effective porosity</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:PO_MIN</td>
<td>Cavity for Panel Closures and Shaft, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_4:PRESSURE</td>
<td>Cavity for Panel Closures and Shaft, Brine far-field pore pressure</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_4:PRMX_LOG</td>
<td>Cavity for Panel Closures and Shaft, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_4:PRMY_LOG</td>
<td>Cavity for Panel Closures and Shaft, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_4:PRMZ_LOG</td>
<td>Cavity for Panel Closures and Shaft, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_4:RELP_MOD</td>
<td>Cavity for Panel Closures and Shaft, Model number, relative permeability model</td>
<td>AP132</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:SAT_IBRN</td>
<td>Cavity for Panel Closures and Shaft, Initial Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:SAT_RBRN</td>
<td>Cavity for Panel Closures and Shaft, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_4:SAT_RGAS</td>
<td>Cavity for Panel Closures and Shaft, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:CAP_MOD</td>
<td>Cavity for PCS; -5 to 0 years, Model number, capillary pressure model</td>
<td>CRA14_SE N4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:COMP_RCK</td>
<td>Cavity for PCS; -5 to 0 years, Bulk Compressibility</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>CAVITY_5:KPT</td>
<td>Cavity for PCS; -5 to 0 years, Flag for Permeability Determined Threshold</td>
<td>CRA14_SE N3</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:PCT_A</td>
<td>Cavity for PCS; -5 to 0 years, Threshold Pressure Linear Parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_5:PCT_EXP</td>
<td>Cavity for PCS; -5 to 0 years, Threshold pressure exponential parameter</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>CAVITY_5:PC_MAX</td>
<td>Cavity for PCS; -5 to 0 years, Maximum allowable capillary pressure</td>
<td>CRA14_SEN3</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_5:PORE_DIS</td>
<td>Cavity for PCS; -5 to 0 years, Brooks-Corey pore distribution parameter</td>
<td>CRA14_SEN3</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:POROSITY</td>
<td>Cavity for PCS; -5 to 0 years, Effective porosity</td>
<td>CRA14_SEN4</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:PO_MIN</td>
<td>Cavity for PCS; -5 to 0 years, Minimum brine pressure for capillary model KPC=3</td>
<td>CRA14_SEN3</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_5:PRESSURE</td>
<td>Cavity for PCS; -5 to 0 years, Brine far-field pore pressure</td>
<td>CRA14_SEN3</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CAVITY_5:PRMX_LOG</td>
<td>Cavity for PCS; -5 to 0 years, Log of intrinsic permeability, X-direction</td>
<td>CRA14_SEN4</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_5:PRMY_LOG</td>
<td>Cavity for PCS; -5 to 0 years, Log of intrinsic permeability, Y-direction</td>
<td>CRA14_SEN4</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_5:PRMZ_LOG</td>
<td>Cavity for PCS; -5 to 0 years, Log of intrinsic permeability, Z-direction</td>
<td>CRA14_SEN4</td>
<td>-1.00E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>CAVITY_5:RELP_MOD</td>
<td>Cavity for PCS; -5 to 0 years, Model number, relative permeability model</td>
<td>CRA14_SEN4</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:SAT_IBRN</td>
<td>Cavity for PCS; -5 to 0 years, Initial Brine Saturation</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:SAT_RBRN</td>
<td>Cavity for PCS; -5 to 0 years, Residual Brine Saturation</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CAVITY_5:SAT_RGAS</td>
<td>Cavity for PCS; -5 to 0 years, Residual Gas Saturation</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 33 – Operations Region Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPS_AREA:CAP_MOD</td>
<td>Operations Region, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:COMP_RCK</td>
<td>Operations Region, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>OPS_AREA:KPT</td>
<td>Operations Region, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:PCT_A</td>
<td>Operations Region, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>OPS_AREA:PCT_EXP</td>
<td>Operations Region, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:PC_MAX</td>
<td>Operations Region, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>OPS_AREA:PORE_DIS</td>
<td>Operations Region, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:POROSITY</td>
<td>Operations Region, Effective porosity</td>
<td>CCA</td>
<td>1.80E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:PO_MIN</td>
<td>Operations Region, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>OPS_AREA:PRESSURE</td>
<td>Operations Region, Brine far-field pore pressure</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>OPS_AREA:PRMX_LOG</td>
<td>Operations Region, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>OPS_AREA:PRMY_LOG</td>
<td>Operations Region, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>OPS_AREA:PRMZ_LOG</td>
<td>Operations Region, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>OPS_AREA:RELP_MOD</td>
<td>Operations Region, Model number, relative permeability model</td>
<td>AP132</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:SAT_IBRN</td>
<td>Operations Region, Initial Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:SAT_RBRN</td>
<td>Operations Region, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>OPS_AREA:SAT_RGAS</td>
<td>Operations Region, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: ¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 34 – Area Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version 1</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP_AREA:CAP_MOD</td>
<td>Experimental Area, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:COMP_RCK</td>
<td>Experimental Area, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>EXP_AREA:KPT</td>
<td>Experimental Area, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:PCT_A</td>
<td>Experimental Area, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>EXP_AREA:PCT_EXP</td>
<td>Experimental Area, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:PC_MAX</td>
<td>Experimental Area, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>EXP_AREA:PORE_DIS</td>
<td>Experimental Area, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:POROSITY</td>
<td>Experimental Area, Effective porosity</td>
<td>CCA</td>
<td>1.80E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:PO_MIN</td>
<td>Experimental Area, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>EXP_AREA:PRESSURE</td>
<td>Experimental Area, Brine far-field pore pressure</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>EXP_AREA:PRMX_LOG</td>
<td>Experimental Area, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>EXP_AREA:PRMY_LOG</td>
<td>Experimental Area, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>EXP_AREA:PRMZ_LOG</td>
<td>Experimental Area, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-1.10E+01</td>
<td>log(m²)</td>
</tr>
<tr>
<td>EXP_AREA:RELP_MOD</td>
<td>Experimental Area, Model number, relative permeability model</td>
<td>AP132</td>
<td>1.10E+01</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:SAT_IBRN</td>
<td>Experimental Area, Initial Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:SAT_RBRN</td>
<td>Experimental Area, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>EXP_AREA:SAT_RGAS</td>
<td>Experimental Area, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: ¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version (^1)</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPERM_Z:CAP_MOD</td>
<td>Impermeable Zones, Model number, capillary pressure model</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:COMP_RCK</td>
<td>Impermeable Zones, Bulk Compressibility</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa(^{-1})</td>
</tr>
<tr>
<td>IMPERM_Z:KPT</td>
<td>Impermeable Zones, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:PCT_A</td>
<td>Impermeable Zones, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>Pa</td>
</tr>
<tr>
<td>IMPERM_Z:PCT_EXP</td>
<td>Impermeable Zones, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:PC_MAX</td>
<td>Impermeable Zones, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>IMPERM_Z:PORE_DIS</td>
<td>Impermeable Zones, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:POROSITY</td>
<td>Impermeable Zones, Effective porosity</td>
<td>CCA</td>
<td>5.00E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:PO_MIN</td>
<td>Impermeable Zones, Minimum brine pressure for capillary model KPC=3</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>IMPERM_Z:PRMX_LOG</td>
<td>Impermeable Zones, Log of intrinsic permeability, X-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m(^2))</td>
</tr>
<tr>
<td>IMPERM_Z:PRMY_LOG</td>
<td>Impermeable Zones, Log of intrinsic permeability, Y-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m(^2))</td>
</tr>
<tr>
<td>IMPERM_Z:PRMZ_LOG</td>
<td>Impermeable Zones, Log of intrinsic permeability, Z-direction</td>
<td>CCA</td>
<td>-3.50E+01</td>
<td>log(m(^2))</td>
</tr>
<tr>
<td>IMPERM_Z:RELP_MOD</td>
<td>Impermeable Zones, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:SAT_RBRN</td>
<td>Impermeable Zones, Residual Brine Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>IMPERM_Z:SAT_RGAS</td>
<td>Impermeable Zones, Residual Gas Saturation</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTE: \(^1\)The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 36 – Castile Brine Reservoir Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASTILER:CAP.MOD</td>
<td>Castile Brine Reservoir, Model number, capillary pressure model</td>
<td>CCA</td>
<td>2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:KPT</td>
<td>Castile Brine Reservoir, Flag for Permeability Determined Threshold</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:PCT_A</td>
<td>Castile Brine Reservoir, Threshold Pressure Linear Parameter</td>
<td>CCA</td>
<td>5.60E-01</td>
<td>Pa</td>
</tr>
<tr>
<td>CASTILER:PCT_EXP</td>
<td>Castile Brine Reservoir, Threshold pressure exponential parameter</td>
<td>CCA</td>
<td>-3.46E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:PC_MAX</td>
<td>Castile Brine Reservoir, Maximum allowable capillary pressure</td>
<td>CCA</td>
<td>1.00E+08</td>
<td>Pa</td>
</tr>
<tr>
<td>CASTILER:PORE_DIS</td>
<td>Castile Brine Reservoir, Brooks-Corey pore distribution parameter</td>
<td>CCA</td>
<td>7.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:POROSITY</td>
<td>Castile Brine Reservoir, Effective porosity</td>
<td>CCA</td>
<td>8.70E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:PO_MIN</td>
<td>Castile Brine Reservoir, Minimum brine pressure for capillary model</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa</td>
</tr>
<tr>
<td>CASTILER:RELP.MOD</td>
<td>Castile Brine Reservoir, Model number, relative permeability model</td>
<td>CCA</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:SAT_IBRN</td>
<td>Castile Brine Reservoir, Initial Brine Saturation</td>
<td>CCA</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:SAT_RB</td>
<td>Castile Brine Reservoir, Residual Brine Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>CASTILER:SAT_RGAS</td>
<td>Castile Brine Reservoir, Residual Gas Saturation</td>
<td>CCA</td>
<td>2.00E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:
1. This parameter has an assigned distribution but uses the default constant value for all vectors.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
Table 37 – Reference Constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON:ABERM</td>
<td>Reference Constant, Area of Berm Placed Over Waste Panel</td>
<td>SDI</td>
<td>6.29E+05</td>
<td>m²</td>
</tr>
<tr>
<td>REFCON:ACF_CH4</td>
<td>Reference Constant, Acentric Factors - CH4</td>
<td>CCA</td>
<td>1.00E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:ACF_CO2</td>
<td>Reference Constant, Acentric Factors - CO2</td>
<td>CCA</td>
<td>2.31E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:ACF_H2</td>
<td>Reference Constant, Acentric Factors - H2</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:ACF_H2S</td>
<td>Reference Constant, Acentric Factors - H2S</td>
<td>CCA</td>
<td>1.00E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:ACF_N2</td>
<td>Reference Constant, Acentric Factors - N2</td>
<td>CCA</td>
<td>4.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:ACF_O2</td>
<td>Reference Constant, Acentric Factors - O2</td>
<td>CCA</td>
<td>1.90E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:AL2</td>
<td>Reference Constant, Log2</td>
<td>CCA</td>
<td>6.93E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:AREA_CH</td>
<td>Reference Constant, Area For CH Waste Disposal in CCDFGF Model</td>
<td>SDI</td>
<td>1.12E+05</td>
<td>m²</td>
</tr>
<tr>
<td>REFCON:AREA_RH</td>
<td>Reference Constant, Area for RH waste disposal in CCDFGF model</td>
<td>CCA</td>
<td>1.58E+04</td>
<td>m²</td>
</tr>
<tr>
<td>REFCON:ATMPA</td>
<td>Reference Constant, Conversion from std. atmosphere to Pa</td>
<td>CCA</td>
<td>1.01E+05</td>
<td>Pa/atm</td>
</tr>
<tr>
<td>REFCON:AVOGADRO</td>
<td>Reference Constant, Avogadro's number</td>
<td>CCA</td>
<td>6.02E+23</td>
<td>mole<sup>-1</sup></td>
</tr>
<tr>
<td>REFCON:BIP_11</td>
<td>Reference Constant, H2:H2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_12</td>
<td>Reference Constant, H2:CO2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-3.43E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_13</td>
<td>Reference Constant, H2:CH4 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-2.22E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_14</td>
<td>Reference Constant, H2:N2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>9.78E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_15</td>
<td>Reference Constant, H2:H2S - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_16</td>
<td>Reference Constant, H2:O2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_21</td>
<td>Reference Constant, CO2:H2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-3.43E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_22</td>
<td>Reference Constant, CO2:CO2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_23</td>
<td>Reference Constant, CO2:CH4 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>9.33E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_24</td>
<td>Reference Constant, CO2:N2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-3.15E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_26</td>
<td>Reference Constant, CO2:O2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_31</td>
<td>Reference Constant, CH4:H2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-2.22E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_32</td>
<td>Reference Constant, CH4:CO2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>9.33E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_33</td>
<td>Reference Constant, CH4:CH4 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 37 – Reference Constants (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON:BIP_34</td>
<td>Reference Constant, CH4:N2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>2.78E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_35</td>
<td>Reference Constant, CH4:H2S - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>8.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_36</td>
<td>Reference Constant, CH4:O2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_41</td>
<td>Reference Constant, N2:H2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>9.78E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_42</td>
<td>Reference Constant, N2:CO2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-3.15E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_43</td>
<td>Reference Constant, N2:CH4 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>2.78E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_44</td>
<td>Reference Constant, N2:N2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_51</td>
<td>Reference Constant, H2S:H2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>1.70E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_52</td>
<td>Reference Constant, H2S:CO2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_53</td>
<td>Reference Constant, H2S:CH4 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>8.50E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_54</td>
<td>Reference Constant, H2S:N2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>1.70E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_55</td>
<td>Reference Constant, H2S:H2S - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_56</td>
<td>Reference Constant, H2S:O2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_61</td>
<td>Reference Constant, O2:H2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_62</td>
<td>Reference Constant, O2:CO2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_63</td>
<td>Reference Constant, O2:CH4 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_64</td>
<td>Reference Constant, O2:N2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>-7.80E-03</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_65</td>
<td>Reference Constant, O2:H2S - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:BIP_66</td>
<td>Reference Constant, O2:O2 - Binary Interaction Parameter</td>
<td>CRA1</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:CITOBQ</td>
<td>Reference Constant, Curie to Becquerel Conversion</td>
<td>CCA</td>
<td>3.70E+10</td>
<td>Bq/Curie</td>
</tr>
<tr>
<td>REFCON:DARM2</td>
<td>Reference Constant, Conversion from darcy to m^2</td>
<td>CCA</td>
<td>9.87E-13</td>
<td>m^2/darcy</td>
</tr>
<tr>
<td>REFCON:DAYS2C</td>
<td>Reference Constant, Conversion from days to seconds</td>
<td>CCA</td>
<td>8.64E+04</td>
<td>s/day</td>
</tr>
<tr>
<td>REFCON:DIP1</td>
<td>Reference Constant, Down-dip angle or slope of the repository towards the panel modeled in BRAGFLO.</td>
<td>PABC09</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:DIP2</td>
<td>Reference Constant, Down-dip angle or slope of the Rustler Formation towards the panel modeled in BRAGFLO.</td>
<td>PABC09</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 37 – Reference Constants (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version 1</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON:DN_CELL</td>
<td>Reference Constant, Density of Cellulosics Materials for BRAGFLO</td>
<td>AP132</td>
<td>1.10E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_FE</td>
<td>Reference Constant, Density of Iron</td>
<td>AP132</td>
<td>7.87E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_FEOH2</td>
<td>Reference Constant, Density of Iron Hydroxide</td>
<td>AP132</td>
<td>3.40E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_FES</td>
<td>Reference Constant, Density of Iron Sulfide</td>
<td>AP132</td>
<td>4.70E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_HYDRO</td>
<td>Reference Constant, Density of Hydromagnesite</td>
<td>CRA14</td>
<td>2.30E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_MGCO3</td>
<td>Reference Constant, Density of Magnesium Carbonate</td>
<td>AP132</td>
<td>3.05E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_MGO</td>
<td>Reference Constant, Density of Magnesium Oxide</td>
<td>AP132</td>
<td>3.60E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_MGOH2</td>
<td>Reference Constant, Density of Magnesium Hydroxide</td>
<td>AP132</td>
<td>2.37E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:DN_SALT</td>
<td>Reference Constant, Density of Salts for BRAGFLO</td>
<td>AP132</td>
<td>2.18E+03</td>
<td>kg/m³</td>
</tr>
<tr>
<td>REFCON:F3M3</td>
<td>Reference Constant, Conversion from ft³ to m³</td>
<td>CCA</td>
<td>2.83E-02</td>
<td>m³/ft³</td>
</tr>
<tr>
<td>REFCON:FTM</td>
<td>Reference Constant, Conversion from feet to meter</td>
<td>CCA</td>
<td>3.05E-01</td>
<td>m/ft</td>
</tr>
<tr>
<td>REFCON:FVRW</td>
<td>Reference Constant, Fraction of Emplaced RH Volume Occupied by RH Waste in CCDFGF Model</td>
<td>CRA1</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:FVW</td>
<td>Reference Constant, Fraction of Repository Volume Occupied By Waste In CCDFGF Model</td>
<td>SDI</td>
<td>3.85E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:GRAVACC</td>
<td>Reference Constant, Standard gravitational acceleration</td>
<td>CCA</td>
<td>9.81E+00</td>
<td>m²/s²</td>
</tr>
<tr>
<td>REFCON:HRH</td>
<td>Reference Constant, Emplaced Height of Remote Handled Waste in CCDFGF Model</td>
<td>CCA</td>
<td>5.09E-01</td>
<td>m</td>
</tr>
<tr>
<td>REFCON:MW_CELL</td>
<td>Reference Constant, Carbon Normalized Molecular Weight of Cellulose</td>
<td>CRA1</td>
<td>2.70E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_CH4</td>
<td>Reference Constant, Molecular Weight of CH4</td>
<td>CRA1</td>
<td>1.60E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_CO2</td>
<td>Reference Constant, Molecular Weight of CO2</td>
<td>CRA1</td>
<td>4.40E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_FE</td>
<td>Reference Constant, Molecular Weight - FE</td>
<td>CCA</td>
<td>5.58E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_FEOH2</td>
<td>Reference Constant, Molecular Weight of Iron Hydroxide</td>
<td>AP132</td>
<td>8.99E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_FES</td>
<td>Reference Constant, Molecular Weight of Iron Sulfide</td>
<td>AP132</td>
<td>8.79E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_H2</td>
<td>Reference Constant, Molecular Weight - H2</td>
<td>CCA</td>
<td>2.02E-03</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_H2O</td>
<td>Reference Constant, Molecular Weight - H2O</td>
<td>CCA</td>
<td>1.80E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_H2S</td>
<td>Reference Constant, Molecular Weight of H2S</td>
<td>CCA</td>
<td>3.41E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_HYDRO</td>
<td>Reference Constant, Molecular Weight of Hydromagnesite</td>
<td>CRA14</td>
<td>4.68E-01</td>
<td>kg/mole</td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON:MW_MGCO3</td>
<td>Reference Constant, Molecular Weight of Magnesium Carbonate</td>
<td>AP132</td>
<td>8.43E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_MGO</td>
<td>Reference Constant, Molecular Weight of Magnesium Oxide</td>
<td>AP132</td>
<td>4.03E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_MGOH2</td>
<td>Reference Constant, Molecular Weight of Magnesium Hydroxide</td>
<td>AP132</td>
<td>5.83E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_N2</td>
<td>Reference Constant, Molecular Weight of N2</td>
<td>CRA1</td>
<td>2.80E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_NACL</td>
<td>Reference Constant, Molecular Weight of NaCl</td>
<td>CRA1</td>
<td>5.84E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:MW_O2</td>
<td>Reference Constant, Molecular Weight of O2</td>
<td>CRA1</td>
<td>3.20E-02</td>
<td>kg/mole</td>
</tr>
<tr>
<td>REFCON:OMEGAA</td>
<td>Reference Constant, Constants for RKS EOS</td>
<td>CCA</td>
<td>4.27E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:OMEGAB</td>
<td>Reference Constant, Constants for RDS EOS</td>
<td>CCA</td>
<td>8.66E-02</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:PC_CH4</td>
<td>Reference Constant, Critical Pressure of CH4</td>
<td>CCA</td>
<td>4.62E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>REFCON:PC_CO2</td>
<td>Reference Constant, Critical Pressure of CO2</td>
<td>CCA</td>
<td>7.38E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>REFCON:PC_H2</td>
<td>Reference Constant, Critical Pressure of H2</td>
<td>CCA</td>
<td>2.05E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>REFCON:PC_H2S</td>
<td>Reference Constant, Critical Pressure of H2S</td>
<td>CCA</td>
<td>9.01E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>REFCON:PC_N2</td>
<td>Reference Constant, Critical Pressure of N2</td>
<td>CCA</td>
<td>3.39E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>REFCON:PC_O2</td>
<td>Reference Constant, Critical Pressure of O2</td>
<td>CCA</td>
<td>5.08E+06</td>
<td>Pa</td>
</tr>
<tr>
<td>REFCON:PI</td>
<td>Reference Constant, Mathematical constant: PI</td>
<td>CCA</td>
<td>3.14E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:PLASFAC</td>
<td>Reference Constant, Mass ratio of plastics to equivalent carbon.</td>
<td>PABC09</td>
<td>1.70E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:PSIPA</td>
<td>Reference Constant, Conversion from psi to pascal</td>
<td>CCA</td>
<td>6.89E+03</td>
<td>Pa*in²/lb</td>
</tr>
<tr>
<td>REFCON:R</td>
<td>Reference Constant, Gas constant R</td>
<td>CCA</td>
<td>8.31E+00</td>
<td>J/mole*K</td>
</tr>
<tr>
<td>REFCON:SECYR</td>
<td>Reference Constant, Seconds to years Conversion</td>
<td>CCA</td>
<td>3.17E-08</td>
<td>yr/s</td>
</tr>
<tr>
<td>REFCON:STCO_10</td>
<td>Reference Constant, Fe Corrosion: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_11</td>
<td>Reference Constant, Fe Corrosion:H2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_12</td>
<td>Reference Constant, Fe Corrosion:H2O Stoichiometric Coefficient</td>
<td>AP132</td>
<td>-2.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_13</td>
<td>Reference Constant, Fe Corrosion:Fe Stoichiometric Coefficient</td>
<td>AP132</td>
<td>-1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_14</td>
<td>Reference Constant, Fe Corrosion:Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_15</td>
<td>Reference Constant, Fe Corrosion:FeOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_16</td>
<td>Reference Constant, Fe Corrosion:FeS Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>REFCON:STCO_17</td>
<td>Reference Constant, Fe Corrosion:MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_18</td>
<td>Reference Constant, Fe Corrosion:MgOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_19</td>
<td>Reference Constant, Fe Corrosion:MgCO3 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_20</td>
<td>Reference Constant, Microbial Gas Generation: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_21</td>
<td>Reference Constant, Microbial Gas Generation:H2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_22</td>
<td>Reference Constant, Microbial Gas Generation:H2O Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_23</td>
<td>Reference Constant, Microbial Gas Generation:Fe Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_24</td>
<td>Reference Constant, Microbial Gas Generation:Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>-1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_25</td>
<td>Reference Constant, Microbial Gas Generation:FeOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_26</td>
<td>Reference Constant, Microbial Gas Generation:FeS Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_27</td>
<td>Reference Constant, Microbial Gas Generation:MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_28</td>
<td>Reference Constant, Microbial Gas Generation:MgOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_29</td>
<td>Reference Constant, Microbial Gas Generation:MgCO3 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_30</td>
<td>Reference Constant, FeOH2 Sulfidation: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_31</td>
<td>Reference Constant, FeOH2 Sulfidation:H2 Stoichiometric Coefficient</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_32</td>
<td>Reference Constant, FeOH2 Sulfidation:H2O Stoichiometric Coefficient</td>
<td>CRA14_SE N4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_33</td>
<td>Reference Constant, FeOH2 Sulfidation:Fe Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version 1</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>REFCON:STCO_34</td>
<td>Reference Constant, FeOH2 Sulfidation:Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_35</td>
<td>Reference Constant, FeOH2 Sulfidation:FeOH2 Stoichiometric Coefficient</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_36</td>
<td>Reference Constant, FeOH2 Sulfidation:FeS Stoichiometric Coefficient</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_37</td>
<td>Reference Constant, FeOH2 Sulfidation:MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_38</td>
<td>Reference Constant, FeOH2 Sulfidation:MgOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_39</td>
<td>Reference Constant, FeOH2 Sulfidation:MgCO3 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_40</td>
<td>Reference Constant, Metallic Fe Sulfidation: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_41</td>
<td>Reference Constant, Metallic Fe Sulfidation:H2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_42</td>
<td>Reference Constant, Metallic Fe Sulfidation:H2O Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_43</td>
<td>Reference Constant, Metallic Fe Sulfidation:Fe Stoichiometric Coefficient</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_44</td>
<td>Reference Constant, Metallic Fe Sulfidation:Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_45</td>
<td>Reference Constant, Metallic Fe Sulfidation:FeOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_46</td>
<td>Reference Constant, Metallic Fe Sulfidation:FeS Stoichiometric Coefficient</td>
<td>CRA14_SEN4</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_47</td>
<td>Reference Constant, Metallic Fe Sulfidation:MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_48</td>
<td>Reference Constant, Metallic Fe Sulfidation:MgOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_49</td>
<td>Reference Constant, Metallic Fe Sulfidation:MgCO3 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>REFCON:STCO_50</td>
<td>Reference Constant, MgO Hydration: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_51</td>
<td>Reference Constant, MgO Hydration:H2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_52</td>
<td>Reference Constant, MgO Hydration:H2O Stoichiometric Coefficient</td>
<td>AP132</td>
<td>-1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_53</td>
<td>Reference Constant, MgO Hydration:Fe Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_54</td>
<td>Reference Constant, MgO Hydration:Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_55</td>
<td>Reference Constant, MgO Hydration:FeOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_56</td>
<td>Reference Constant, MgO Hydration:FeS Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_57</td>
<td>Reference Constant, MgO Hydration:MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>-1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_58</td>
<td>Reference Constant, MgO Hydration:MgOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_59</td>
<td>Reference Constant, MgO Hydration:MgCO3 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_60</td>
<td>Reference Constant, MgOH2 Carbonation: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>2.50E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_61</td>
<td>Reference Constant, MgOH2 Carbonation:H2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_62</td>
<td>Reference Constant, MgOH2 Carbonation:H2O Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_63</td>
<td>Reference Constant, MgOH2 Carbonation:Fe Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_64</td>
<td>Reference Constant, MgOH2 Carbonation:Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_65</td>
<td>Reference Constant, MgOH2 Carbonation:FeOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_66</td>
<td>Reference Constant, MgOH2 Carbonation:FeS Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
<td>Version</td>
<td>Value</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>REFCON:STCO_67</td>
<td>Reference Constant, MgOH2 Carbonation: MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_68</td>
<td>Reference Constant, MgOH2 Carbonation: MgOH2 Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>-1.25E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_69</td>
<td>Reference Constant, MgOH2 Carbonation: MgCO3 Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_70</td>
<td>Reference Constant, MgO Carbonation: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_71</td>
<td>Reference Constant, MgO Carbonation: H2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_72</td>
<td>Reference Constant, MgO Carbonation: H2O Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_73</td>
<td>Reference Constant, MgO Carbonation: Fe Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_74</td>
<td>Reference Constant, MgO Carbonation: Cellulosics Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_75</td>
<td>Reference Constant, MgO Carbonation: FeOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_76</td>
<td>Reference Constant, MgO Carbonation: FeS Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_77</td>
<td>Reference Constant, MgO Carbonation: MgO Stoichiometric Coefficient</td>
<td>AP132</td>
<td>-1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_78</td>
<td>Reference Constant, MgO Carbonation: MgOH2 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_79</td>
<td>Reference Constant, MgO Carbonation: MgCO3 Stoichiometric Coefficient</td>
<td>AP132</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_80</td>
<td>Reference Constant, Hydromagnesite Conversion: Hydromagnesite Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>-1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_81</td>
<td>Reference Constant, Hydromagnesite Conversion: H2 Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_82</td>
<td>Reference Constant, Hydromagnesite Conversion: H2O Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Table 37 – Reference Constants (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version ¹</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON:STCO_83</td>
<td>Reference Constant, Hydromagnesite Conversion: Fe Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_84</td>
<td>Reference Constant, Hydromagnesite Conversion: Cellulosics Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_85</td>
<td>Reference Constant, Hydromagnesite Conversion: FeOH2 Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_86</td>
<td>Reference Constant, Hydromagnesite Conversion: FeS Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_87</td>
<td>Reference Constant, Hydromagnesite Conversion: MgO Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_88</td>
<td>Reference Constant, Hydromagnesite Conversion: MgOH2 Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:STCO_89</td>
<td>Reference Constant, Hydromagnesite Conversion: MgCO3 Stoichiometric Coefficient</td>
<td>CRA14</td>
<td>4.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>REFCON:TC_CH4</td>
<td>Reference Constant, Critical temperature: Methane (CH4) Stoichiometric Coefficient</td>
<td>CCA</td>
<td>1.91E+02</td>
<td>K</td>
</tr>
<tr>
<td>REFCON:TC_CO2</td>
<td>Reference Constant, Critical temperature: Carbon Dioxide (CO2) Stoichiometric Coefficient</td>
<td>CCA</td>
<td>3.04E+02</td>
<td>K</td>
</tr>
<tr>
<td>REFCON:TC_H2</td>
<td>Reference Constant, Critical temperature: Hydrogen (H2) Stoichiometric Coefficient</td>
<td>CCA</td>
<td>4.36E+01</td>
<td>K</td>
</tr>
<tr>
<td>REFCON:TC_H2S</td>
<td>Reference Constant, Critical temperature: Hydrogen Sulfide (H2S) Stoichiometric Coefficient</td>
<td>CCA</td>
<td>3.74E+02</td>
<td>K</td>
</tr>
<tr>
<td>REFCON:TC_N2</td>
<td>Reference Constant, Critical temperature: Nitrogen (N2) Stoichiometric Coefficient</td>
<td>CCA</td>
<td>1.26E+02</td>
<td>K</td>
</tr>
<tr>
<td>REFCON:TC_O2</td>
<td>Reference Constant, Critical temperature: Oxygen (O2) Stoichiometric Coefficient</td>
<td>CCA</td>
<td>1.55E+02</td>
<td>K</td>
</tr>
<tr>
<td>REFCON:VPANLEX</td>
<td>Reference Constant, Excavated volume of one panel</td>
<td>CCA</td>
<td>4.61E+04</td>
<td>m³</td>
</tr>
<tr>
<td>REFCON:VREPOS</td>
<td>Reference Constant, Excavated storage volume of repository</td>
<td>SDI</td>
<td>4.38E+05</td>
<td>m³</td>
</tr>
<tr>
<td>REFCON:VROOM</td>
<td>Reference Constant, Volume of one room in repository</td>
<td>CCA</td>
<td>3.64E+03</td>
<td>m³</td>
</tr>
<tr>
<td>REFCON:YRSEC</td>
<td>Reference Constant, Conversion from mean solar or tropical year to seconds</td>
<td>CCA</td>
<td>3.16E+07</td>
<td>s/yr</td>
</tr>
</tbody>
</table>

NOTE: ¹The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Version</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL:DBRMINBV</td>
<td>Information that applies globally, Minimum volume of brine in the repository required for a direct brine release.</td>
<td>PABC09</td>
<td>1.74E+04</td>
<td>m³</td>
</tr>
<tr>
<td>GLOBAL:FPICD</td>
<td>Information that applies globally, PIC multiplicative factor for human intrusion by drilling</td>
<td>TBM</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:FPICM</td>
<td>Information that applies globally, PIC multiplicative factor for human intrusion by mining</td>
<td>TBM</td>
<td>1.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:GH2AVG</td>
<td>Information that applies globally, Brine Radiolysis G-value - G(H2)</td>
<td>CRA19</td>
<td>1.40E-02</td>
<td>molecule/eV</td>
</tr>
<tr>
<td>GLOBAL:LAMBDAD</td>
<td>Information that applies globally, Drilling Rate Per Unit Area</td>
<td>CRA19</td>
<td>9.90E-03</td>
<td>(km²)(yr⁻¹)</td>
</tr>
<tr>
<td>GLOBAL:MINERT</td>
<td>Information that applies globally, Mining rate from 40 CFR 194</td>
<td>CCA</td>
<td>1.00E-04</td>
<td>yr⁻¹</td>
</tr>
<tr>
<td>GLOBAL:ONEPLG</td>
<td>Information that applies globally, Probability of having Plug Pattern 1</td>
<td>CRA19</td>
<td>4.03E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:PLGPAT</td>
<td>Information that applies globally, Index for Plugging Pattern After Drilling Intrusion</td>
<td>CCA</td>
<td>0.00E+00</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:SRADO2</td>
<td>Information that applies globally, Stoichiometric coefficient for O₂ from radiolysis</td>
<td>CRA19</td>
<td>0.00E+00</td>
<td>mol O₂/mol H₂</td>
</tr>
<tr>
<td>GLOBAL:TA</td>
<td>Information that applies globally, Time Active Institutional Controls at WIPP Site Are Effective</td>
<td>CCA</td>
<td>1.00E+02</td>
<td>yr</td>
</tr>
<tr>
<td>GLOBAL:THREEPLG</td>
<td>Information that applies globally, Probability of having Plug Pattern 3</td>
<td>CRA19</td>
<td>2.66E-01</td>
<td>NONE</td>
</tr>
<tr>
<td>GLOBAL:TPICD</td>
<td>Information that applies globally, Time over which passive institutional controls reduce rate of drilling</td>
<td>CCA</td>
<td>6.00E+02</td>
<td>yr</td>
</tr>
<tr>
<td>GLOBAL:TPICM</td>
<td>Information that applies globally, Time over which passive institutional controls reduce rate of mining</td>
<td>CCA</td>
<td>6.00E+02</td>
<td>yr</td>
</tr>
<tr>
<td>GLOBAL:TWOPLG</td>
<td>Information that applies globally, Probability of having Plug Pattern 2</td>
<td>CRA19</td>
<td>3.31E-01</td>
<td>NONE</td>
</tr>
</tbody>
</table>

NOTES:

1. This parameter has an assigned distribution but uses the default constant value for all vectors.
2. The Version identifies the associated analysis in which the parameter was added or changed. An explanation of the Version Name is provided in Section 6.
7.0 WASTE STREAM INVENTORY DATA FOR THE CRA-2019 PA

The WIPP PA parameter database maintains an isotope inventory for each radionuclide along with associated radionuclide parameters (Tables 28 and 29). This section provides details for the individual waste streams that comprise the total waste inventory. The WIPP repository radionuclide inventory build-up and decay is determined using the PA code EPAUNI as documented by Kicker (2019a, 2019b). The updated inventory information required for the CRA19 is provided by Van Soest (2018), which includes WIPP-scale activity (Ci) for both contact-handled (CH) and remote-handled (RH) TRU wastes.

Environmental radiation protection standards for management and disposal of spent nuclear fuel, high-level and transuranic radioactive wastes as defined in 40 CFR 191 require human intrusion scenarios to be included in the PA calculations for repositories. Five distinct human intrusion scenarios that impact release from the repository are defined for the WIPP PA. Four of these involve a single drilling intrusion that occurs at various times after repository closure. Two types of drilling intrusions are considered: 1) a borehole is drilled through a single waste panel and intersects a pressurized brine pocket located approximately 250 meters below the repository, and 2) a borehole is drilled into the repository, but does not intersect a brine pocket. One multiple intrusion scenario is considered.

For scenarios that involve a drilling intrusion into the repository, release mechanisms include cuttings, cavings and spallings. To calculate the extent of release from these mechanisms, an estimate of the radionuclide content, expressed as the EPA Unit of the waste encountered via drilling is required.

Determination of the radionuclide content of the waste encountered via drilling is problematic because it is uncertain. The radionuclide content of waste streams disposed in the WIPP repository is uncertain, as is the loading of those waste streams. The EPA has offered guidance about how to handle this uncertainty, stating that in the absence of a waste loading plan for the repository, random waste emplacement should be assumed (see 40 CFR 194.24). Therefore, following EPA guidance, it is assumed that waste is emplaced randomly in the repository and the probability of encountering any given waste stream in a drilling intrusion is directly proportional to the volume of that waste stream in the repository.

For the WIPP PA, information about the radionuclides that would be encountered during drilling is quantified using the metric of EPA Units. The activity in EPA Units for a radionuclide is the initial source term activity (in Ci) of that radionuclide divided by the product of the waste unit factor (WUF) and the release limit (in Ci/unit of waste) for the same radionuclide (Sanchez et al. 1997). The WUF, also referred to as the “unit of waste,” is defined in the CCA as the number of millions of curies of alpha-emitting TRU radionuclides with half-lives longer than 20 years destined for disposal in the WIPP repository (U.S. DOE 1996). Details for the calculation of the WUF are provided by Kicker (2019b). Details for the calculation of EPA Units using the PA
code EPAUNI are provided by Kicker (2019a). The EPA Units for each waste stream are listed in Appendix B for both CH and RH waste decayed to the following time periods: years 0, 100, 125, 175, 350, 1000, 3000, 5000, 7500, and 10000.
8.0 REFERENCES

Kirchner, T.B. 2013. *Generation of the LHS Samples for the CRA-2014 (AP-164) Revision 0 PA Calculations*. Sandia National Laboratories, Carlsbad, NM. ERMS 559950.

Information Only

Input parameter report for the 2019 compliance recertification application performance assessment
Rev. 1, ERMS 571660

APPENDIX A – SAMPLED VALUES FOR PARAMETER DISTRIBUTIONS USED IN THE CRA-2019 PA

Several parameters have values with uncertainty; therefore, the distributed parameter values are needed. The PA LHS code is implemented to sample the distributions and provide 100 vectors for 3 replicates. The sampled values for parameters are listed in Appendix A tables. In the Appendix A tables, LHS variable number occasionally jumps such as variable 1 to variable 4, variable 5 to variable 8, and so on, because REFCON:LHSBLANK parameter – Blank placeholder parameter for LHS – is assigned to LHS variable 2, 3, 6, 7, 12, 13, 14, 17, 19, 20, and 21 for future uses. The sampled parameter values can be found in LHS output files. LHS output files lhs2_CRA19_r1_con.trn (replicate 1), lhs2_CRA19_r2_con.trn (replicate 2), and lhs2_CRA19_r3_con.trn (replicate 3) are located in a directory on the Solaris running SunOS 5.11. In the host server of santana.sandia.gov, the directory of LHS output files is /nfs/data/CVSLIB/WIPP_ANALYSES/CRA19/LHS/Output.
Table A.1 – Sampled Values for Parameter GLOBAL:PBRINE (LHS Variable 1)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.02E-02</td>
<td>35</td>
<td>2.47E-01</td>
<td>69</td>
<td>3.99E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.64E-01</td>
<td>36</td>
<td>3.57E-01</td>
<td>70</td>
<td>1.46E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.68E-01</td>
<td>37</td>
<td>2.11E-01</td>
<td>71</td>
<td>1.02E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.94E-01</td>
<td>38</td>
<td>3.45E-01</td>
<td>72</td>
<td>3.95E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.64E-01</td>
<td>39</td>
<td>3.25E-01</td>
<td>73</td>
<td>2.97E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.41E-01</td>
<td>40</td>
<td>1.47E-01</td>
<td>74</td>
<td>4.60E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.23E-01</td>
<td>41</td>
<td>8.11E-02</td>
<td>75</td>
<td>9.88E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.81E-01</td>
<td>42</td>
<td>3.49E-01</td>
<td>76</td>
<td>2.93E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.42E-01</td>
<td>43</td>
<td>4.45E-01</td>
<td>77</td>
<td>1.94E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.50E-01</td>
<td>44</td>
<td>3.32E-01</td>
<td>78</td>
<td>4.05E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.51E-01</td>
<td>45</td>
<td>4.27E-01</td>
<td>79</td>
<td>1.85E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.75E-01</td>
<td>46</td>
<td>3.09E-01</td>
<td>80</td>
<td>3.38E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.02E-01</td>
<td>47</td>
<td>1.14E-01</td>
<td>81</td>
<td>2.54E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.80E-01</td>
<td>48</td>
<td>2.45E-01</td>
<td>82</td>
<td>1.06E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.54E-01</td>
<td>49</td>
<td>9.49E-02</td>
<td>83</td>
<td>1.27E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.62E-01</td>
<td>50</td>
<td>7.69E-02</td>
<td>84</td>
<td>1.44E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.77E-01</td>
<td>51</td>
<td>3.73E-01</td>
<td>85</td>
<td>3.52E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.07E-01</td>
<td>52</td>
<td>3.65E-01</td>
<td>86</td>
<td>4.21E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.22E-01</td>
<td>53</td>
<td>3.12E-01</td>
<td>87</td>
<td>3.00E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.19E-01</td>
<td>54</td>
<td>4.72E-01</td>
<td>88</td>
<td>1.76E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.18E-01</td>
<td>55</td>
<td>1.73E-01</td>
<td>89</td>
<td>4.16E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.71E-01</td>
<td>56</td>
<td>2.09E-01</td>
<td>90</td>
<td>4.29E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.20E-01</td>
<td>57</td>
<td>5.13E-01</td>
<td>91</td>
<td>2.65E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.34E-01</td>
<td>58</td>
<td>4.51E-01</td>
<td>92</td>
<td>1.37E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.57E-01</td>
<td>59</td>
<td>1.08E-01</td>
<td>93</td>
<td>1.98E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.60E-01</td>
<td>60</td>
<td>1.23E-01</td>
<td>94</td>
<td>4.41E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.58E-01</td>
<td>61</td>
<td>2.58E-01</td>
<td>95</td>
<td>3.94E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>9.55E-02</td>
<td>62</td>
<td>1.37E-01</td>
<td>96</td>
<td>1.29E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>3.70E-01</td>
<td>63</td>
<td>2.79E-01</td>
<td>97</td>
<td>4.83E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.83E-01</td>
<td>64</td>
<td>1.16E-01</td>
<td>98</td>
<td>6.61E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.00E-01</td>
<td>65</td>
<td>2.29E-01</td>
<td>99</td>
<td>1.31E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.91E-01</td>
<td>66</td>
<td>2.17E-01</td>
<td>100</td>
<td>3.17E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.10E-01</td>
<td>67</td>
<td>8.54E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.75E-01</td>
<td>68</td>
<td>2.27E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.1 – Sampled Values for Parameter GLOBAL:PBRINE (LHS Variable 1) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Replicate</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Replicate</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>3.24E-01</td>
<td>35</td>
<td>1.49E-01</td>
<td>69</td>
<td>3.12E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.20E-01</td>
<td>36</td>
<td>9.88E-02</td>
<td>70</td>
<td>3.37E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.30E-01</td>
<td>37</td>
<td>1.12E-01</td>
<td>71</td>
<td>4.02E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.27E-01</td>
<td>38</td>
<td>1.64E-01</td>
<td>72</td>
<td>3.76E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.03E-01</td>
<td>39</td>
<td>1.40E-01</td>
<td>73</td>
<td>2.95E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.38E-01</td>
<td>40</td>
<td>3.06E-01</td>
<td>74</td>
<td>4.54E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.79E-01</td>
<td>41</td>
<td>2.08E-01</td>
<td>75</td>
<td>1.62E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.08E-01</td>
<td>42</td>
<td>8.18E-02</td>
<td>76</td>
<td>3.32E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.57E-01</td>
<td>43</td>
<td>2.69E-01</td>
<td>77</td>
<td>2.56E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.75E-01</td>
<td>44</td>
<td>1.28E-01</td>
<td>78</td>
<td>3.55E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>9.04E-02</td>
<td>45</td>
<td>4.16E-01</td>
<td>79</td>
<td>4.49E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.24E-01</td>
<td>46</td>
<td>4.29E-01</td>
<td>80</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.67E-01</td>
<td>47</td>
<td>4.24E-01</td>
<td>81</td>
<td>9.64E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.06E-01</td>
<td>48</td>
<td>3.81E-01</td>
<td>82</td>
<td>1.09E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.25E-02</td>
<td>49</td>
<td>4.43E-01</td>
<td>83</td>
<td>2.50E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.93E-01</td>
<td>50</td>
<td>3.51E-01</td>
<td>84</td>
<td>1.19E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.44E-01</td>
<td>51</td>
<td>5.20E-01</td>
<td>85</td>
<td>3.19E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.65E-01</td>
<td>52</td>
<td>1.07E-01</td>
<td>86</td>
<td>4.64E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.94E-01</td>
<td>53</td>
<td>2.13E-01</td>
<td>87</td>
<td>2.66E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.22E-01</td>
<td>54</td>
<td>1.16E-01</td>
<td>88</td>
<td>1.86E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.18E-01</td>
<td>55</td>
<td>1.01E-01</td>
<td>89</td>
<td>2.46E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.37E-01</td>
<td>56</td>
<td>1.33E-01</td>
<td>90</td>
<td>5.40E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.80E-01</td>
<td>57</td>
<td>1.80E-01</td>
<td>91</td>
<td>3.86E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.71E-01</td>
<td>58</td>
<td>1.77E-01</td>
<td>92</td>
<td>1.37E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.92E-01</td>
<td>59</td>
<td>4.11E-01</td>
<td>93</td>
<td>3.97E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.61E-01</td>
<td>60</td>
<td>1.97E-01</td>
<td>94</td>
<td>1.31E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.73E-01</td>
<td>61</td>
<td>7.73E-02</td>
<td>95</td>
<td>4.68E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.82E-01</td>
<td>62</td>
<td>8.46E-02</td>
<td>96</td>
<td>4.26E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.23E-01</td>
<td>63</td>
<td>5.03E-01</td>
<td>97</td>
<td>2.41E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.44E-01</td>
<td>64</td>
<td>3.91E-01</td>
<td>98</td>
<td>1.52E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.04E-01</td>
<td>65</td>
<td>3.25E-01</td>
<td>99</td>
<td>2.42E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.58E-01</td>
<td>66</td>
<td>1.72E-01</td>
<td>100</td>
<td>9.48E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.54E-01</td>
<td>67</td>
<td>4.78E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.45E-01</td>
<td>68</td>
<td>2.18E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.1 – Sampled Values for Parameter GLOBAL:PBRINE (LHS Variable 1) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2.43E-01</td>
<td>35</td>
<td>2.84E-01</td>
<td>69</td>
<td>4.03E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.75E-01</td>
<td>36</td>
<td>4.30E-01</td>
<td>70</td>
<td>4.50E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.14E-01</td>
<td>37</td>
<td>4.37E-01</td>
<td>71</td>
<td>4.28E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.13E-01</td>
<td>38</td>
<td>2.98E-01</td>
<td>72</td>
<td>6.87E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.79E-01</td>
<td>39</td>
<td>3.91E-01</td>
<td>73</td>
<td>1.62E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.24E-02</td>
<td>40</td>
<td>1.01E-01</td>
<td>74</td>
<td>4.16E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.01E-01</td>
<td>41</td>
<td>3.25E-01</td>
<td>75</td>
<td>1.95E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.24E-01</td>
<td>42</td>
<td>2.40E-01</td>
<td>76</td>
<td>2.20E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.28E-01</td>
<td>43</td>
<td>3.76E-01</td>
<td>77</td>
<td>4.70E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.73E-02</td>
<td>44</td>
<td>3.23E-01</td>
<td>78</td>
<td>3.38E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.37E-02</td>
<td>45</td>
<td>3.98E-01</td>
<td>79</td>
<td>2.27E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.95E-01</td>
<td>46</td>
<td>1.91E-01</td>
<td>80</td>
<td>1.17E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.08E-01</td>
<td>47</td>
<td>1.23E-01</td>
<td>81</td>
<td>1.10E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.60E-01</td>
<td>48</td>
<td>4.62E-01</td>
<td>82</td>
<td>4.85E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.26E-01</td>
<td>49</td>
<td>3.17E-01</td>
<td>83</td>
<td>4.89E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.69E-01</td>
<td>50</td>
<td>3.78E-01</td>
<td>84</td>
<td>3.68E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.66E-01</td>
<td>51</td>
<td>4.20E-01</td>
<td>85</td>
<td>2.58E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.07E-01</td>
<td>52</td>
<td>1.43E-01</td>
<td>86</td>
<td>1.85E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.31E-01</td>
<td>53</td>
<td>3.33E-01</td>
<td>87</td>
<td>2.93E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.35E-01</td>
<td>54</td>
<td>9.31E-02</td>
<td>88</td>
<td>1.33E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.99E-01</td>
<td>55</td>
<td>1.05E-01</td>
<td>89</td>
<td>4.10E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.46E-01</td>
<td>56</td>
<td>1.59E-01</td>
<td>90</td>
<td>1.42E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.85E-01</td>
<td>57</td>
<td>3.08E-01</td>
<td>91</td>
<td>3.62E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.48E-01</td>
<td>58</td>
<td>1.62E-01</td>
<td>92</td>
<td>3.53E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.69E-01</td>
<td>59</td>
<td>1.49E-01</td>
<td>93</td>
<td>4.23E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.66E-02</td>
<td>60</td>
<td>1.31E-01</td>
<td>94</td>
<td>4.06E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.51E-01</td>
<td>61</td>
<td>1.82E-01</td>
<td>95</td>
<td>9.14E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.55E-01</td>
<td>62</td>
<td>1.23E-01</td>
<td>96</td>
<td>1.66E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.46E-01</td>
<td>63</td>
<td>2.49E-01</td>
<td>97</td>
<td>3.43E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.15E-01</td>
<td>64</td>
<td>1.20E-01</td>
<td>98</td>
<td>2.17E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.38E-01</td>
<td>65</td>
<td>4.75E-01</td>
<td>99</td>
<td>2.55E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9.88E-02</td>
<td>66</td>
<td>1.55E-01</td>
<td>100</td>
<td>3.00E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.72E-01</td>
<td>67</td>
<td>2.28E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.73E-01</td>
<td>68</td>
<td>2.75E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.2 – Sampled Values for Parameter BOREHOLE:DOMEGA (LHS Variable 4)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (rad/s)</th>
<th>#</th>
<th>Value (rad/s)</th>
<th>#</th>
<th>Value (rad/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.82E+00</td>
<td>35</td>
<td>1.24E+01</td>
<td>69</td>
<td>5.72E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.59E+00</td>
<td>36</td>
<td>1.21E+01</td>
<td>70</td>
<td>1.23E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.16E+01</td>
<td>37</td>
<td>7.43E+00</td>
<td>71</td>
<td>7.25E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.11E+01</td>
<td>38</td>
<td>7.72E+00</td>
<td>72</td>
<td>5.58E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.16E+00</td>
<td>39</td>
<td>9.46E+00</td>
<td>73</td>
<td>8.12E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.14E+00</td>
<td>40</td>
<td>6.74E+00</td>
<td>74</td>
<td>6.89E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.84E+00</td>
<td>41</td>
<td>6.48E+00</td>
<td>75</td>
<td>1.16E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.31E+00</td>
<td>42</td>
<td>1.89E+01</td>
<td>76</td>
<td>9.77E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8.36E+00</td>
<td>43</td>
<td>5.04E+00</td>
<td>77</td>
<td>7.08E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.59E+01</td>
<td>44</td>
<td>7.21E+00</td>
<td>78</td>
<td>9.03E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.01E+01</td>
<td>45</td>
<td>8.72E+00</td>
<td>79</td>
<td>6.35E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8.27E+00</td>
<td>46</td>
<td>1.13E+01</td>
<td>80</td>
<td>7.15E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.21E+00</td>
<td>47</td>
<td>6.66E+00</td>
<td>81</td>
<td>7.78E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.01E+01</td>
<td>48</td>
<td>6.44E+00</td>
<td>82</td>
<td>7.97E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.36E+01</td>
<td>49</td>
<td>4.78E+00</td>
<td>83</td>
<td>4.63E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.03E+01</td>
<td>50</td>
<td>9.53E+00</td>
<td>84</td>
<td>5.94E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>8.08E+00</td>
<td>51</td>
<td>8.01E+00</td>
<td>85</td>
<td>7.54E+00</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.08E+00</td>
<td>52</td>
<td>1.18E+01</td>
<td>86</td>
<td>7.90E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.33E+00</td>
<td>53</td>
<td>7.30E+00</td>
<td>87</td>
<td>7.62E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.57E+01</td>
<td>54</td>
<td>4.34E+00</td>
<td>88</td>
<td>6.80E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.91E+00</td>
<td>55</td>
<td>5.82E+00</td>
<td>89</td>
<td>6.55E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.87E+01</td>
<td>56</td>
<td>8.02E+00</td>
<td>90</td>
<td>7.66E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.28E+01</td>
<td>57</td>
<td>6.95E+00</td>
<td>91</td>
<td>6.55E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.34E+01</td>
<td>58</td>
<td>8.42E+00</td>
<td>92</td>
<td>8.64E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.45E+01</td>
<td>59</td>
<td>7.41E+00</td>
<td>93</td>
<td>5.45E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.33E+00</td>
<td>60</td>
<td>1.07E+01</td>
<td>94</td>
<td>7.83E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.10E+00</td>
<td>61</td>
<td>4.35E+00</td>
<td>95</td>
<td>7.74E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.04E+01</td>
<td>62</td>
<td>6.38E+00</td>
<td>96</td>
<td>8.28E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.59E+00</td>
<td>63</td>
<td>1.06E+01</td>
<td>97</td>
<td>6.70E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.51E+00</td>
<td>64</td>
<td>8.20E+00</td>
<td>98</td>
<td>6.62E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.87E+00</td>
<td>65</td>
<td>7.04E+00</td>
<td>99</td>
<td>1.14E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.38E+00</td>
<td>66</td>
<td>9.30E+00</td>
<td>100</td>
<td>8.18E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.40E+01</td>
<td>67</td>
<td>6.99E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.22E+00</td>
<td>68</td>
<td>6.86E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.2 – Sampled Values for Parameter BOREHOLE:DOMEGA (LHS Variable 4) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (rad/s)</th>
<th>#</th>
<th>Value (rad/s)</th>
<th>#</th>
<th>Value (rad/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6.96E+00</td>
<td>35</td>
<td>8.53E+00</td>
<td>69</td>
<td>1.95E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.49E+00</td>
<td>36</td>
<td>7.68E+00</td>
<td>70</td>
<td>1.26E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.27E+01</td>
<td>37</td>
<td>7.97E+00</td>
<td>71</td>
<td>1.04E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.95E+00</td>
<td>38</td>
<td>8.24E+00</td>
<td>72</td>
<td>5.13E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.92E+00</td>
<td>39</td>
<td>5.97E+00</td>
<td>73</td>
<td>1.06E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.32E+00</td>
<td>40</td>
<td>1.64E+01</td>
<td>74</td>
<td>6.60E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.14E+01</td>
<td>41</td>
<td>7.33E+00</td>
<td>75</td>
<td>1.68E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.22E+00</td>
<td>42</td>
<td>7.09E+00</td>
<td>76</td>
<td>6.52E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.36E+00</td>
<td>43</td>
<td>1.09E+01</td>
<td>77</td>
<td>6.64E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.14E+00</td>
<td>44</td>
<td>7.04E+00</td>
<td>78</td>
<td>5.04E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8.55E+00</td>
<td>45</td>
<td>4.27E+00</td>
<td>79</td>
<td>7.30E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.58E+00</td>
<td>46</td>
<td>8.15E+00</td>
<td>80</td>
<td>9.29E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.22E+00</td>
<td>47</td>
<td>1.03E+01</td>
<td>81</td>
<td>7.99E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.75E+00</td>
<td>48</td>
<td>6.23E+00</td>
<td>82</td>
<td>6.85E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.18E+00</td>
<td>49</td>
<td>8.83E+00</td>
<td>83</td>
<td>1.16E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.79E+00</td>
<td>50</td>
<td>9.23E+00</td>
<td>84</td>
<td>6.99E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.46E+00</td>
<td>51</td>
<td>8.21E+00</td>
<td>85</td>
<td>1.32E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.38E+00</td>
<td>52</td>
<td>4.60E+00</td>
<td>86</td>
<td>6.51E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.31E+00</td>
<td>53</td>
<td>9.53E+00</td>
<td>87</td>
<td>5.56E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.89E+00</td>
<td>54</td>
<td>8.11E+00</td>
<td>88</td>
<td>6.40E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.44E+00</td>
<td>55</td>
<td>4.88E+00</td>
<td>89</td>
<td>7.71E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8.72E+00</td>
<td>56</td>
<td>9.79E+00</td>
<td>90</td>
<td>7.84E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.69E+00</td>
<td>57</td>
<td>6.31E+00</td>
<td>91</td>
<td>1.36E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.72E+00</td>
<td>58</td>
<td>1.52E+01</td>
<td>92</td>
<td>6.80E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.24E+01</td>
<td>59</td>
<td>7.25E+00</td>
<td>93</td>
<td>1.42E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.53E+00</td>
<td>60</td>
<td>5.75E+00</td>
<td>94</td>
<td>4.63E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.42E+00</td>
<td>61</td>
<td>9.91E+00</td>
<td>95</td>
<td>1.19E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.44E+01</td>
<td>62</td>
<td>8.04E+00</td>
<td>96</td>
<td>7.86E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>7.62E+00</td>
<td>63</td>
<td>6.43E+00</td>
<td>97</td>
<td>1.22E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.50E+00</td>
<td>64</td>
<td>9.02E+00</td>
<td>98</td>
<td>8.10E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.38E+00</td>
<td>65</td>
<td>1.10E+01</td>
<td>99</td>
<td>1.02E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.72E+00</td>
<td>66</td>
<td>8.36E+00</td>
<td>100</td>
<td>1.12E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.20E+01</td>
<td>67</td>
<td>6.81E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>7.14E+00</td>
<td>68</td>
<td>7.60E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.2 – Sampled Values for Parameter BOREHOLE:DOMEGA (LHS Variable 4) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (rad/s)</th>
<th>#</th>
<th>Value (rad/s)</th>
<th>#</th>
<th>Value (rad/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>6.53E+00</td>
<td>35</td>
<td>4.61E+00</td>
<td>69</td>
<td>6.02E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.32E+00</td>
<td>36</td>
<td>7.62E+00</td>
<td>70</td>
<td>5.56E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.14E+00</td>
<td>37</td>
<td>1.30E+01</td>
<td>71</td>
<td>1.33E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.05E+00</td>
<td>38</td>
<td>9.51E+00</td>
<td>72</td>
<td>1.21E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.43E+01</td>
<td>39</td>
<td>5.12E+00</td>
<td>73</td>
<td>6.32E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.86E+00</td>
<td>40</td>
<td>7.00E+00</td>
<td>74</td>
<td>4.65E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.11E+00</td>
<td>41</td>
<td>9.64E+00</td>
<td>75</td>
<td>8.71E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.68E+00</td>
<td>42</td>
<td>2.30E+01</td>
<td>76</td>
<td>7.53E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.07E+00</td>
<td>43</td>
<td>7.49E+00</td>
<td>77</td>
<td>8.39E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.91E+00</td>
<td>44</td>
<td>7.97E+00</td>
<td>78</td>
<td>6.79E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.40E+00</td>
<td>45</td>
<td>5.01E+00</td>
<td>79</td>
<td>1.13E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.72E+00</td>
<td>46</td>
<td>1.01E+01</td>
<td>80</td>
<td>1.24E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.67E+00</td>
<td>47</td>
<td>1.04E+01</td>
<td>81</td>
<td>7.25E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.27E+00</td>
<td>48</td>
<td>8.12E+00</td>
<td>82</td>
<td>9.27E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.66E+00</td>
<td>49</td>
<td>6.60E+00</td>
<td>83</td>
<td>6.81E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8.19E+00</td>
<td>50</td>
<td>5.71E+00</td>
<td>84</td>
<td>6.73E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.44E+00</td>
<td>51</td>
<td>1.41E+01</td>
<td>85</td>
<td>1.09E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.97E+00</td>
<td>52</td>
<td>1.06E+01</td>
<td>86</td>
<td>8.30E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.36E+01</td>
<td>53</td>
<td>7.44E+00</td>
<td>87</td>
<td>1.84E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.18E+01</td>
<td>54</td>
<td>7.60E+00</td>
<td>88</td>
<td>1.17E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.23E+01</td>
<td>55</td>
<td>6.86E+00</td>
<td>89</td>
<td>6.48E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.59E+00</td>
<td>56</td>
<td>7.78E+00</td>
<td>90</td>
<td>6.40E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.93E+01</td>
<td>57</td>
<td>7.39E+00</td>
<td>91</td>
<td>7.89E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.15E+01</td>
<td>58</td>
<td>7.77E+00</td>
<td>92</td>
<td>7.41E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.13E+00</td>
<td>59</td>
<td>1.53E+01</td>
<td>93</td>
<td>7.22E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.25E+00</td>
<td>60</td>
<td>5.23E+00</td>
<td>94</td>
<td>6.28E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.08E+01</td>
<td>61</td>
<td>1.61E+01</td>
<td>95</td>
<td>6.35E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>9.97E+00</td>
<td>62</td>
<td>7.30E+00</td>
<td>96</td>
<td>1.04E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>7.33E+00</td>
<td>63</td>
<td>9.04E+00</td>
<td>97</td>
<td>8.16E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.89E+00</td>
<td>64</td>
<td>8.35E+00</td>
<td>98</td>
<td>9.84E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.10E+00</td>
<td>65</td>
<td>8.59E+00</td>
<td>99</td>
<td>8.48E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9.80E+00</td>
<td>66</td>
<td>8.03E+00</td>
<td>100</td>
<td>8.90E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>7.85E+00</td>
<td>67</td>
<td>7.99E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.12E+00</td>
<td>68</td>
<td>5.87E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.3 – Sampled Values for Parameter BOREHOLE:TAUFAIL (LHS Variable 5)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.15E+01</td>
<td>35</td>
<td>2.89E+01</td>
<td>69</td>
<td>4.56E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.61E+00</td>
<td>36</td>
<td>6.62E+01</td>
<td>70</td>
<td>4.42E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.87E+01</td>
<td>37</td>
<td>3.74E+01</td>
<td>71</td>
<td>5.12E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.05E+01</td>
<td>38</td>
<td>6.50E+01</td>
<td>72</td>
<td>5.78E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.01E+01</td>
<td>39</td>
<td>6.31E+01</td>
<td>73</td>
<td>6.84E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.98E+01</td>
<td>40</td>
<td>3.23E+01</td>
<td>74</td>
<td>4.84E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.13E+01</td>
<td>41</td>
<td>1.94E+01</td>
<td>75</td>
<td>5.29E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.70E+01</td>
<td>42</td>
<td>7.41E+01</td>
<td>76</td>
<td>1.47E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.70E+01</td>
<td>43</td>
<td>2.86E+01</td>
<td>77</td>
<td>4.22E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.77E+01</td>
<td>44</td>
<td>6.38E+01</td>
<td>78</td>
<td>4.33E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.23E+01</td>
<td>45</td>
<td>3.40E+01</td>
<td>79</td>
<td>7.59E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.51E+01</td>
<td>46</td>
<td>4.11E+00</td>
<td>80</td>
<td>2.87E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.92E+00</td>
<td>47</td>
<td>2.98E+01</td>
<td>81</td>
<td>5.18E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.49E+01</td>
<td>48</td>
<td>2.50E+01</td>
<td>82</td>
<td>1.26E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.43E+01</td>
<td>49</td>
<td>4.77E+01</td>
<td>83</td>
<td>6.91E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.37E+01</td>
<td>50</td>
<td>1.65E+01</td>
<td>84</td>
<td>4.13E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.45E+01</td>
<td>51</td>
<td>5.64E+01</td>
<td>85</td>
<td>7.34E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.74E+01</td>
<td>52</td>
<td>3.48E+00</td>
<td>86</td>
<td>2.30E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.82E+01</td>
<td>53</td>
<td>3.04E+01</td>
<td>87</td>
<td>1.84E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.27E+01</td>
<td>54</td>
<td>6.74E+00</td>
<td>88</td>
<td>6.74E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.99E+01</td>
<td>55</td>
<td>4.98E+01</td>
<td>89</td>
<td>2.07E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.19E+01</td>
<td>56</td>
<td>5.94E+01</td>
<td>90</td>
<td>1.15E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.26E+01</td>
<td>57</td>
<td>2.69E+01</td>
<td>91</td>
<td>5.45E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.55E+01</td>
<td>58</td>
<td>3.88E+01</td>
<td>92</td>
<td>6.08E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.08E+01</td>
<td>59</td>
<td>4.05E+01</td>
<td>93</td>
<td>4.62E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.17E+01</td>
<td>60</td>
<td>7.33E+00</td>
<td>94</td>
<td>7.07E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.68E+01</td>
<td>61</td>
<td>1.36E+01</td>
<td>95</td>
<td>4.27E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.19E+01</td>
<td>62</td>
<td>5.52E+01</td>
<td>96</td>
<td>6.68E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>7.29E+01</td>
<td>63</td>
<td>1.69E+01</td>
<td>97</td>
<td>1.77E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.93E+00</td>
<td>64</td>
<td>5.39E+01</td>
<td>98</td>
<td>7.01E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.61E+01</td>
<td>65</td>
<td>5.99E+01</td>
<td>99</td>
<td>2.20E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>8.40E+00</td>
<td>66</td>
<td>5.34E+01</td>
<td>100</td>
<td>1.38E+01</td>
</tr>
</tbody>
</table>
Table A.3 – Sampled Values for Parameter BOREHOLE:TAUFAIL (LHS Variable 5) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (Pa)</th>
<th>Vector #</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4.63E+01</td>
<td>35</td>
<td>7.22E+01</td>
<td>69</td>
<td>6.94E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.05E+01</td>
<td>36</td>
<td>6.73E+01</td>
<td>70</td>
<td>3.74E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.98E+01</td>
<td>37</td>
<td>3.30E+01</td>
<td>71</td>
<td>3.61E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.02E+01</td>
<td>38</td>
<td>9.90E+00</td>
<td>72</td>
<td>1.97E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.08E+01</td>
<td>39</td>
<td>6.23E+01</td>
<td>73</td>
<td>6.36E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.34E+01</td>
<td>40</td>
<td>4.94E+01</td>
<td>74</td>
<td>2.38E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.91E+01</td>
<td>41</td>
<td>4.06E+01</td>
<td>75</td>
<td>6.06E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.80E+01</td>
<td>42</td>
<td>5.61E+01</td>
<td>76</td>
<td>7.80E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.53E+01</td>
<td>43</td>
<td>4.39E+01</td>
<td>77</td>
<td>7.63E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.52E+01</td>
<td>44</td>
<td>4.90E+01</td>
<td>78</td>
<td>2.55E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.49E+01</td>
<td>45</td>
<td>6.60E+01</td>
<td>79</td>
<td>8.75E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.76E+01</td>
<td>46</td>
<td>6.47E+01</td>
<td>80</td>
<td>4.69E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.85E+00</td>
<td>47</td>
<td>1.71E+01</td>
<td>81</td>
<td>6.14E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.13E+01</td>
<td>48</td>
<td>4.00E+01</td>
<td>82</td>
<td>2.90E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.30E+01</td>
<td>49</td>
<td>1.26E+01</td>
<td>83</td>
<td>4.20E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.82E+01</td>
<td>50</td>
<td>3.53E+01</td>
<td>84</td>
<td>4.75E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.68E+01</td>
<td>51</td>
<td>4.13E+01</td>
<td>85</td>
<td>6.99E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.68E+01</td>
<td>52</td>
<td>3.82E+01</td>
<td>86</td>
<td>1.58E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.15E+01</td>
<td>53</td>
<td>2.25E+01</td>
<td>87</td>
<td>1.35E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.11E+01</td>
<td>54</td>
<td>5.92E+01</td>
<td>88</td>
<td>5.78E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.36E+01</td>
<td>55</td>
<td>3.69E+01</td>
<td>89</td>
<td>1.78E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.58E+01</td>
<td>56</td>
<td>9.69E+00</td>
<td>90</td>
<td>2.71E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.39E+01</td>
<td>57</td>
<td>7.09E+01</td>
<td>91</td>
<td>5.41E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.15E+01</td>
<td>58</td>
<td>7.57E+01</td>
<td>92</td>
<td>2.73E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.68E+00</td>
<td>59</td>
<td>5.08E+01</td>
<td>93</td>
<td>4.33E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.91E+01</td>
<td>60</td>
<td>2.17E+01</td>
<td>94</td>
<td>5.49E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.25E+01</td>
<td>61</td>
<td>2.34E+01</td>
<td>95</td>
<td>4.99E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.35E+00</td>
<td>62</td>
<td>4.55E+01</td>
<td>96</td>
<td>7.45E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.65E+01</td>
<td>63</td>
<td>5.69E+00</td>
<td>97</td>
<td>4.27E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.47E+01</td>
<td>64</td>
<td>3.20E+01</td>
<td>98</td>
<td>6.97E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>7.49E+01</td>
<td>65</td>
<td>7.26E+01</td>
<td>99</td>
<td>1.84E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.46E+01</td>
<td>66</td>
<td>1.81E+00</td>
<td>100</td>
<td>5.88E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.91E+01</td>
<td>67</td>
<td>4.49E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.28E+01</td>
<td>68</td>
<td>3.10E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Value (Pa)</td>
<td>Vector</td>
<td>Value (Pa)</td>
<td>Vector</td>
<td>Value (Pa)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7.45E+01</td>
<td>3.10E+01</td>
<td>2.82E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.99E+01</td>
<td>4.30E+01</td>
<td>4.44E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.92E+00</td>
<td>6.27E+00</td>
<td>4.01E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.97E+01</td>
<td>1.63E+01</td>
<td>4.48E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.38E+01</td>
<td>6.73E+01</td>
<td>2.97E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.42E+00</td>
<td>5.86E+01</td>
<td>1.03E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.84E+00</td>
<td>3.85E+01</td>
<td>3.05E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.42E+01</td>
<td>7.01E+01</td>
<td>8.62E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.86E+01</td>
<td>2.75E+01</td>
<td>2.72E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.83E+01</td>
<td>1.79E+01</td>
<td>5.94E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6.61E+01</td>
<td>4.61E+01</td>
<td>1.15E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.44E+01</td>
<td>3.30E+01</td>
<td>2.72E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.26E+01</td>
<td>5.67E+01</td>
<td>2.34E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.58E+01</td>
<td>4.71E+01</td>
<td>4.19E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.43E+01</td>
<td>1.59E+01</td>
<td>7.05E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6.82E+01</td>
<td>7.16E+01</td>
<td>4.38E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.13E+01</td>
<td>5.02E+00</td>
<td>5.66E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.50E+01</td>
<td>1.85E+01</td>
<td>2.91E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.20E+01</td>
<td>3.59E+01</td>
<td>6.94E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.80E+01</td>
<td>3.67E+01</td>
<td>6.28E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5.16E+01</td>
<td>2.35E+01</td>
<td>5.32E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.35E+01</td>
<td>4.97E+01</td>
<td>7.61E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9.37E+00</td>
<td>5.26E+01</td>
<td>7.48E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5.40E+01</td>
<td>5.54E+01</td>
<td>2.49E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6.52E+01</td>
<td>7.67E+01</td>
<td>3.21E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.54E+01</td>
<td>5.10E+01</td>
<td>7.22E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.99E+01</td>
<td>2.07E+01</td>
<td>7.35E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5.01E+01</td>
<td>6.16E+01</td>
<td>2.16E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5.97E+01</td>
<td>1.09E+01</td>
<td>6.08E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.77E+01</td>
<td>3.51E+01</td>
<td>6.69E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>6.46E+01</td>
<td>7.29E+01</td>
<td>7.36E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3.90E+01</td>
<td>3.21E+01</td>
<td>7.64E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>6.20E+01</td>
<td>2.60E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.71E+01</td>
<td>1.37E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.4 – Sampled Values for Parameter SPALLMOD:REPIPERM (LHS Variable 8)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (m²)</th>
<th>#</th>
<th>Value (m²)</th>
<th>#</th>
<th>Value (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>5.12E-13</td>
<td>35</td>
<td>4.26E-13</td>
<td>69</td>
<td>2.76E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.04E-13</td>
<td>36</td>
<td>3.27E-14</td>
<td>70</td>
<td>1.12E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.20E-13</td>
<td>37</td>
<td>3.14E-14</td>
<td>71</td>
<td>2.00E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.44E-13</td>
<td>38</td>
<td>7.59E-13</td>
<td>72</td>
<td>3.36E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4.70E-14</td>
<td>39</td>
<td>9.57E-14</td>
<td>73</td>
<td>5.06E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.07E-13</td>
<td>40</td>
<td>1.88E-13</td>
<td>74</td>
<td>4.17E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>6.92E-14</td>
<td>41</td>
<td>6.33E-13</td>
<td>75</td>
<td>2.90E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>5.84E-13</td>
<td>42</td>
<td>3.51E-14</td>
<td>76</td>
<td>1.22E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.92E-12</td>
<td>43</td>
<td>6.62E-13</td>
<td>77</td>
<td>4.42E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>6.55E-14</td>
<td>44</td>
<td>5.28E-13</td>
<td>78</td>
<td>1.48E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>3.93E-13</td>
<td>45</td>
<td>1.64E-13</td>
<td>79</td>
<td>9.18E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.76E-13</td>
<td>46</td>
<td>1.69E-13</td>
<td>80</td>
<td>2.10E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>5.67E-13</td>
<td>47</td>
<td>2.57E-13</td>
<td>81</td>
<td>1.12E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.99E-13</td>
<td>48</td>
<td>9.52E-13</td>
<td>82</td>
<td>1.41E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>2.24E-12</td>
<td>49</td>
<td>8.52E-14</td>
<td>83</td>
<td>1.72E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>7.81E-13</td>
<td>50</td>
<td>1.07E-12</td>
<td>84</td>
<td>2.61E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>6.94E-13</td>
<td>51</td>
<td>5.84E-14</td>
<td>85</td>
<td>1.38E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>2.32E-12</td>
<td>52</td>
<td>1.18E-12</td>
<td>86</td>
<td>2.30E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>9.73E-13</td>
<td>53</td>
<td>8.72E-13</td>
<td>87</td>
<td>1.55E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>8.93E-14</td>
<td>54</td>
<td>1.31E-12</td>
<td>88</td>
<td>7.96E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2.08E-13</td>
<td>55</td>
<td>1.37E-13</td>
<td>89</td>
<td>4.58E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>4.81E-14</td>
<td>56</td>
<td>1.16E-13</td>
<td>90</td>
<td>2.42E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.05E-12</td>
<td>57</td>
<td>8.43E-13</td>
<td>91</td>
<td>1.59E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1.58E-12</td>
<td>58</td>
<td>5.58E-14</td>
<td>92</td>
<td>3.68E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1.38E-12</td>
<td>59</td>
<td>6.27E-14</td>
<td>93</td>
<td>1.47E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>1.22E-12</td>
<td>60</td>
<td>2.65E-14</td>
<td>94</td>
<td>4.83E-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>2.81E-13</td>
<td>61</td>
<td>3.65E-14</td>
<td>95</td>
<td>1.80E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2.45E-13</td>
<td>62</td>
<td>5.43E-14</td>
<td>96</td>
<td>7.38E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>2.28E-13</td>
<td>63</td>
<td>8.00E-14</td>
<td>97</td>
<td>3.99E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1.87E-12</td>
<td>64</td>
<td>3.29E-13</td>
<td>98</td>
<td>7.09E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>3.52E-13</td>
<td>65</td>
<td>1.31E-13</td>
<td>99</td>
<td>4.19E-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>2.94E-14</td>
<td>66</td>
<td>2.72E-13</td>
<td>100</td>
<td>2.11E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>7.81E-14</td>
<td>67</td>
<td>3.86E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>3.11E-13</td>
<td>68</td>
<td>4.46E-14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.4 – Sampled Values for Parameter SPALLMOD:REPIPERM (LHS Variable 8) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m²)</th>
<th>#</th>
<th>Value (m²)</th>
<th>#</th>
<th>Value (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.06E-13</td>
<td>35</td>
<td>6.41E-13</td>
<td>69</td>
<td>8.03E-14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.36E-13</td>
<td>36</td>
<td>5.69E-14</td>
<td>70</td>
<td>1.40E-13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.26E-13</td>
<td>37</td>
<td>5.10E-14</td>
<td>71</td>
<td>1.29E-13</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.94E-13</td>
<td>38</td>
<td>4.58E-14</td>
<td>72</td>
<td>7.17E-14</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.74E-13</td>
<td>39</td>
<td>9.26E-13</td>
<td>73</td>
<td>4.56E-14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.13E-13</td>
<td>40</td>
<td>2.11E-12</td>
<td>74</td>
<td>1.83E-13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.14E-14</td>
<td>41</td>
<td>3.33E-14</td>
<td>75</td>
<td>1.02E-12</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.20E-14</td>
<td>42</td>
<td>7.45E-14</td>
<td>76</td>
<td>1.14E-12</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.35E-14</td>
<td>43</td>
<td>3.42E-13</td>
<td>77</td>
<td>3.29E-13</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.51E-13</td>
<td>44</td>
<td>2.01E-12</td>
<td>78</td>
<td>2.11E-13</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.72E-13</td>
<td>45</td>
<td>2.38E-13</td>
<td>79</td>
<td>1.80E-12</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.94E-14</td>
<td>46</td>
<td>1.75E-13</td>
<td>80</td>
<td>1.71E-12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9.87E-14</td>
<td>47</td>
<td>4.22E-13</td>
<td>81</td>
<td>1.60E-12</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>8.83E-14</td>
<td>48</td>
<td>4.15E-14</td>
<td>82</td>
<td>3.49E-14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.86E-14</td>
<td>49</td>
<td>5.82E-14</td>
<td>83</td>
<td>3.91E-13</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.59E-13</td>
<td>50</td>
<td>3.58E-13</td>
<td>84</td>
<td>1.40E-12</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.16E-13</td>
<td>51</td>
<td>3.01E-14</td>
<td>85</td>
<td>8.87E-13</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.99E-13</td>
<td>52</td>
<td>1.15E-13</td>
<td>86</td>
<td>9.39E-14</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.63E-13</td>
<td>53</td>
<td>1.55E-13</td>
<td>87</td>
<td>6.03E-14</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.66E-14</td>
<td>54</td>
<td>1.29E-12</td>
<td>88</td>
<td>1.23E-12</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.71E-13</td>
<td>55</td>
<td>6.93E-13</td>
<td>89</td>
<td>2.46E-13</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.29E-13</td>
<td>56</td>
<td>1.38E-12</td>
<td>90</td>
<td>4.23E-14</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.57E-14</td>
<td>57</td>
<td>5.01E-14</td>
<td>91</td>
<td>1.93E-12</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8.16E-13</td>
<td>58</td>
<td>2.49E-14</td>
<td>92</td>
<td>1.19E-13</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.70E-14</td>
<td>59</td>
<td>2.37E-12</td>
<td>93</td>
<td>5.33E-13</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.60E-13</td>
<td>60</td>
<td>1.89E-12</td>
<td>94</td>
<td>1.52E-12</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.84E-13</td>
<td>61</td>
<td>4.57E-13</td>
<td>95</td>
<td>2.55E-13</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.52E-14</td>
<td>62</td>
<td>3.72E-13</td>
<td>96</td>
<td>1.47E-12</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.63E-14</td>
<td>63</td>
<td>5.09E-13</td>
<td>97</td>
<td>3.03E-13</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.05E-12</td>
<td>64</td>
<td>1.06E-13</td>
<td>98</td>
<td>1.33E-13</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.30E-13</td>
<td>66</td>
<td>2.24E-12</td>
<td>100</td>
<td>3.75E-14</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.77E-13</td>
<td>67</td>
<td>1.19E-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.01E-13</td>
<td>68</td>
<td>5.85E-13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.4 – Sampled Values for Parameter SPALLMOD:REPIPERM (LHS Variable 8) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (m²)</th>
<th>Vector #</th>
<th>Value (m²)</th>
<th>Vector #</th>
<th>Value (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>6.36E-14</td>
<td>35</td>
<td>6.92E-14</td>
<td>69</td>
<td>4.07E-13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.86E-13</td>
<td>36</td>
<td>4.77E-14</td>
<td>70</td>
<td>1.85E-13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.14E-12</td>
<td>37</td>
<td>2.34E-13</td>
<td>71</td>
<td>5.58E-14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.04E-12</td>
<td>38</td>
<td>9.01E-13</td>
<td>72</td>
<td>3.68E-14</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.75E-14</td>
<td>39</td>
<td>1.95E-12</td>
<td>73</td>
<td>3.23E-14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.26E-13</td>
<td>40</td>
<td>1.25E-12</td>
<td>74</td>
<td>2.23E-13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.06E-13</td>
<td>41</td>
<td>1.30E-13</td>
<td>75</td>
<td>1.23E-13</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.75E-13</td>
<td>42</td>
<td>7.98E-13</td>
<td>76</td>
<td>2.74E-13</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.09E-13</td>
<td>43</td>
<td>3.39E-13</td>
<td>77</td>
<td>1.34E-12</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.45E-14</td>
<td>44</td>
<td>4.97E-14</td>
<td>78</td>
<td>6.15E-13</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.49E-13</td>
<td>45</td>
<td>1.03E-12</td>
<td>79</td>
<td>5.17E-13</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.43E-12</td>
<td>46</td>
<td>1.48E-12</td>
<td>80</td>
<td>8.87E-14</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.99E-13</td>
<td>47</td>
<td>4.85E-13</td>
<td>81</td>
<td>5.26E-13</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.10E-13</td>
<td>48</td>
<td>1.55E-13</td>
<td>82</td>
<td>9.51E-14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.07E-14</td>
<td>49</td>
<td>5.51E-13</td>
<td>83</td>
<td>1.63E-12</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.98E-13</td>
<td>50</td>
<td>3.07E-14</td>
<td>84</td>
<td>2.67E-14</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.67E-12</td>
<td>51</td>
<td>1.49E-13</td>
<td>85</td>
<td>1.38E-13</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.12E-14</td>
<td>52</td>
<td>1.02E-13</td>
<td>86</td>
<td>1.16E-12</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.91E-13</td>
<td>53</td>
<td>5.87E-13</td>
<td>87</td>
<td>3.85E-13</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.85E-12</td>
<td>54</td>
<td>7.55E-13</td>
<td>88</td>
<td>1.61E-13</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.01E-14</td>
<td>55</td>
<td>2.22E-12</td>
<td>89</td>
<td>2.89E-14</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.37E-14</td>
<td>56</td>
<td>8.35E-13</td>
<td>90</td>
<td>5.79E-14</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.54E-13</td>
<td>57</td>
<td>7.98E-14</td>
<td>91</td>
<td>9.24E-13</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.42E-13</td>
<td>58</td>
<td>6.49E-13</td>
<td>92</td>
<td>7.57E-14</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.78E-14</td>
<td>59</td>
<td>9.66E-13</td>
<td>93</td>
<td>4.78E-13</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.31E-14</td>
<td>60</td>
<td>4.44E-14</td>
<td>94</td>
<td>1.06E-12</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.58E-14</td>
<td>61</td>
<td>2.05E-13</td>
<td>95</td>
<td>1.15E-13</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>9.71E-14</td>
<td>62</td>
<td>2.40E-12</td>
<td>96</td>
<td>1.93E-13</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.54E-12</td>
<td>63</td>
<td>1.31E-12</td>
<td>97</td>
<td>1.14E-13</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.49E-13</td>
<td>64</td>
<td>3.64E-13</td>
<td>98</td>
<td>3.98E-14</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.35E-14</td>
<td>65</td>
<td>4.37E-13</td>
<td>99</td>
<td>1.81E-12</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.15E-12</td>
<td>66</td>
<td>4.20E-14</td>
<td>100</td>
<td>4.35E-13</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>7.68E-13</td>
<td>67</td>
<td>8.69E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.64E-14</td>
<td>68</td>
<td>1.73E-13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.5 – Sampled Values for Parameter SPALLMOD:TENS LSTR (LHS Variable 9)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (Pa)</th>
<th>Vector</th>
<th>Value (Pa)</th>
<th>Vector</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.35E+05</td>
<td>35</td>
<td>1.21E+05</td>
<td>69</td>
<td>1.67E+05</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.44E+05</td>
<td>36</td>
<td>1.65E+05</td>
<td>70</td>
<td>1.58E+05</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.34E+05</td>
<td>37</td>
<td>1.39E+05</td>
<td>71</td>
<td>1.43E+05</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.46E+05</td>
<td>38</td>
<td>1.64E+05</td>
<td>72</td>
<td>1.60E+05</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.54E+05</td>
<td>39</td>
<td>1.37E+05</td>
<td>73</td>
<td>1.42E+05</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.59E+05</td>
<td>40</td>
<td>1.64E+05</td>
<td>74</td>
<td>1.62E+05</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.43E+05</td>
<td>41</td>
<td>1.66E+05</td>
<td>75</td>
<td>1.30E+05</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.70E+05</td>
<td>42</td>
<td>1.60E+05</td>
<td>76</td>
<td>1.33E+05</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1.56E+05</td>
<td>43</td>
<td>1.24E+05</td>
<td>77</td>
<td>1.49E+05</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.69E+05</td>
<td>44</td>
<td>1.53E+05</td>
<td>78</td>
<td>1.28E+05</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.69E+05</td>
<td>45</td>
<td>1.29E+05</td>
<td>79</td>
<td>1.22E+05</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.27E+05</td>
<td>46</td>
<td>1.38E+05</td>
<td>80</td>
<td>1.62E+05</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1.53E+05</td>
<td>47</td>
<td>1.40E+05</td>
<td>81</td>
<td>1.46E+05</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1.22E+05</td>
<td>48</td>
<td>1.23E+05</td>
<td>82</td>
<td>1.52E+05</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.45E+05</td>
<td>49</td>
<td>1.26E+05</td>
<td>83</td>
<td>1.25E+05</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1.51E+05</td>
<td>50</td>
<td>1.44E+05</td>
<td>84</td>
<td>1.50E+05</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1.41E+05</td>
<td>51</td>
<td>1.25E+05</td>
<td>85</td>
<td>1.23E+05</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1.49E+05</td>
<td>52</td>
<td>1.59E+05</td>
<td>86</td>
<td>1.48E+05</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1.63E+05</td>
<td>53</td>
<td>1.40E+05</td>
<td>87</td>
<td>1.51E+05</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1.30E+05</td>
<td>54</td>
<td>1.68E+05</td>
<td>88</td>
<td>1.56E+05</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1.50E+05</td>
<td>55</td>
<td>1.37E+05</td>
<td>89</td>
<td>1.31E+05</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1.63E+05</td>
<td>56</td>
<td>1.65E+05</td>
<td>90</td>
<td>1.61E+05</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1.58E+05</td>
<td>57</td>
<td>1.21E+05</td>
<td>91</td>
<td>1.68E+05</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1.55E+05</td>
<td>58</td>
<td>1.61E+05</td>
<td>92</td>
<td>1.32E+05</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1.35E+05</td>
<td>59</td>
<td>1.47E+05</td>
<td>93</td>
<td>1.27E+05</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1.55E+05</td>
<td>60</td>
<td>1.42E+05</td>
<td>94</td>
<td>1.57E+05</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1.32E+05</td>
<td>61</td>
<td>1.66E+05</td>
<td>95</td>
<td>1.39E+05</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1.29E+05</td>
<td>62</td>
<td>1.34E+05</td>
<td>96</td>
<td>1.67E+05</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1.48E+05</td>
<td>63</td>
<td>1.52E+05</td>
<td>97</td>
<td>1.20E+05</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1.36E+05</td>
<td>64</td>
<td>1.26E+05</td>
<td>98</td>
<td>1.36E+05</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1.33E+05</td>
<td>65</td>
<td>1.45E+05</td>
<td>99</td>
<td>1.24E+05</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1.28E+05</td>
<td>66</td>
<td>1.47E+05</td>
<td>100</td>
<td>1.57E+05</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1.41E+05</td>
<td>67</td>
<td>1.38E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1.31E+05</td>
<td>68</td>
<td>1.54E+05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.5 – Sampled Values for Parameter SPALLMOD:TENSLSTR (LHS Variable 9) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (Pa)</th>
<th>Vector #</th>
<th>Value (Pa)</th>
<th>Vector #</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.24E+05</td>
<td>35</td>
<td>1.47E+05</td>
<td>69</td>
<td>1.53E+05</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.44E+05</td>
<td>36</td>
<td>1.28E+05</td>
<td>70</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.37E+05</td>
<td>37</td>
<td>1.36E+05</td>
<td>71</td>
<td>1.65E+05</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.39E+05</td>
<td>38</td>
<td>1.56E+05</td>
<td>72</td>
<td>1.60E+05</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.62E+05</td>
<td>39</td>
<td>1.69E+05</td>
<td>73</td>
<td>1.58E+05</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.22E+05</td>
<td>40</td>
<td>1.33E+05</td>
<td>74</td>
<td>1.23E+05</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.68E+05</td>
<td>41</td>
<td>1.27E+05</td>
<td>75</td>
<td>1.43E+05</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.57E+05</td>
<td>42</td>
<td>1.24E+05</td>
<td>76</td>
<td>1.26E+05</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.23E+05</td>
<td>43</td>
<td>1.68E+05</td>
<td>77</td>
<td>1.63E+05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.52E+05</td>
<td>44</td>
<td>1.41E+05</td>
<td>78</td>
<td>1.53E+05</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.47E+05</td>
<td>45</td>
<td>1.46E+05</td>
<td>79</td>
<td>1.42E+05</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.63E+05</td>
<td>46</td>
<td>1.61E+05</td>
<td>80</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.64E+05</td>
<td>47</td>
<td>1.46E+05</td>
<td>81</td>
<td>1.66E+05</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.25E+05</td>
<td>48</td>
<td>1.29E+05</td>
<td>82</td>
<td>1.49E+05</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.26E+05</td>
<td>49</td>
<td>1.50E+05</td>
<td>83</td>
<td>1.45E+05</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.40E+05</td>
<td>50</td>
<td>1.40E+05</td>
<td>84</td>
<td>1.66E+05</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.67E+05</td>
<td>51</td>
<td>1.59E+05</td>
<td>85</td>
<td>1.22E+05</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.55E+05</td>
<td>52</td>
<td>1.21E+05</td>
<td>86</td>
<td>1.55E+05</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.31E+05</td>
<td>53</td>
<td>1.70E+05</td>
<td>87</td>
<td>1.29E+05</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.48E+05</td>
<td>54</td>
<td>1.45E+05</td>
<td>88</td>
<td>1.54E+05</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.36E+05</td>
<td>55</td>
<td>1.30E+05</td>
<td>89</td>
<td>1.48E+05</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.25E+05</td>
<td>56</td>
<td>1.50E+05</td>
<td>90</td>
<td>1.56E+05</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.20E+05</td>
<td>57</td>
<td>1.59E+05</td>
<td>91</td>
<td>1.35E+05</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.58E+05</td>
<td>58</td>
<td>1.39E+05</td>
<td>92</td>
<td>1.35E+05</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.54E+05</td>
<td>59</td>
<td>1.21E+05</td>
<td>93</td>
<td>1.34E+05</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.62E+05</td>
<td>60</td>
<td>1.34E+05</td>
<td>94</td>
<td>1.57E+05</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.31E+05</td>
<td>61</td>
<td>1.42E+05</td>
<td>95</td>
<td>1.65E+05</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.41E+05</td>
<td>62</td>
<td>1.60E+05</td>
<td>96</td>
<td>1.69E+05</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.52E+05</td>
<td>63</td>
<td>1.38E+05</td>
<td>97</td>
<td>1.28E+05</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.37E+05</td>
<td>64</td>
<td>1.49E+05</td>
<td>98</td>
<td>1.38E+05</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.64E+05</td>
<td>65</td>
<td>1.27E+05</td>
<td>99</td>
<td>1.32E+05</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.30E+05</td>
<td>66</td>
<td>1.67E+05</td>
<td>100</td>
<td>1.43E+05</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.33E+05</td>
<td>67</td>
<td>1.32E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.61E+05</td>
<td>68</td>
<td>1.44E+05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.5 – Sampled Values for Parameter SPALLMOD:TENSLSTR (LHS Variable 9) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>1.57E+05</td>
<td>35</td>
<td>1.50E+05</td>
<td>69</td>
<td>1.25E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.26E+05</td>
<td>36</td>
<td>1.64E+05</td>
<td>70</td>
<td>1.35E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.40E+05</td>
<td>37</td>
<td>1.24E+05</td>
<td>71</td>
<td>1.61E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.64E+05</td>
<td>38</td>
<td>1.62E+05</td>
<td>72</td>
<td>1.49E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.40E+05</td>
<td>39</td>
<td>1.31E+05</td>
<td>73</td>
<td>1.47E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.38E+05</td>
<td>40</td>
<td>1.26E+05</td>
<td>74</td>
<td>1.66E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.42E+05</td>
<td>41</td>
<td>1.61E+05</td>
<td>75</td>
<td>1.70E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.27E+05</td>
<td>42</td>
<td>1.25E+05</td>
<td>76</td>
<td>1.45E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.23E+05</td>
<td>43</td>
<td>1.27E+05</td>
<td>77</td>
<td>1.58E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.52E+05</td>
<td>44</td>
<td>1.21E+05</td>
<td>78</td>
<td>1.63E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1.39E+05</td>
<td>45</td>
<td>1.29E+05</td>
<td>79</td>
<td>1.43E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.28E+05</td>
<td>46</td>
<td>1.36E+05</td>
<td>80</td>
<td>1.67E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1.21E+05</td>
<td>47</td>
<td>1.53E+05</td>
<td>81</td>
<td>1.37E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.65E+05</td>
<td>48</td>
<td>1.29E+05</td>
<td>82</td>
<td>1.31E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.43E+05</td>
<td>49</td>
<td>1.62E+05</td>
<td>83</td>
<td>1.58E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.53E+05</td>
<td>50</td>
<td>1.59E+05</td>
<td>84</td>
<td>1.54E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.33E+05</td>
<td>51</td>
<td>1.44E+05</td>
<td>85</td>
<td>1.22E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1.66E+05</td>
<td>52</td>
<td>1.68E+05</td>
<td>86</td>
<td>1.56E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1.44E+05</td>
<td>53</td>
<td>1.34E+05</td>
<td>87</td>
<td>1.60E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.32E+05</td>
<td>54</td>
<td>1.65E+05</td>
<td>88</td>
<td>1.63E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1.23E+05</td>
<td>55</td>
<td>1.59E+05</td>
<td>89</td>
<td>1.68E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.57E+05</td>
<td>56</td>
<td>1.49E+05</td>
<td>90</td>
<td>1.50E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.37E+05</td>
<td>57</td>
<td>1.45E+05</td>
<td>91</td>
<td>1.48E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1.47E+05</td>
<td>58</td>
<td>1.52E+05</td>
<td>92</td>
<td>1.56E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1.48E+05</td>
<td>59</td>
<td>1.55E+05</td>
<td>93</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>1.28E+05</td>
<td>60</td>
<td>1.20E+05</td>
<td>94</td>
<td>1.24E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>1.55E+05</td>
<td>61</td>
<td>1.41E+05</td>
<td>95</td>
<td>1.51E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>1.41E+05</td>
<td>62</td>
<td>1.54E+05</td>
<td>96</td>
<td>1.38E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>1.69E+05</td>
<td>63</td>
<td>1.69E+05</td>
<td>97</td>
<td>1.30E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1.22E+05</td>
<td>64</td>
<td>1.67E+05</td>
<td>98</td>
<td>1.32E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>1.30E+05</td>
<td>65</td>
<td>1.33E+05</td>
<td>99</td>
<td>1.46E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>1.34E+05</td>
<td>66</td>
<td>1.42E+05</td>
<td>100</td>
<td>1.35E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>1.60E+05</td>
<td>67</td>
<td>1.36E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>1.39E+05</td>
<td>68</td>
<td>1.46E+05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.6 – Sampled Values for Parameter SPALLMOD:PARTDIAM (LHS Variable 10)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (m)</th>
<th>Vector #</th>
<th>Value (m)</th>
<th>Vector #</th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.63E-03</td>
<td>35</td>
<td>2.56E-03</td>
<td>69</td>
<td>8.13E-03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.50E-03</td>
<td>36</td>
<td>1.53E-03</td>
<td>70</td>
<td>8.39E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.78E-02</td>
<td>37</td>
<td>1.43E-03</td>
<td>71</td>
<td>1.27E-03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.96E-02</td>
<td>38</td>
<td>2.38E-02</td>
<td>72</td>
<td>4.55E-03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.33E-02</td>
<td>39</td>
<td>2.26E-02</td>
<td>73</td>
<td>6.83E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.09E-02</td>
<td>40</td>
<td>7.02E-03</td>
<td>74</td>
<td>1.07E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.86E-02</td>
<td>41</td>
<td>1.28E-02</td>
<td>75</td>
<td>1.08E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.93E-03</td>
<td>42</td>
<td>3.47E-03</td>
<td>76</td>
<td>1.24E-03</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.69E-02</td>
<td>43</td>
<td>2.20E-03</td>
<td>77</td>
<td>3.49E-03</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.64E-02</td>
<td>44</td>
<td>2.39E-03</td>
<td>78</td>
<td>1.71E-03</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.81E-03</td>
<td>45</td>
<td>3.98E-03</td>
<td>79</td>
<td>1.64E-03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9.30E-02</td>
<td>46</td>
<td>2.40E-02</td>
<td>80</td>
<td>3.73E-03</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.36E-02</td>
<td>47</td>
<td>1.34E-03</td>
<td>81</td>
<td>5.95E-03</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.88E-03</td>
<td>48</td>
<td>1.00E-02</td>
<td>82</td>
<td>3.94E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.29E-03</td>
<td>49</td>
<td>1.62E-02</td>
<td>83</td>
<td>1.15E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.92E-02</td>
<td>50</td>
<td>3.46E-02</td>
<td>84</td>
<td>3.58E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.10E-03</td>
<td>51</td>
<td>5.07E-03</td>
<td>85</td>
<td>7.26E-03</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.05E-02</td>
<td>52</td>
<td>7.63E-03</td>
<td>86</td>
<td>9.71E-03</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.93E-02</td>
<td>53</td>
<td>3.92E-03</td>
<td>87</td>
<td>3.09E-03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.34E-02</td>
<td>54</td>
<td>9.52E-03</td>
<td>88</td>
<td>3.25E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.98E-02</td>
<td>55</td>
<td>1.41E-02</td>
<td>89</td>
<td>8.83E-03</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.88E-03</td>
<td>56</td>
<td>2.11E-03</td>
<td>90</td>
<td>2.12E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.01E-03</td>
<td>57</td>
<td>6.10E-02</td>
<td>91</td>
<td>4.69E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.58E-02</td>
<td>58</td>
<td>4.30E-02</td>
<td>92</td>
<td>1.70E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.21E-02</td>
<td>59</td>
<td>1.84E-03</td>
<td>93</td>
<td>2.60E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>9.09E-02</td>
<td>60</td>
<td>5.60E-02</td>
<td>94</td>
<td>7.99E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.15E-02</td>
<td>61</td>
<td>1.49E-02</td>
<td>95</td>
<td>7.92E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.31E-03</td>
<td>62</td>
<td>9.65E-02</td>
<td>96</td>
<td>8.50E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.07E-03</td>
<td>63</td>
<td>3.99E-02</td>
<td>97</td>
<td>5.42E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.45E-02</td>
<td>64</td>
<td>6.39E-03</td>
<td>98</td>
<td>1.84E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.51E-03</td>
<td>65</td>
<td>2.70E-03</td>
<td>99</td>
<td>2.96E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.10E-03</td>
<td>66</td>
<td>5.40E-03</td>
<td>100</td>
<td>2.97E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.47E-03</td>
<td>67</td>
<td>4.99E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.15E-03</td>
<td>68</td>
<td>1.13E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.6 – Sampled Values for Parameter SPALLMOD:PARTDIAM (LHS Variable 10) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (m)</th>
<th>#</th>
<th>Value (m)</th>
<th>#</th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.51E-03</td>
<td>35</td>
<td>1.00E-03</td>
<td>69</td>
<td>6.57E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.55E-02</td>
<td>36</td>
<td>4.97E-03</td>
<td>70</td>
<td>3.31E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.23E-03</td>
<td>37</td>
<td>1.06E-02</td>
<td>71</td>
<td>1.24E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.60E-02</td>
<td>38</td>
<td>1.46E-02</td>
<td>72</td>
<td>1.10E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.84E-02</td>
<td>39</td>
<td>1.06E-03</td>
<td>73</td>
<td>2.29E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.55E-03</td>
<td>40</td>
<td>2.40E-02</td>
<td>74</td>
<td>1.23E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.13E-02</td>
<td>41</td>
<td>1.82E-03</td>
<td>75</td>
<td>2.95E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.68E-03</td>
<td>42</td>
<td>8.48E-03</td>
<td>76</td>
<td>1.70E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.78E-03</td>
<td>43</td>
<td>2.51E-02</td>
<td>77</td>
<td>4.49E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8.91E-02</td>
<td>44</td>
<td>6.91E-03</td>
<td>78</td>
<td>5.34E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.14E-03</td>
<td>45</td>
<td>4.72E-03</td>
<td>79</td>
<td>3.98E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.46E-03</td>
<td>46</td>
<td>3.67E-03</td>
<td>80</td>
<td>8.71E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.67E-02</td>
<td>47</td>
<td>1.31E-02</td>
<td>81</td>
<td>3.40E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.28E-02</td>
<td>48</td>
<td>6.44E-02</td>
<td>82</td>
<td>9.35E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.71E-02</td>
<td>49</td>
<td>1.19E-02</td>
<td>83</td>
<td>3.88E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8.95E-03</td>
<td>50</td>
<td>1.94E-02</td>
<td>84</td>
<td>4.24E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.61E-02</td>
<td>51</td>
<td>1.88E-02</td>
<td>85</td>
<td>4.12E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6.63E-02</td>
<td>52</td>
<td>4.74E-02</td>
<td>86</td>
<td>1.46E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>7.38E-02</td>
<td>53</td>
<td>4.46E-02</td>
<td>87</td>
<td>3.62E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6.28E-02</td>
<td>54</td>
<td>3.00E-02</td>
<td>88</td>
<td>3.52E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>9.76E-02</td>
<td>55</td>
<td>2.53E-03</td>
<td>89</td>
<td>3.15E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.13E-03</td>
<td>56</td>
<td>1.75E-02</td>
<td>90</td>
<td>3.17E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6.18E-03</td>
<td>57</td>
<td>4.18E-03</td>
<td>91</td>
<td>1.03E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.80E-03</td>
<td>58</td>
<td>1.34E-03</td>
<td>92</td>
<td>5.88E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.99E-03</td>
<td>59</td>
<td>4.12E-03</td>
<td>93</td>
<td>1.37E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.11E-03</td>
<td>60</td>
<td>1.62E-03</td>
<td>94</td>
<td>2.01E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2.39E-03</td>
<td>61</td>
<td>9.48E-02</td>
<td>95</td>
<td>3.19E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3.67E-02</td>
<td>62</td>
<td>2.23E-03</td>
<td>96</td>
<td>5.68E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>7.34E-03</td>
<td>63</td>
<td>2.79E-02</td>
<td>97</td>
<td>7.89E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.19E-03</td>
<td>64</td>
<td>4.99E-02</td>
<td>98</td>
<td>5.05E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2.18E-02</td>
<td>65</td>
<td>5.93E-02</td>
<td>99</td>
<td>8.09E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3.05E-03</td>
<td>66</td>
<td>1.41E-03</td>
<td>100</td>
<td>7.04E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2.01E-03</td>
<td>67</td>
<td>9.63E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.31E-03</td>
<td>68</td>
<td>1.39E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.6 – Sampled Values for Parameter SPALLMOD:PARTDIAM (LHS Variable 10) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m)</th>
<th>#</th>
<th>Value (m)</th>
<th>#</th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1.57E-03</td>
<td>35</td>
<td>3.13E-02</td>
<td>69</td>
<td>4.82E-03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.26E-03</td>
<td>36</td>
<td>2.88E-03</td>
<td>70</td>
<td>6.66E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.85E-03</td>
<td>37</td>
<td>3.14E-03</td>
<td>71</td>
<td>6.69E-03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.20E-03</td>
<td>38</td>
<td>6.12E-03</td>
<td>72</td>
<td>3.00E-03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.49E-03</td>
<td>39</td>
<td>2.04E-03</td>
<td>73</td>
<td>5.39E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.59E-03</td>
<td>40</td>
<td>2.21E-02</td>
<td>74</td>
<td>1.44E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.83E-02</td>
<td>41</td>
<td>2.56E-02</td>
<td>75</td>
<td>1.46E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.15E-03</td>
<td>42</td>
<td>4.18E-03</td>
<td>76</td>
<td>7.05E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.13E-03</td>
<td>43</td>
<td>1.98E-02</td>
<td>77</td>
<td>8.44E-03</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.27E-02</td>
<td>44</td>
<td>2.01E-02</td>
<td>78</td>
<td>1.98E-03</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8.01E-03</td>
<td>45</td>
<td>7.04E-03</td>
<td>79</td>
<td>1.09E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8.24E-02</td>
<td>46</td>
<td>2.23E-03</td>
<td>80</td>
<td>1.55E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.00E-02</td>
<td>47</td>
<td>1.36E-02</td>
<td>81</td>
<td>9.52E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.69E-02</td>
<td>48</td>
<td>4.91E-02</td>
<td>82</td>
<td>6.57E-03</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.67E-03</td>
<td>49</td>
<td>1.86E-03</td>
<td>83</td>
<td>7.87E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.12E-02</td>
<td>50</td>
<td>3.74E-03</td>
<td>84</td>
<td>4.27E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.01E-02</td>
<td>51</td>
<td>4.67E-03</td>
<td>85</td>
<td>1.74E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.37E-02</td>
<td>52</td>
<td>5.16E-02</td>
<td>86</td>
<td>8.69E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.55E-02</td>
<td>53</td>
<td>4.47E-03</td>
<td>87</td>
<td>1.08E-03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.43E-02</td>
<td>54</td>
<td>3.23E-03</td>
<td>88</td>
<td>6.38E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.60E-03</td>
<td>55</td>
<td>2.48E-03</td>
<td>89</td>
<td>2.88E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.78E-03</td>
<td>56</td>
<td>3.95E-03</td>
<td>90</td>
<td>5.17E-03</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.06E-02</td>
<td>57</td>
<td>2.34E-03</td>
<td>91</td>
<td>3.44E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.65E-02</td>
<td>58</td>
<td>4.52E-02</td>
<td>92</td>
<td>3.85E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.40E-03</td>
<td>59</td>
<td>7.74E-03</td>
<td>93</td>
<td>1.36E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.73E-02</td>
<td>60</td>
<td>5.79E-02</td>
<td>94</td>
<td>1.68E-03</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.58E-03</td>
<td>61</td>
<td>5.41E-03</td>
<td>95</td>
<td>1.17E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.60E-03</td>
<td>62</td>
<td>3.99E-03</td>
<td>96</td>
<td>5.72E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>9.82E-02</td>
<td>63</td>
<td>1.04E-03</td>
<td>97</td>
<td>1.65E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.17E-02</td>
<td>64</td>
<td>6.25E-02</td>
<td>98</td>
<td>1.25E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.50E-02</td>
<td>65</td>
<td>5.56E-02</td>
<td>99</td>
<td>2.12E-03</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>8.88E-02</td>
<td>66</td>
<td>4.75E-02</td>
<td>100</td>
<td>5.85E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.29E-02</td>
<td>67</td>
<td>1.20E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.63E-03</td>
<td>68</td>
<td>3.31E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (dimensionless)</td>
<td>Vector</td>
<td>#</td>
<td>Value (dimensionless)</td>
<td>Vector</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6.09E-01</td>
<td>35</td>
<td>43</td>
<td>4.32E-01</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.46E-01</td>
<td>36</td>
<td>45</td>
<td>4.92E-01</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.56E-01</td>
<td>37</td>
<td>47</td>
<td>6.15E-01</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.51E-01</td>
<td>38</td>
<td>49</td>
<td>6.26E-01</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.22E-01</td>
<td>39</td>
<td>51</td>
<td>5.35E-01</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.54E-01</td>
<td>40</td>
<td>53</td>
<td>4.66E-01</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.47E-01</td>
<td>41</td>
<td>55</td>
<td>4.78E-01</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.67E-01</td>
<td>42</td>
<td>57</td>
<td>3.80E-01</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.27E-01</td>
<td>43</td>
<td>59</td>
<td>6.17E-01</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.76E-01</td>
<td>44</td>
<td>61</td>
<td>4.87E-01</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.87E-01</td>
<td>45</td>
<td>63</td>
<td>5.49E-01</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.57E-01</td>
<td>46</td>
<td>65</td>
<td>6.50E-01</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.07E-01</td>
<td>47</td>
<td>67</td>
<td>4.95E-01</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.33E-01</td>
<td>48</td>
<td>69</td>
<td>5.60E-01</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.37E-01</td>
<td>49</td>
<td>71</td>
<td>6.01E-01</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.65E-01</td>
<td>50</td>
<td>73</td>
<td>6.11E-01</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.19E-01</td>
<td>51</td>
<td>75</td>
<td>5.72E-01</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.26E-01</td>
<td>52</td>
<td>77</td>
<td>4.17E-01</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.53E-01</td>
<td>53</td>
<td>79</td>
<td>3.54E-01</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.07E-01</td>
<td>54</td>
<td>81</td>
<td>4.50E-01</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.65E-01</td>
<td>55</td>
<td>83</td>
<td>4.11E-01</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.77E-01</td>
<td>56</td>
<td>85</td>
<td>6.58E-01</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.04E-01</td>
<td>57</td>
<td>87</td>
<td>4.73E-01</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.83E-01</td>
<td>58</td>
<td>89</td>
<td>4.86E-01</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.01E-01</td>
<td>59</td>
<td>91</td>
<td>4.41E-01</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.62E-01</td>
<td>60</td>
<td>93</td>
<td>5.84E-01</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.99E-01</td>
<td>61</td>
<td>95</td>
<td>3.85E-01</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.57E-01</td>
<td>62</td>
<td>97</td>
<td>6.41E-01</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.44E-01</td>
<td>63</td>
<td>99</td>
<td>5.75E-01</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.37E-01</td>
<td>64</td>
<td>100</td>
<td>5.32E-01</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.81E-01</td>
<td>65</td>
<td></td>
<td>4.29E-01</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.60E-01</td>
<td>66</td>
<td></td>
<td>5.08E-01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.22E-01</td>
<td>67</td>
<td></td>
<td>3.95E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.91E-01</td>
<td>68</td>
<td></td>
<td>6.45E-01</td>
<td></td>
</tr>
</tbody>
</table>
Table A.7 – Sampled Values for Parameter SPALLMOD:REPIPOR (LHS Variable 11) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.54E-01</td>
<td>35</td>
<td>5.85E-01</td>
<td>69</td>
<td>6.40E-01</td>
</tr>
<tr>
<td>2</td>
<td>6.31E-01</td>
<td>36</td>
<td>4.48E-01</td>
<td>70</td>
<td>5.50E-01</td>
</tr>
<tr>
<td>3</td>
<td>5.61E-01</td>
<td>37</td>
<td>3.92E-01</td>
<td>71</td>
<td>3.57E-01</td>
</tr>
<tr>
<td>4</td>
<td>5.59E-01</td>
<td>38</td>
<td>3.99E-01</td>
<td>72</td>
<td>5.16E-01</td>
</tr>
<tr>
<td>5</td>
<td>3.89E-01</td>
<td>39</td>
<td>4.68E-01</td>
<td>73</td>
<td>3.75E-01</td>
</tr>
<tr>
<td>6</td>
<td>3.51E-01</td>
<td>40</td>
<td>4.09E-01</td>
<td>74</td>
<td>3.68E-01</td>
</tr>
<tr>
<td>7</td>
<td>4.02E-01</td>
<td>41</td>
<td>3.54E-01</td>
<td>75</td>
<td>4.87E-01</td>
</tr>
<tr>
<td>8</td>
<td>5.34E-01</td>
<td>42</td>
<td>3.82E-01</td>
<td>76</td>
<td>6.58E-01</td>
</tr>
<tr>
<td>9</td>
<td>6.07E-01</td>
<td>43</td>
<td>5.41E-01</td>
<td>77</td>
<td>4.72E-01</td>
</tr>
<tr>
<td>10</td>
<td>4.50E-01</td>
<td>44</td>
<td>6.35E-01</td>
<td>78</td>
<td>6.17E-01</td>
</tr>
<tr>
<td>11</td>
<td>5.53E-01</td>
<td>45</td>
<td>5.26E-01</td>
<td>79</td>
<td>5.57E-01</td>
</tr>
<tr>
<td>12</td>
<td>6.08E-01</td>
<td>46</td>
<td>5.08E-01</td>
<td>80</td>
<td>5.91E-01</td>
</tr>
<tr>
<td>13</td>
<td>4.23E-01</td>
<td>47</td>
<td>4.44E-01</td>
<td>81</td>
<td>4.11E-01</td>
</tr>
<tr>
<td>14</td>
<td>5.79E-01</td>
<td>48</td>
<td>6.46E-01</td>
<td>82</td>
<td>4.17E-01</td>
</tr>
<tr>
<td>15</td>
<td>4.99E-01</td>
<td>49</td>
<td>5.03E-01</td>
<td>83</td>
<td>4.83E-01</td>
</tr>
<tr>
<td>16</td>
<td>4.05E-01</td>
<td>50</td>
<td>4.81E-01</td>
<td>84</td>
<td>4.38E-01</td>
</tr>
<tr>
<td>17</td>
<td>3.71E-01</td>
<td>51</td>
<td>5.20E-01</td>
<td>85</td>
<td>4.21E-01</td>
</tr>
<tr>
<td>18</td>
<td>3.62E-01</td>
<td>52</td>
<td>5.28E-01</td>
<td>86</td>
<td>3.74E-01</td>
</tr>
<tr>
<td>19</td>
<td>5.44E-01</td>
<td>53</td>
<td>5.68E-01</td>
<td>87</td>
<td>6.11E-01</td>
</tr>
<tr>
<td>20</td>
<td>5.93E-01</td>
<td>54</td>
<td>6.28E-01</td>
<td>88</td>
<td>4.78E-01</td>
</tr>
<tr>
<td>21</td>
<td>5.30E-01</td>
<td>55</td>
<td>4.13E-01</td>
<td>89</td>
<td>4.64E-01</td>
</tr>
<tr>
<td>22</td>
<td>5.98E-01</td>
<td>56</td>
<td>4.30E-01</td>
<td>90</td>
<td>5.37E-01</td>
</tr>
<tr>
<td>23</td>
<td>5.23E-01</td>
<td>57</td>
<td>6.36E-01</td>
<td>91</td>
<td>4.56E-01</td>
</tr>
<tr>
<td>24</td>
<td>6.01E-01</td>
<td>58</td>
<td>5.65E-01</td>
<td>92</td>
<td>4.93E-01</td>
</tr>
<tr>
<td>25</td>
<td>4.65E-01</td>
<td>59</td>
<td>4.75E-01</td>
<td>93</td>
<td>5.78E-01</td>
</tr>
<tr>
<td>26</td>
<td>5.88E-01</td>
<td>60</td>
<td>4.24E-01</td>
<td>94</td>
<td>5.73E-01</td>
</tr>
<tr>
<td>27</td>
<td>4.36E-01</td>
<td>61</td>
<td>4.40E-01</td>
<td>95</td>
<td>5.47E-01</td>
</tr>
<tr>
<td>28</td>
<td>6.15E-01</td>
<td>62</td>
<td>6.43E-01</td>
<td>96</td>
<td>6.20E-01</td>
</tr>
<tr>
<td>29</td>
<td>4.61E-01</td>
<td>63</td>
<td>6.54E-01</td>
<td>97</td>
<td>5.75E-01</td>
</tr>
<tr>
<td>30</td>
<td>3.96E-01</td>
<td>64</td>
<td>5.98E-01</td>
<td>98</td>
<td>4.91E-01</td>
</tr>
<tr>
<td>31</td>
<td>3.63E-01</td>
<td>65</td>
<td>4.33E-01</td>
<td>99</td>
<td>5.13E-01</td>
</tr>
<tr>
<td>32</td>
<td>3.85E-01</td>
<td>66</td>
<td>3.80E-01</td>
<td>100</td>
<td>5.07E-01</td>
</tr>
<tr>
<td>33</td>
<td>6.25E-01</td>
<td>67</td>
<td>4.98E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>6.54E-01</td>
<td>68</td>
<td>6.50E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.7 – Sampled Values for Parameter SPALLMOD:REPIPOR (LHS Variable 11) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3.65E-01</td>
<td>35</td>
<td>4.93E-01</td>
<td>69</td>
<td>3.61E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.15E-01</td>
<td>36</td>
<td>3.75E-01</td>
<td>70</td>
<td>6.17E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.71E-01</td>
<td>37</td>
<td>6.32E-01</td>
<td>71</td>
<td>6.33E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.22E-01</td>
<td>38</td>
<td>3.54E-01</td>
<td>72</td>
<td>4.78E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.75E-01</td>
<td>39</td>
<td>5.13E-01</td>
<td>73</td>
<td>4.42E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.87E-01</td>
<td>40</td>
<td>4.11E-01</td>
<td>74</td>
<td>4.07E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.48E-01</td>
<td>41</td>
<td>6.42E-01</td>
<td>75</td>
<td>3.73E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.47E-01</td>
<td>42</td>
<td>4.66E-01</td>
<td>76</td>
<td>4.89E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.20E-01</td>
<td>43</td>
<td>4.03E-01</td>
<td>77</td>
<td>5.66E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.97E-01</td>
<td>44</td>
<td>6.12E-01</td>
<td>78</td>
<td>4.30E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.85E-01</td>
<td>45</td>
<td>6.47E-01</td>
<td>79</td>
<td>5.92E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.67E-01</td>
<td>46</td>
<td>5.58E-01</td>
<td>80</td>
<td>5.33E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.70E-01</td>
<td>47</td>
<td>5.76E-01</td>
<td>81</td>
<td>4.91E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.37E-01</td>
<td>48</td>
<td>6.01E-01</td>
<td>82</td>
<td>4.32E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.17E-01</td>
<td>49</td>
<td>6.40E-01</td>
<td>83</td>
<td>5.48E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.35E-01</td>
<td>50</td>
<td>6.54E-01</td>
<td>84</td>
<td>3.52E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.37E-01</td>
<td>51</td>
<td>3.89E-01</td>
<td>85</td>
<td>5.35E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.60E-01</td>
<td>52</td>
<td>6.15E-01</td>
<td>86</td>
<td>5.11E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.71E-01</td>
<td>53</td>
<td>3.84E-01</td>
<td>87</td>
<td>5.45E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.02E-01</td>
<td>54</td>
<td>6.51E-01</td>
<td>88</td>
<td>3.79E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.83E-01</td>
<td>55</td>
<td>5.21E-01</td>
<td>89</td>
<td>4.21E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.91E-01</td>
<td>56</td>
<td>4.69E-01</td>
<td>90</td>
<td>5.00E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.05E-01</td>
<td>57</td>
<td>6.29E-01</td>
<td>91</td>
<td>5.63E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.42E-01</td>
<td>58</td>
<td>4.76E-01</td>
<td>92</td>
<td>5.98E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.98E-01</td>
<td>59</td>
<td>4.27E-01</td>
<td>93</td>
<td>4.58E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.15E-01</td>
<td>60</td>
<td>6.58E-01</td>
<td>94</td>
<td>3.91E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.45E-01</td>
<td>61</td>
<td>4.00E-01</td>
<td>95</td>
<td>5.52E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.29E-01</td>
<td>62</td>
<td>3.95E-01</td>
<td>96</td>
<td>4.60E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.64E-01</td>
<td>63</td>
<td>5.69E-01</td>
<td>97</td>
<td>4.53E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.49E-01</td>
<td>64</td>
<td>5.19E-01</td>
<td>98</td>
<td>6.23E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.50E-01</td>
<td>65</td>
<td>5.25E-01</td>
<td>99</td>
<td>6.09E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.39E-01</td>
<td>66</td>
<td>5.82E-01</td>
<td>100</td>
<td>3.86E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.05E-01</td>
<td>67</td>
<td>4.83E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.08E-01</td>
<td>68</td>
<td>3.56E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.8 – Sampled Values for Parameter SOLMOD3:SOLVAR (LHS Variable 15)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.22E+00</td>
<td>35</td>
<td>-8.86E-01</td>
<td>69</td>
<td>-7.30E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.40E-01</td>
<td>36</td>
<td>-4.35E-01</td>
<td>70</td>
<td>-1.62E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.68E+00</td>
<td>37</td>
<td>1.02E+00</td>
<td>71</td>
<td>1.42E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.17E-02</td>
<td>38</td>
<td>1.22E+00</td>
<td>72</td>
<td>-8.64E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-6.89E-01</td>
<td>39</td>
<td>-7.58E-01</td>
<td>73</td>
<td>5.08E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.93E+00</td>
<td>40</td>
<td>-8.96E-02</td>
<td>74</td>
<td>1.29E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.61E+00</td>
<td>41</td>
<td>8.02E-01</td>
<td>75</td>
<td>1.14E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.39E+00</td>
<td>42</td>
<td>1.60E-01</td>
<td>76</td>
<td>8.22E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-6.35E-01</td>
<td>43</td>
<td>-3.06E-01</td>
<td>77</td>
<td>1.24E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-8.34E-01</td>
<td>44</td>
<td>1.24E+00</td>
<td>78</td>
<td>4.92E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.08E+00</td>
<td>45</td>
<td>-5.34E-01</td>
<td>79</td>
<td>-2.21E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.90E-02</td>
<td>46</td>
<td>1.29E+00</td>
<td>80</td>
<td>3.23E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-2.08E-01</td>
<td>47</td>
<td>-9.06E-01</td>
<td>81</td>
<td>2.44E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.30E-01</td>
<td>48</td>
<td>-1.14E-01</td>
<td>82</td>
<td>2.04E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-4.01E-01</td>
<td>49</td>
<td>-1.66E-01</td>
<td>83</td>
<td>1.79E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.41E-02</td>
<td>50</td>
<td>-1.07E-01</td>
<td>84</td>
<td>-5.65E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.70E+00</td>
<td>51</td>
<td>2.34E+00</td>
<td>85</td>
<td>9.63E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.21E+00</td>
<td>52</td>
<td>4.38E-01</td>
<td>86</td>
<td>-1.19E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-4.26E-01</td>
<td>53</td>
<td>-4.60E-01</td>
<td>87</td>
<td>1.98E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-6.69E-01</td>
<td>54</td>
<td>-1.17E-01</td>
<td>88</td>
<td>-4.88E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>9.17E-01</td>
<td>55</td>
<td>7.00E-01</td>
<td>89</td>
<td>-5.86E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.46E+00</td>
<td>56</td>
<td>1.78E+00</td>
<td>90</td>
<td>2.17E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.55E+00</td>
<td>57</td>
<td>1.44E-01</td>
<td>91</td>
<td>-1.09E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.46E-01</td>
<td>58</td>
<td>1.23E+00</td>
<td>92</td>
<td>2.06E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.56E+00</td>
<td>59</td>
<td>1.63E+00</td>
<td>93</td>
<td>2.44E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.95E+00</td>
<td>60</td>
<td>2.88E+00</td>
<td>94</td>
<td>1.05E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.53E-01</td>
<td>61</td>
<td>5.08E-02</td>
<td>95</td>
<td>2.69E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>7.65E-01</td>
<td>62</td>
<td>1.09E+00</td>
<td>96</td>
<td>2.01E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.57E+00</td>
<td>63</td>
<td>1.42E+00</td>
<td>97</td>
<td>8.61E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.19E+00</td>
<td>64</td>
<td>-2.73E-01</td>
<td>98</td>
<td>-6.74E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>0.00E+00</td>
<td>65</td>
<td>6.99E-02</td>
<td>99</td>
<td>1.25E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.93E-01</td>
<td>66</td>
<td>2.36E+00</td>
<td>100</td>
<td>3.41E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.22E+00</td>
<td>67</td>
<td>2.07E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.48E+00</td>
<td>68</td>
<td>-3.30E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Value (dimensionless)</td>
<td>Value (dimensionless)</td>
<td>Value (dimensionless)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.40E-01</td>
<td>35</td>
<td>1.43E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.12E-01</td>
<td>36</td>
<td>1.22E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.96E-02</td>
<td>37</td>
<td>5.47E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.27E+00</td>
<td>38</td>
<td>1.64E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.46E+00</td>
<td>39</td>
<td>1.66E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-6.87E-01</td>
<td>41</td>
<td>1.07E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.68E+00</td>
<td>42</td>
<td>-1.02E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.04E+00</td>
<td>43</td>
<td>7.33E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.48E+00</td>
<td>44</td>
<td>1.36E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.00E-01</td>
<td>45</td>
<td>6.48E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-4.89E-01</td>
<td>46</td>
<td>1.29E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-5.64E-01</td>
<td>47</td>
<td>7.41E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-1.22E-01</td>
<td>48</td>
<td>2.07E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.73E+00</td>
<td>49</td>
<td>8.02E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-6.60E-01</td>
<td>50</td>
<td>1.56E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-1.10E-01</td>
<td>51</td>
<td>1.23E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.30E+00</td>
<td>52</td>
<td>9.36E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.07E+00</td>
<td>53</td>
<td>1.17E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.48E-01</td>
<td>54</td>
<td>-1.42E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-9.97E-01</td>
<td>55</td>
<td>-1.65E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-3.78E-01</td>
<td>56</td>
<td>-2.01E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.79E-01</td>
<td>57</td>
<td>2.06E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.35E-01</td>
<td>58</td>
<td>-4.06E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.03E+00</td>
<td>59</td>
<td>1.22E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.59E-01</td>
<td>60</td>
<td>-8.81E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.02E+00</td>
<td>61</td>
<td>-9.01E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.90E-02</td>
<td>62</td>
<td>2.36E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-2.56E-01</td>
<td>63</td>
<td>-5.65E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.24E+00</td>
<td>64</td>
<td>2.63E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.00E+00</td>
<td>65</td>
<td>2.43E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-2.30E-01</td>
<td>66</td>
<td>1.42E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-4.32E-01</td>
<td>67</td>
<td>6.90E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>-2.29E-01</td>
<td>68</td>
<td>2.95E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.8 – Sampled Values for Parameter SOLMOD3:SOLVAR (LHS Variable 15) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>-5.33E-01</td>
<td>35</td>
<td>-8.77E-01</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>1.61E+00</td>
<td>2</td>
<td>1.53E+00</td>
<td>70</td>
<td>1.67E+00</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>1.69E+00</td>
<td>3</td>
<td>1.43E+00</td>
<td>71</td>
<td>1.98E+00</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>7.14E-01</td>
<td>4</td>
<td>2.34E+00</td>
<td>72</td>
<td>-2.21E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-7.10E-01</td>
<td>5</td>
<td>1.46E-01</td>
<td>73</td>
<td>-2.15E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-4.42E-01</td>
<td>6</td>
<td>-3.72E-01</td>
<td>74</td>
<td>8.90E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.40E+00</td>
<td>7</td>
<td>9.86E-01</td>
<td>75</td>
<td>1.90E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.56E+00</td>
<td>8</td>
<td>-1.02E-01</td>
<td>76</td>
<td>1.88E+00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.73E-02</td>
<td>9</td>
<td>-2.48E-01</td>
<td>77</td>
<td>1.54E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-2.02E-01</td>
<td>10</td>
<td>2.22E+00</td>
<td>78</td>
<td>-4.87E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.06E+00</td>
<td>11</td>
<td>7.41E-02</td>
<td>79</td>
<td>-1.11E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-1.04E-02</td>
<td>12</td>
<td>-1.13E-01</td>
<td>80</td>
<td>2.35E+00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-7.86E-01</td>
<td>13</td>
<td>7.82E-01</td>
<td>81</td>
<td>1.29E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>7.50E-01</td>
<td>14</td>
<td>9.24E-01</td>
<td>82</td>
<td>1.22E+00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.24E+00</td>
<td>15</td>
<td>2.59E+00</td>
<td>83</td>
<td>2.05E+00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.25E-01</td>
<td>16</td>
<td>-7.56E-02</td>
<td>84</td>
<td>1.26E+00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.75E+00</td>
<td>17</td>
<td>9.57E-01</td>
<td>85</td>
<td>1.61E+00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.00E+00</td>
<td>18</td>
<td>-1.13E+00</td>
<td>86</td>
<td>-4.87E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-1.07E-01</td>
<td>19</td>
<td>8.02E-01</td>
<td>87</td>
<td>1.02E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-7.31E-02</td>
<td>20</td>
<td>8.62E-01</td>
<td>88</td>
<td>2.97E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-1.63E-01</td>
<td>21</td>
<td>2.40E+00</td>
<td>89</td>
<td>7.41E-02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.19E+00</td>
<td>22</td>
<td>-1.89E-01</td>
<td>90</td>
<td>2.37E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-3.40E-01</td>
<td>23</td>
<td>1.60E-01</td>
<td>91</td>
<td>4.90E-02</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-4.06E-01</td>
<td>24</td>
<td>1.20E+00</td>
<td>92</td>
<td>4.91E-02</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.98E-02</td>
<td>25</td>
<td>2.20E+00</td>
<td>93</td>
<td>-5.65E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.45E+00</td>
<td>26</td>
<td>1.23E+00</td>
<td>94</td>
<td>-6.66E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.24E+00</td>
<td>27</td>
<td>-1.26E-01</td>
<td>95</td>
<td>2.30E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>8.09E-01</td>
<td>28</td>
<td>4.18E-03</td>
<td>96</td>
<td>-6.90E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.08E+00</td>
<td>29</td>
<td>6.87E-01</td>
<td>97</td>
<td>2.07E+00</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.06E+00</td>
<td>30</td>
<td>-3.97E-01</td>
<td>98</td>
<td>-1.14E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1.90E+00</td>
<td>31</td>
<td>0.00E+00</td>
<td>99</td>
<td>1.42E+00</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-5.64E-01</td>
<td>32</td>
<td>1.52E+00</td>
<td>100</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.23E+00</td>
<td>33</td>
<td>2.78E-01</td>
<td></td>
<td>1.90E-01</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.67E+00</td>
<td>34</td>
<td>5.09E-01</td>
<td></td>
<td>1.90E-01</td>
<td></td>
</tr>
</tbody>
</table>
Table A.9 – Sampled Values for Parameter SOLMOD4:SOLVAR (LHS Variable 16)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.37E-01</td>
<td>35</td>
<td>-6.99E-01</td>
<td>69</td>
<td>1.28E+00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>7.96E-01</td>
<td>36</td>
<td>-8.52E-01</td>
<td>70</td>
<td>7.86E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.02E-01</td>
<td>37</td>
<td>-4.50E-02</td>
<td>71</td>
<td>-9.48E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8.03E-01</td>
<td>38</td>
<td>5.39E-01</td>
<td>72</td>
<td>1.82E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-8.18E-01</td>
<td>39</td>
<td>-1.20E+00</td>
<td>73</td>
<td>-1.04E+00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-9.60E-01</td>
<td>40</td>
<td>-6.10E-01</td>
<td>74</td>
<td>-1.83E+00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9.49E-01</td>
<td>41</td>
<td>-5.41E-01</td>
<td>75</td>
<td>4.48E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-5.61E-01</td>
<td>42</td>
<td>1.22E+00</td>
<td>76</td>
<td>8.32E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>7.65E-01</td>
<td>43</td>
<td>6.86E-01</td>
<td>77</td>
<td>8.80E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-5.38E-01</td>
<td>44</td>
<td>1.16E+00</td>
<td>78</td>
<td>6.90E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>7.91E-01</td>
<td>45</td>
<td>-9.83E-02</td>
<td>79</td>
<td>-5.61E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-7.52E-01</td>
<td>46</td>
<td>-9.51E-02</td>
<td>80</td>
<td>-7.22E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>-4.08E-01</td>
<td>47</td>
<td>-6.71E-01</td>
<td>81</td>
<td>-6.43E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>2.72E-01</td>
<td>48</td>
<td>4.37E-01</td>
<td>82</td>
<td>8.13E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>7.88E-01</td>
<td>49</td>
<td>8.20E-01</td>
<td>83</td>
<td>-6.10E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>8.21E-02</td>
<td>50</td>
<td>-5.50E-01</td>
<td>84</td>
<td>-4.72E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.00E+00</td>
<td>51</td>
<td>-4.41E-01</td>
<td>85</td>
<td>9.26E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-4.25E-01</td>
<td>52</td>
<td>-5.91E-01</td>
<td>86</td>
<td>-9.95E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>8.40E-01</td>
<td>53</td>
<td>1.32E+00</td>
<td>87</td>
<td>2.52E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>1.35E+00</td>
<td>54</td>
<td>-5.61E-01</td>
<td>88</td>
<td>-7.12E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>-5.24E-01</td>
<td>55</td>
<td>-4.24E-01</td>
<td>89</td>
<td>-8.64E-02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>3.59E-02</td>
<td>56</td>
<td>-4.78E-01</td>
<td>90</td>
<td>-1.34E+00</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>-3.51E-01</td>
<td>57</td>
<td>7.85E-01</td>
<td>91</td>
<td>4.00E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>-2.61E-01</td>
<td>58</td>
<td>3.60E-01</td>
<td>92</td>
<td>7.16E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>-4.14E-01</td>
<td>59</td>
<td>-1.64E+00</td>
<td>93</td>
<td>1.25E+00</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>6.83E-01</td>
<td>60</td>
<td>7.58E-01</td>
<td>94</td>
<td>-1.38E+00</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>-5.58E-01</td>
<td>61</td>
<td>0.00E+00</td>
<td>95</td>
<td>-5.04E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>-6.19E-01</td>
<td>62</td>
<td>2.84E-01</td>
<td>96</td>
<td>1.18E+00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>-5.60E-01</td>
<td>63</td>
<td>-7.16E-01</td>
<td>97</td>
<td>-3.41E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>1.81E-01</td>
<td>64</td>
<td>7.74E-01</td>
<td>98</td>
<td>-2.02E-02</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>-5.56E-01</td>
<td>65</td>
<td>-4.20E-01</td>
<td>99</td>
<td>-1.55E+00</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>-4.03E-01</td>
<td>66</td>
<td>7.45E-01</td>
<td>100</td>
<td>8.71E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>7.38E-01</td>
<td>67</td>
<td>6.13E-01</td>
<td></td>
<td>Information Only</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>-6.10E-01</td>
<td>68</td>
<td>0.00E+00</td>
<td></td>
<td>Information Only</td>
<td></td>
</tr>
</tbody>
</table>
Table A.9 – Sampled Values for Parameter SOLMOD4:SOLVAR (LHS Variable 16) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7.87E-01</td>
<td>35</td>
<td>-1.25E+00</td>
<td>69</td>
<td>7.97E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.27E+00</td>
<td>36</td>
<td>7.51E-01</td>
<td>70</td>
<td>-7.15E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-3.79E-01</td>
<td>37</td>
<td>3.34E-01</td>
<td>71</td>
<td>8.41E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.00E+00</td>
<td>38</td>
<td>-9.87E-01</td>
<td>72</td>
<td>5.13E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5.98E-01</td>
<td>39</td>
<td>8.03E-01</td>
<td>73</td>
<td>1.09E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-5.43E-01</td>
<td>40</td>
<td>6.82E-01</td>
<td>74</td>
<td>-7.05E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-4.73E-01</td>
<td>41</td>
<td>9.24E-02</td>
<td>75</td>
<td>-1.87E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.93E-01</td>
<td>42</td>
<td>-4.20E-01</td>
<td>76</td>
<td>-4.29E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>7.54E-01</td>
<td>43</td>
<td>0.00E+00</td>
<td>77</td>
<td>-4.17E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-5.26E-01</td>
<td>44</td>
<td>7.89E-01</td>
<td>78</td>
<td>1.02E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>4.37E-01</td>
<td>45</td>
<td>2.70E-01</td>
<td>79</td>
<td>3.22E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-7.21E-01</td>
<td>46</td>
<td>1.38E-01</td>
<td>80</td>
<td>-6.10E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>-5.90E-01</td>
<td>47</td>
<td>7.38E-01</td>
<td>81</td>
<td>-8.94E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>-8.44E-02</td>
<td>48</td>
<td>1.21E+00</td>
<td>82</td>
<td>7.81E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>-7.14E-01</td>
<td>49</td>
<td>8.87E-01</td>
<td>83</td>
<td>-6.61E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>-5.61E-01</td>
<td>50</td>
<td>-4.52E-01</td>
<td>84</td>
<td>-5.60E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>2.74E-01</td>
<td>51</td>
<td>-1.59E+00</td>
<td>85</td>
<td>-5.09E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-9.15E-01</td>
<td>52</td>
<td>1.17E+00</td>
<td>86</td>
<td>4.57E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>8.72E-01</td>
<td>53</td>
<td>-6.11E-01</td>
<td>87</td>
<td>-5.77E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-5.56E-01</td>
<td>54</td>
<td>-5.48E-01</td>
<td>88</td>
<td>-7.80E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>-6.42E-01</td>
<td>55</td>
<td>-2.44E-01</td>
<td>89</td>
<td>7.30E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>-5.61E-01</td>
<td>56</td>
<td>-1.01E+00</td>
<td>90</td>
<td>7.20E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>-4.09E-01</td>
<td>57</td>
<td>-8.81E-01</td>
<td>91</td>
<td>2.84E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>7.88E-01</td>
<td>58</td>
<td>0.00E+00</td>
<td>92</td>
<td>8.70E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>-9.78E-01</td>
<td>59</td>
<td>2.48E-02</td>
<td>93</td>
<td>-1.16E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>-4.24E-01</td>
<td>60</td>
<td>-9.56E-02</td>
<td>94</td>
<td>-6.26E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>-5.38E-01</td>
<td>61</td>
<td>1.37E+00</td>
<td>95</td>
<td>8.21E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>-6.23E-01</td>
<td>62</td>
<td>-4.84E-01</td>
<td>96</td>
<td>1.25E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>-5.57E-01</td>
<td>63</td>
<td>6.88E-01</td>
<td>97</td>
<td>-2.88E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>3.98E-01</td>
<td>64</td>
<td>-7.66E-01</td>
<td>98</td>
<td>7.79E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>7.66E-01</td>
<td>65</td>
<td>-3.72E-01</td>
<td>99</td>
<td>-1.18E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>-6.10E-01</td>
<td>66</td>
<td>8.12E-01</td>
<td>100</td>
<td>8.28E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>1.32E+00</td>
<td>67</td>
<td>6.96E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>-1.48E+00</td>
<td>68</td>
<td>-1.39E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.9 – Sampled Values for Parameter SOLMOD4:SOLVAR (LHS Variable 16) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>7.51E-01</td>
<td>35</td>
<td>-5.28E-01</td>
<td>69</td>
<td>6.35E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.11E-01</td>
<td>36</td>
<td>1.16E+00</td>
<td>70</td>
<td>7.86E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.92E-01</td>
<td>37</td>
<td>-1.89E+00</td>
<td>71</td>
<td>-4.19E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.00E-01</td>
<td>38</td>
<td>-5.59E-01</td>
<td>72</td>
<td>-4.46E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.36E+00</td>
<td>39</td>
<td>7.78E-01</td>
<td>73</td>
<td>-5.96E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-9.19E-01</td>
<td>40</td>
<td>1.26E+00</td>
<td>74</td>
<td>3.59E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.00E+00</td>
<td>41</td>
<td>-4.12E-01</td>
<td>75</td>
<td>9.66E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-6.10E-01</td>
<td>42</td>
<td>-7.32E-01</td>
<td>76</td>
<td>-5.42E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.33E-01</td>
<td>43</td>
<td>-1.14E-01</td>
<td>77</td>
<td>7.12E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.93E-01</td>
<td>44</td>
<td>8.21E-01</td>
<td>78</td>
<td>-1.34E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-3.77E-01</td>
<td>45</td>
<td>-9.74E-01</td>
<td>79</td>
<td>1.91E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.73E-01</td>
<td>46</td>
<td>-6.56E-01</td>
<td>80</td>
<td>7.89E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.03E-01</td>
<td>47</td>
<td>2.83E-01</td>
<td>81</td>
<td>-5.50E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.86E-01</td>
<td>48</td>
<td>7.72E-01</td>
<td>82</td>
<td>-6.27E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-6.16E-01</td>
<td>49</td>
<td>-4.18E-01</td>
<td>83</td>
<td>1.29E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8.23E-01</td>
<td>50</td>
<td>-5.61E-01</td>
<td>84</td>
<td>-3.43E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-5.88E-03</td>
<td>51</td>
<td>-7.07E-01</td>
<td>85</td>
<td>8.82E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.16E+00</td>
<td>52</td>
<td>1.20E-01</td>
<td>86</td>
<td>-8.62E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-4.23E-01</td>
<td>53</td>
<td>8.06E-01</td>
<td>87</td>
<td>-6.10E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.00E+00</td>
<td>54</td>
<td>6.82E-01</td>
<td>88</td>
<td>8.15E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-5.35E-01</td>
<td>55</td>
<td>5.85E-01</td>
<td>89</td>
<td>7.56E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-9.97E-01</td>
<td>56</td>
<td>2.89E-01</td>
<td>90</td>
<td>-5.80E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-5.56E-01</td>
<td>57</td>
<td>7.98E-01</td>
<td>91</td>
<td>1.29E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-8.23E-02</td>
<td>58</td>
<td>-8.05E-01</td>
<td>92</td>
<td>-7.63E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.35E+00</td>
<td>59</td>
<td>-6.39E-01</td>
<td>93</td>
<td>-7.17E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-4.31E-01</td>
<td>60</td>
<td>-4.83E-01</td>
<td>94</td>
<td>-9.12E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.31E-01</td>
<td>61</td>
<td>0.00E+00</td>
<td>95</td>
<td>-4.72E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-2.73E-01</td>
<td>62</td>
<td>-5.57E-01</td>
<td>96</td>
<td>2.43E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.68E+00</td>
<td>63</td>
<td>2.72E-01</td>
<td>97</td>
<td>8.54E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8.68E-01</td>
<td>64</td>
<td>7.81E-01</td>
<td>98</td>
<td>7.41E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.22E+00</td>
<td>65</td>
<td>-1.11E+00</td>
<td>99</td>
<td>-4.20E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.44E+00</td>
<td>66</td>
<td>-5.08E-01</td>
<td>100</td>
<td>-7.13E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-5.61E-01</td>
<td>67</td>
<td>-3.99E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.22E+00</td>
<td>68</td>
<td>8.88E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.10 – Sampled Values for Parameter GLOBAL:OXSTAT (LHS Variable 18)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.30E-01</td>
<td>35</td>
<td>3.20E-01</td>
<td></td>
<td>69</td>
<td>2.18E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.65E-01</td>
<td>36</td>
<td>9.54E-01</td>
<td></td>
<td>70</td>
<td>7.47E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.29E-01</td>
<td>37</td>
<td>4.11E-01</td>
<td></td>
<td>71</td>
<td>7.71E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.00E-01</td>
<td>38</td>
<td>9.01E-02</td>
<td></td>
<td>72</td>
<td>4.42E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.67E-01</td>
<td>39</td>
<td>1.75E-01</td>
<td></td>
<td>73</td>
<td>8.72E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.91E-01</td>
<td>40</td>
<td>8.37E-01</td>
<td></td>
<td>74</td>
<td>6.61E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.75E-01</td>
<td>41</td>
<td>7.05E-02</td>
<td></td>
<td>75</td>
<td>9.80E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.71E-01</td>
<td>42</td>
<td>1.45E-01</td>
<td></td>
<td>76</td>
<td>5.30E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.14E-01</td>
<td>43</td>
<td>2.87E-01</td>
<td></td>
<td>77</td>
<td>7.21E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.01E-01</td>
<td>44</td>
<td>5.82E-01</td>
<td></td>
<td>78</td>
<td>1.66E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.31E-01</td>
<td>45</td>
<td>8.85E-01</td>
<td></td>
<td>79</td>
<td>1.39E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.78E-01</td>
<td>46</td>
<td>8.10E-01</td>
<td></td>
<td>80</td>
<td>4.38E-03</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.47E-01</td>
<td>47</td>
<td>2.70E-01</td>
<td></td>
<td>81</td>
<td>5.83E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.53E-01</td>
<td>48</td>
<td>9.05E-01</td>
<td></td>
<td>82</td>
<td>3.55E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.24E-01</td>
<td>49</td>
<td>3.65E-01</td>
<td></td>
<td>83</td>
<td>7.09E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.10E-01</td>
<td>50</td>
<td>3.57E-02</td>
<td></td>
<td>84</td>
<td>6.40E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.41E-01</td>
<td>51</td>
<td>5.11E-01</td>
<td></td>
<td>85</td>
<td>2.05E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.47E-01</td>
<td>52</td>
<td>8.99E-01</td>
<td></td>
<td>86</td>
<td>5.59E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.90E-01</td>
<td>53</td>
<td>6.95E-01</td>
<td></td>
<td>87</td>
<td>9.46E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.23E-01</td>
<td>54</td>
<td>9.27E-01</td>
<td></td>
<td>88</td>
<td>9.37E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.63E-02</td>
<td>55</td>
<td>1.88E-01</td>
<td></td>
<td>89</td>
<td>2.12E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.97E-01</td>
<td>56</td>
<td>9.87E-01</td>
<td></td>
<td>90</td>
<td>6.29E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.17E-01</td>
<td>57</td>
<td>7.85E-01</td>
<td></td>
<td>91</td>
<td>4.88E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.19E-01</td>
<td>58</td>
<td>1.53E-01</td>
<td></td>
<td>92</td>
<td>9.95E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.36E-01</td>
<td>59</td>
<td>6.69E-02</td>
<td></td>
<td>93</td>
<td>6.59E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>9.13E-01</td>
<td>60</td>
<td>5.29E-01</td>
<td></td>
<td>94</td>
<td>5.48E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.67E-01</td>
<td>61</td>
<td>1.01E-01</td>
<td></td>
<td>95</td>
<td>2.56E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>8.41E-02</td>
<td>62</td>
<td>4.57E-01</td>
<td></td>
<td>96</td>
<td>8.25E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.75E-01</td>
<td>63</td>
<td>2.30E-01</td>
<td></td>
<td>97</td>
<td>4.98E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.99E-01</td>
<td>64</td>
<td>3.87E-01</td>
<td></td>
<td>98</td>
<td>6.90E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.21E-01</td>
<td>65</td>
<td>8.40E-01</td>
<td></td>
<td>99</td>
<td>5.63E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.81E-01</td>
<td>66</td>
<td>5.06E-01</td>
<td></td>
<td>100</td>
<td>9.64E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.80E-01</td>
<td>67</td>
<td>6.01E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.05E-01</td>
<td>68</td>
<td>8.51E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td></td>
<td>Value (dimensionless)</td>
<td></td>
<td>Value (dimensionless)</td>
<td></td>
<td>Value (dimensionless)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 6.80E-01</td>
<td>35 1.58E-01</td>
<td>69 1.05E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 8.49E-01</td>
<td>36 6.57E-01</td>
<td>70 1.49E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 7.79E-01</td>
<td>37 2.40E-01</td>
<td>71 2.06E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 6.22E-01</td>
<td>38 5.50E-01</td>
<td>72 9.27E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2.83E-01</td>
<td>39 8.06E-01</td>
<td>73 5.10E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 7.49E-01</td>
<td>40 1.38E-01</td>
<td>74 7.69E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 9.06E-02</td>
<td>41 4.36E-01</td>
<td>75 4.74E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 3.21E-01</td>
<td>42 3.37E-01</td>
<td>76 8.93E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2.42E-01</td>
<td>43 4.78E-02</td>
<td>77 2.78E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 9.80E-01</td>
<td>44 3.64E-01</td>
<td>78 5.28E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 5.97E-01</td>
<td>45 9.89E-01</td>
<td>79 2.18E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 8.61E-01</td>
<td>46 3.10E-01</td>
<td>80 4.28E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 8.15E-01</td>
<td>47 8.81E-01</td>
<td>81 7.07E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 4.69E-01</td>
<td>48 7.29E-01</td>
<td>82 8.48E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 4.84E-01</td>
<td>49 5.40E-01</td>
<td>83 3.75E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 7.96E-01</td>
<td>50 7.88E-01</td>
<td>84 1.86E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 8.53E-01</td>
<td>51 7.89E-03</td>
<td>85 3.59E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 8.74E-01</td>
<td>52 2.64E-01</td>
<td>86 1.27E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 2.50E-01</td>
<td>53 6.36E-01</td>
<td>87 4.20E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 3.92E-01</td>
<td>54 4.07E-01</td>
<td>88 9.39E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 2.23E-01</td>
<td>55 7.40E-02</td>
<td>89 3.05E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 5.00E-01</td>
<td>56 6.05E-01</td>
<td>90 6.66E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 1.69E-01</td>
<td>57 5.11E-01</td>
<td>91 4.52E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 6.92E-01</td>
<td>58 9.09E-01</td>
<td>92 1.98E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 5.27E-01</td>
<td>59 2.04E-02</td>
<td>93 6.50E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 8.30E-01</td>
<td>60 6.16E-01</td>
<td>94 1.17E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 9.92E-01</td>
<td>61 2.97E-01</td>
<td>95 8.22E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 9.11E-01</td>
<td>62 3.46E-01</td>
<td>96 7.13E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 5.80E-01</td>
<td>63 5.42E-01</td>
<td>97 1.74E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 6.92E-02</td>
<td>64 5.77E-01</td>
<td>98 4.49E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 3.88E-02</td>
<td>65 9.48E-01</td>
<td>99 9.67E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 7.32E-01</td>
<td>66 7.58E-01</td>
<td>100 9.59E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 6.87E-01</td>
<td>67 5.65E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 3.81E-01</td>
<td>68 1.73E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.10 – Sampled Values for Parameter GLOBAL:OXSTAT (LHS Variable 18) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>5.16E-01</td>
<td>35</td>
<td>4.41E-01</td>
<td>69</td>
<td>5.29E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.01E-01</td>
<td>36</td>
<td>9.11E-01</td>
<td>70</td>
<td>1.76E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.27E-01</td>
<td>37</td>
<td>6.54E-01</td>
<td>71</td>
<td>3.00E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.88E-01</td>
<td>38</td>
<td>2.66E-01</td>
<td>72</td>
<td>2.85E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.10E-04</td>
<td>39</td>
<td>8.61E-01</td>
<td>73</td>
<td>5.79E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.67E-01</td>
<td>40</td>
<td>8.09E-01</td>
<td>74</td>
<td>2.26E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.14E-01</td>
<td>41</td>
<td>3.38E-01</td>
<td>75</td>
<td>3.94E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.60E-01</td>
<td>42</td>
<td>7.14E-01</td>
<td>76</td>
<td>3.17E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.61E-01</td>
<td>43</td>
<td>4.20E-01</td>
<td>77</td>
<td>9.55E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.26E-01</td>
<td>44</td>
<td>8.94E-01</td>
<td>78</td>
<td>1.82E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7.92E-01</td>
<td>45</td>
<td>5.90E-01</td>
<td>79</td>
<td>4.30E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.94E-01</td>
<td>46</td>
<td>9.03E-01</td>
<td>80</td>
<td>1.32E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.99E-01</td>
<td>47</td>
<td>8.36E-01</td>
<td>81</td>
<td>3.02E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.63E-01</td>
<td>48</td>
<td>4.66E-01</td>
<td>82</td>
<td>2.46E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.86E-02</td>
<td>49</td>
<td>5.44E-01</td>
<td>83</td>
<td>9.36E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.52E-01</td>
<td>50</td>
<td>6.74E-01</td>
<td>84</td>
<td>6.25E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.43E-01</td>
<td>51</td>
<td>7.22E-01</td>
<td>85</td>
<td>8.47E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.15E-01</td>
<td>52</td>
<td>9.56E-01</td>
<td>86</td>
<td>8.96E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.45E-01</td>
<td>53</td>
<td>2.20E-01</td>
<td>87</td>
<td>4.89E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.28E-02</td>
<td>54</td>
<td>2.39E-01</td>
<td>88</td>
<td>9.77E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.55E-01</td>
<td>55</td>
<td>5.32E-01</td>
<td>89</td>
<td>7.06E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.63E-01</td>
<td>56</td>
<td>4.04E-02</td>
<td>90</td>
<td>4.38E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.28E-01</td>
<td>57</td>
<td>1.02E-01</td>
<td>91</td>
<td>9.47E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.72E-02</td>
<td>58</td>
<td>7.38E-01</td>
<td>92</td>
<td>7.85E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.60E-01</td>
<td>59</td>
<td>6.05E-01</td>
<td>93</td>
<td>4.73E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.41E-02</td>
<td>60</td>
<td>2.18E-01</td>
<td>94</td>
<td>7.45E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.77E-01</td>
<td>61</td>
<td>4.52E-01</td>
<td>95</td>
<td>9.90E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.97E-01</td>
<td>62</td>
<td>3.78E-01</td>
<td>96</td>
<td>8.83E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.45E-01</td>
<td>63</td>
<td>9.94E-01</td>
<td>97</td>
<td>8.53E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.89E-01</td>
<td>64</td>
<td>3.50E-02</td>
<td>98</td>
<td>8.79E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.11E-01</td>
<td>65</td>
<td>5.00E-01</td>
<td>99</td>
<td>4.09E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9.26E-01</td>
<td>66</td>
<td>2.73E-01</td>
<td>100</td>
<td>6.85E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.38E-01</td>
<td>67</td>
<td>1.56E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.62E-01</td>
<td>68</td>
<td>5.64E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.11 – Sampled Values for Parameter STEEL:HUMCORR (LHS Variable 22)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m/s)</th>
<th>#</th>
<th>Value (m/s)</th>
<th>#</th>
<th>Value (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.22E-16</td>
<td>35</td>
<td>2.99E-16</td>
<td>69</td>
<td>9.37E-16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.08E-16</td>
<td>36</td>
<td>5.63E-17</td>
<td>70</td>
<td>2.70E-19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.96E-19</td>
<td>37</td>
<td>1.23E-17</td>
<td>71</td>
<td>6.66E-16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.22E-16</td>
<td>38</td>
<td>3.59E-19</td>
<td>72</td>
<td>4.34E-16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.89E-16</td>
<td>39</td>
<td>4.29E-16</td>
<td>73</td>
<td>4.65E-17</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.41E-16</td>
<td>40</td>
<td>3.63E-17</td>
<td>74</td>
<td>1.25E-16</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.36E-17</td>
<td>41</td>
<td>4.39E-16</td>
<td>75</td>
<td>3.18E-16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.51E-16</td>
<td>42</td>
<td>3.06E-16</td>
<td>76</td>
<td>1.91E-16</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.72E-16</td>
<td>43</td>
<td>4.94E-17</td>
<td>77</td>
<td>7.87E-16</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.05E-19</td>
<td>44</td>
<td>5.18E-20</td>
<td>78</td>
<td>2.01E-17</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.80E-16</td>
<td>45</td>
<td>4.43E-17</td>
<td>79</td>
<td>3.16E-16</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.57E-16</td>
<td>46</td>
<td>3.23E-20</td>
<td>80</td>
<td>2.73E-16</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.30E-16</td>
<td>47</td>
<td>9.09E-17</td>
<td>81</td>
<td>2.34E-16</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>8.76E-16</td>
<td>48</td>
<td>3.16E-19</td>
<td>82</td>
<td>8.29E-16</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.69E-16</td>
<td>49</td>
<td>3.78E-16</td>
<td>83</td>
<td>2.66E-17</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3.95E-16</td>
<td>50</td>
<td>1.03E-16</td>
<td>84</td>
<td>2.14E-18</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.82E-16</td>
<td>51</td>
<td>1.28E-19</td>
<td>85</td>
<td>4.55E-16</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.84E-16</td>
<td>52</td>
<td>1.02E-15</td>
<td>86</td>
<td>5.36E-17</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.01E-16</td>
<td>53</td>
<td>4.14E-16</td>
<td>87</td>
<td>2.92E-17</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.56E-16</td>
<td>54</td>
<td>3.87E-19</td>
<td>88</td>
<td>2.15E-16</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.34E-16</td>
<td>55</td>
<td>2.43E-16</td>
<td>89</td>
<td>1.70E-19</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.59E-16</td>
<td>56</td>
<td>4.05E-16</td>
<td>90</td>
<td>8.52E-18</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.42E-17</td>
<td>57</td>
<td>1.58E-17</td>
<td>91</td>
<td>4.11E-16</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.32E-16</td>
<td>58</td>
<td>4.11E-17</td>
<td>92</td>
<td>8.67E-17</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.37E-18</td>
<td>59</td>
<td>1.72E-17</td>
<td>93</td>
<td>9.88E-20</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.18E-17</td>
<td>60</td>
<td>5.79E-17</td>
<td>94</td>
<td>6.34E-17</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.47E-16</td>
<td>61</td>
<td>1.71E-16</td>
<td>95</td>
<td>3.83E-16</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.91E-17</td>
<td>62</td>
<td>7.69E-17</td>
<td>96</td>
<td>4.13E-19</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.12E-16</td>
<td>63</td>
<td>3.58E-16</td>
<td>97</td>
<td>6.70E-16</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.34E-16</td>
<td>64</td>
<td>5.16E-17</td>
<td>98</td>
<td>1.54E-16</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.50E-16</td>
<td>65</td>
<td>3.47E-16</td>
<td>99</td>
<td>7.21E-16</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.15E-17</td>
<td>66</td>
<td>3.02E-17</td>
<td>100</td>
<td>2.67E-16</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.89E-16</td>
<td>67</td>
<td>3.57E-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.41E-16</td>
<td>68</td>
<td>4.99E-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.11 – Sampled Values for Parameter STEEL:HUMCORR (LHS Variable 22) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (m/s)</th>
<th>Vector</th>
<th>Value (m/s)</th>
<th>Vector</th>
<th>Value (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.79E-16</td>
<td>35</td>
<td>3.28E-16</td>
<td>69</td>
<td>3.40E-16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.04E-17</td>
<td>36</td>
<td>2.46E-16</td>
<td>70</td>
<td>8.76E-16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.65E-16</td>
<td>37</td>
<td>7.79E-21</td>
<td>71</td>
<td>1.10E-16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.38E-16</td>
<td>38</td>
<td>8.69E-17</td>
<td>72</td>
<td>7.07E-20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.32E-16</td>
<td>39</td>
<td>1.99E-16</td>
<td>73</td>
<td>3.94E-16</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.66E-17</td>
<td>40</td>
<td>4.52E-17</td>
<td>74</td>
<td>3.61E-17</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.74E-18</td>
<td>41</td>
<td>3.80E-17</td>
<td>75</td>
<td>4.58E-16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.43E-16</td>
<td>42</td>
<td>2.54E-16</td>
<td>76</td>
<td>3.99E-16</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.04E-17</td>
<td>43</td>
<td>4.03E-17</td>
<td>77</td>
<td>8.56E-20</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.19E-16</td>
<td>44</td>
<td>4.90E-18</td>
<td>78</td>
<td>2.23E-16</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.93E-16</td>
<td>45</td>
<td>7.70E-16</td>
<td>79</td>
<td>6.00E-17</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.91E-16</td>
<td>46</td>
<td>1.56E-16</td>
<td>80</td>
<td>4.30E-16</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.45E-16</td>
<td>47</td>
<td>2.88E-17</td>
<td>81</td>
<td>1.40E-19</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.08E-16</td>
<td>48</td>
<td>1.58E-17</td>
<td>82</td>
<td>6.14E-17</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.48E-19</td>
<td>49</td>
<td>3.42E-17</td>
<td>83</td>
<td>3.78E-19</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.71E-17</td>
<td>50</td>
<td>4.40E-16</td>
<td>84</td>
<td>9.46E-16</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.73E-16</td>
<td>51</td>
<td>4.08E-16</td>
<td>85</td>
<td>3.20E-16</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.06E-16</td>
<td>52</td>
<td>2.75E-16</td>
<td>86</td>
<td>1.78E-16</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.27E-16</td>
<td>53</td>
<td>2.30E-18</td>
<td>87</td>
<td>1.25E-16</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.52E-16</td>
<td>54</td>
<td>1.46E-16</td>
<td>88</td>
<td>3.07E-16</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.00E-19</td>
<td>55</td>
<td>3.89E-16</td>
<td>89</td>
<td>2.41E-19</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.15E-17</td>
<td>56</td>
<td>1.07E-17</td>
<td>90</td>
<td>3.79E-16</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.88E-16</td>
<td>57</td>
<td>1.73E-17</td>
<td>91</td>
<td>5.35E-17</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>9.35E-16</td>
<td>58</td>
<td>2.64E-17</td>
<td>92</td>
<td>4.15E-16</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.15E-16</td>
<td>59</td>
<td>3.50E-16</td>
<td>93</td>
<td>2.08E-19</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.67E-16</td>
<td>60</td>
<td>5.76E-16</td>
<td>94</td>
<td>4.34E-17</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.75E-19</td>
<td>61</td>
<td>4.59E-16</td>
<td>95</td>
<td>7.29E-16</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.97E-16</td>
<td>62</td>
<td>2.32E-17</td>
<td>96</td>
<td>4.82E-17</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.89E-16</td>
<td>63</td>
<td>1.54E-19</td>
<td>97</td>
<td>2.37E-16</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.35E-17</td>
<td>64</td>
<td>4.04E-16</td>
<td>98</td>
<td>2.16E-16</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.48E-16</td>
<td>65</td>
<td>9.88E-16</td>
<td>99</td>
<td>3.98E-19</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.41E-19</td>
<td>66</td>
<td>9.75E-16</td>
<td>100</td>
<td>6.46E-16</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.29E-16</td>
<td>67</td>
<td>2.63E-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.88E-17</td>
<td>68</td>
<td>2.11E-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.11 – Sampled Values for Parameter STEEL:HUMCORR (LHS Variable 22) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (m/s)</th>
<th>Vector #</th>
<th>Value (m/s)</th>
<th>Vector #</th>
<th>Value (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2.35E-16</td>
<td>35</td>
<td>1.55E-16</td>
<td>69</td>
<td>1.32E-16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.20E-20</td>
<td>36</td>
<td>3.13E-16</td>
<td>70</td>
<td>4.12E-16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.87E-17</td>
<td>37</td>
<td>5.59E-16</td>
<td>71</td>
<td>3.23E-16</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.02E-16</td>
<td>38</td>
<td>4.53E-16</td>
<td>72</td>
<td>7.30E-16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.16E-17</td>
<td>39</td>
<td>3.66E-16</td>
<td>73</td>
<td>4.43E-16</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.56E-18</td>
<td>40</td>
<td>5.35E-17</td>
<td>74</td>
<td>5.25E-16</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.80E-16</td>
<td>41</td>
<td>7.41E-17</td>
<td>75</td>
<td>8.42E-16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.83E-16</td>
<td>42</td>
<td>4.51E-16</td>
<td>76</td>
<td>1.19E-17</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.64E-16</td>
<td>43</td>
<td>1.31E-19</td>
<td>77</td>
<td>1.14E-16</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.45E-16</td>
<td>44</td>
<td>1.58E-19</td>
<td>78</td>
<td>2.03E-17</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>9.03E-16</td>
<td>45</td>
<td>2.87E-16</td>
<td>79</td>
<td>3.95E-17</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.11E-16</td>
<td>46</td>
<td>4.03E-16</td>
<td>80</td>
<td>2.48E-17</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.89E-16</td>
<td>47</td>
<td>2.96E-17</td>
<td>81</td>
<td>3.61E-17</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.92E-19</td>
<td>48</td>
<td>1.67E-16</td>
<td>82</td>
<td>1.11E-17</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.90E-16</td>
<td>49</td>
<td>1.56E-20</td>
<td>83</td>
<td>3.30E-16</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.31E-16</td>
<td>50</td>
<td>2.18E-16</td>
<td>84</td>
<td>2.05E-19</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.46E-16</td>
<td>51</td>
<td>2.99E-16</td>
<td>85</td>
<td>2.16E-19</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.01E-15</td>
<td>52</td>
<td>4.88E-17</td>
<td>86</td>
<td>4.59E-16</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.98E-16</td>
<td>53</td>
<td>5.11E-20</td>
<td>87</td>
<td>3.54E-16</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.45E-16</td>
<td>54</td>
<td>1.21E-16</td>
<td>88</td>
<td>8.11E-17</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.72E-16</td>
<td>55</td>
<td>2.79E-16</td>
<td>89</td>
<td>2.59E-16</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.25E-17</td>
<td>56</td>
<td>1.94E-16</td>
<td>90</td>
<td>8.95E-17</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.31E-19</td>
<td>57</td>
<td>4.65E-18</td>
<td>91</td>
<td>2.77E-16</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.12E-17</td>
<td>58</td>
<td>2.51E-16</td>
<td>92</td>
<td>6.54E-17</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.64E-16</td>
<td>59</td>
<td>4.19E-16</td>
<td>93</td>
<td>4.30E-16</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.68E-17</td>
<td>60</td>
<td>8.84E-16</td>
<td>94</td>
<td>2.01E-16</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>8.71E-18</td>
<td>61</td>
<td>6.93E-16</td>
<td>95</td>
<td>4.25E-16</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.45E-16</td>
<td>62</td>
<td>3.43E-19</td>
<td>96</td>
<td>5.70E-17</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.53E-19</td>
<td>63</td>
<td>2.31E-17</td>
<td>97</td>
<td>3.07E-19</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.28E-17</td>
<td>64</td>
<td>4.02E-17</td>
<td>98</td>
<td>1.02E-16</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.28E-16</td>
<td>65</td>
<td>4.20E-18</td>
<td>99</td>
<td>5.21E-17</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.07E-16</td>
<td>66</td>
<td>1.80E-17</td>
<td>100</td>
<td>4.39E-16</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.58E-17</td>
<td>67</td>
<td>7.78E-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.34E-16</td>
<td>68</td>
<td>3.99E-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>Replicate</th>
<th># Value (dimensionless)</th>
<th>Vector</th>
<th># Value (dimensionless)</th>
<th># Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 9.83E+02</td>
<td>35</td>
<td>8.11E+02</td>
<td>69 9.21E+02</td>
</tr>
<tr>
<td></td>
<td>2 9.09E+02</td>
<td>36</td>
<td>7.52E+02</td>
<td>70 3.57E+02</td>
</tr>
<tr>
<td></td>
<td>3 5.32E+02</td>
<td>37</td>
<td>3.63E+02</td>
<td>71 1.36E+02</td>
</tr>
<tr>
<td></td>
<td>4 5.84E+02</td>
<td>38</td>
<td>3.57E+02</td>
<td>72 5.93E+02</td>
</tr>
<tr>
<td></td>
<td>5 3.74E+02</td>
<td>39</td>
<td>1.70E+02</td>
<td>73 9.69E+02</td>
</tr>
<tr>
<td></td>
<td>6 8.03E+02</td>
<td>40</td>
<td>4.85E+02</td>
<td>74 3.25E+02</td>
</tr>
<tr>
<td></td>
<td>7 3.85E+02</td>
<td>41</td>
<td>8.70E+02</td>
<td>75 8.47E+02</td>
</tr>
<tr>
<td></td>
<td>8 7.44E+02</td>
<td>42</td>
<td>6.03E+02</td>
<td>76 6.26E+02</td>
</tr>
<tr>
<td></td>
<td>9 7.83E+02</td>
<td>43</td>
<td>9.77E+02</td>
<td>77 4.79E+02</td>
</tr>
<tr>
<td></td>
<td>10 7.05E+02</td>
<td>44</td>
<td>8.57E+02</td>
<td>78 9.13E+02</td>
</tr>
<tr>
<td></td>
<td>11 5.79E+02</td>
<td>45</td>
<td>7.97E+02</td>
<td>79 1.24E+02</td>
</tr>
<tr>
<td></td>
<td>12 5.44E+02</td>
<td>46</td>
<td>6.16E+02</td>
<td>80 8.01E+01</td>
</tr>
<tr>
<td></td>
<td>13 1.12E+02</td>
<td>47</td>
<td>9.56E+02</td>
<td>81 4.14E+02</td>
</tr>
<tr>
<td></td>
<td>14 5.89E+01</td>
<td>48</td>
<td>2.73E+02</td>
<td>82 1.04E+02</td>
</tr>
<tr>
<td></td>
<td>15 8.89E+02</td>
<td>49</td>
<td>1.96E+02</td>
<td>83 6.63E+02</td>
</tr>
<tr>
<td></td>
<td>16 2.99E+02</td>
<td>50</td>
<td>3.99E+02</td>
<td>84 6.59E+02</td>
</tr>
<tr>
<td></td>
<td>17 4.42E+01</td>
<td>51</td>
<td>2.58E+02</td>
<td>85 4.99E+02</td>
</tr>
<tr>
<td></td>
<td>18 2.40E+02</td>
<td>52</td>
<td>8.32E+02</td>
<td>86 8.73E+02</td>
</tr>
<tr>
<td></td>
<td>19 1.80E+02</td>
<td>53</td>
<td>2.61E+02</td>
<td>87 8.45E+01</td>
</tr>
<tr>
<td></td>
<td>20 3.08E+01</td>
<td>54</td>
<td>9.18E+01</td>
<td>88 3.94E+01</td>
</tr>
<tr>
<td></td>
<td>21 1.02E+00</td>
<td>55</td>
<td>6.97E+02</td>
<td>89 5.66E+02</td>
</tr>
<tr>
<td></td>
<td>22 3.41E+02</td>
<td>56</td>
<td>5.06E+02</td>
<td>90 2.31E+02</td>
</tr>
<tr>
<td></td>
<td>23 3.09E+02</td>
<td>57</td>
<td>2.18E+02</td>
<td>91 8.22E+02</td>
</tr>
<tr>
<td></td>
<td>24 7.21E+02</td>
<td>58</td>
<td>2.90E+02</td>
<td>92 6.48E+02</td>
</tr>
<tr>
<td></td>
<td>25 1.49E+02</td>
<td>59</td>
<td>6.82E+02</td>
<td>93 4.44E+02</td>
</tr>
<tr>
<td></td>
<td>26 9.38E+02</td>
<td>60</td>
<td>4.55E+02</td>
<td>94 7.18E+02</td>
</tr>
<tr>
<td></td>
<td>27 1.53E+02</td>
<td>61</td>
<td>5.14E+02</td>
<td>95 9.95E+02</td>
</tr>
<tr>
<td></td>
<td>28 5.52E+02</td>
<td>62</td>
<td>3.21E+02</td>
<td>96 6.71E+01</td>
</tr>
<tr>
<td></td>
<td>29 4.35E+02</td>
<td>63</td>
<td>3.37E+02</td>
<td>97 6.72E+02</td>
</tr>
<tr>
<td></td>
<td>30 7.74E+02</td>
<td>64</td>
<td>1.86E+02</td>
<td>98 7.32E+02</td>
</tr>
<tr>
<td></td>
<td>31 5.30E+02</td>
<td>65</td>
<td>4.67E+02</td>
<td>99 4.05E+02</td>
</tr>
<tr>
<td></td>
<td>32 2.04E+02</td>
<td>66</td>
<td>8.98E+02</td>
<td>100 1.37E+02</td>
</tr>
<tr>
<td></td>
<td>33 7.66E+02</td>
<td>67</td>
<td>6.37E+02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 4.25E+02</td>
<td>68</td>
<td>9.47E+02</td>
<td></td>
</tr>
</tbody>
</table>
Table A.12 – Sampled Values for Parameter CULEBRA:MINP_FAC (LHS Variable 23) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.49E+02</td>
<td>35</td>
<td>6.83E+02</td>
<td>69</td>
<td>4.32E+02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.65E+02</td>
<td>36</td>
<td>6.65E+02</td>
<td>70</td>
<td>9.58E+02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.21E+01</td>
<td>37</td>
<td>7.05E+02</td>
<td>71</td>
<td>3.73E+02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.36E+02</td>
<td>38</td>
<td>4.15E+02</td>
<td>72</td>
<td>5.97E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.29E+02</td>
<td>39</td>
<td>8.31E+02</td>
<td>73</td>
<td>8.27E+02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.95E+02</td>
<td>40</td>
<td>8.99E+02</td>
<td>74</td>
<td>1.70E+02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.57E+02</td>
<td>41</td>
<td>7.37E+02</td>
<td>75</td>
<td>5.73E+02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.18E+02</td>
<td>42</td>
<td>7.71E+01</td>
<td>76</td>
<td>4.43E+02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.51E+02</td>
<td>43</td>
<td>2.20E+02</td>
<td>77</td>
<td>7.81E+02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.71E+02</td>
<td>44</td>
<td>3.92E+02</td>
<td>78</td>
<td>2.87E+02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8.52E+02</td>
<td>45</td>
<td>2.53E+02</td>
<td>79</td>
<td>3.45E+02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.38E+02</td>
<td>46</td>
<td>3.84E+02</td>
<td>80</td>
<td>5.04E+02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.98E+02</td>
<td>47</td>
<td>7.57E+02</td>
<td>81</td>
<td>4.96E+02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.02E+02</td>
<td>48</td>
<td>7.48E+02</td>
<td>82</td>
<td>6.21E+02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.52E+02</td>
<td>49</td>
<td>1.25E+02</td>
<td>83</td>
<td>5.69E+02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9.11E+02</td>
<td>50</td>
<td>1.19E+02</td>
<td>84</td>
<td>9.13E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.44E+01</td>
<td>51</td>
<td>6.91E+02</td>
<td>85</td>
<td>2.29E+02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.81E+02</td>
<td>52</td>
<td>7.70E+02</td>
<td>86</td>
<td>8.06E+02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.14E+02</td>
<td>53</td>
<td>8.12E+02</td>
<td>87</td>
<td>1.36E+02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.69E+02</td>
<td>54</td>
<td>9.80E+02</td>
<td>88</td>
<td>1.62E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.03E+02</td>
<td>55</td>
<td>8.88E+02</td>
<td>89</td>
<td>5.41E+02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.15E+02</td>
<td>56</td>
<td>1.83E+02</td>
<td>90</td>
<td>5.82E+02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.74E+02</td>
<td>57</td>
<td>8.48E+02</td>
<td>91</td>
<td>1.56E+02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.79E+02</td>
<td>58</td>
<td>1.44E+02</td>
<td>92</td>
<td>9.05E+02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.91E+01</td>
<td>59</td>
<td>6.06E+02</td>
<td>93</td>
<td>9.63E+02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.65E+01</td>
<td>60</td>
<td>6.34E+02</td>
<td>94</td>
<td>3.23E+02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>9.96E+02</td>
<td>61</td>
<td>5.28E+02</td>
<td>95</td>
<td>9.27E+02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.80E+02</td>
<td>62</td>
<td>3.57E+02</td>
<td>96</td>
<td>4.88E+02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>6.00E+02</td>
<td>63</td>
<td>6.49E+02</td>
<td>97</td>
<td>2.91E+02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.07E+02</td>
<td>64</td>
<td>1.79E+02</td>
<td>98</td>
<td>2.37E+02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.63E+01</td>
<td>65</td>
<td>7.14E+02</td>
<td>99</td>
<td>3.65E+02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.62E+02</td>
<td>66</td>
<td>4.26E+02</td>
<td>100</td>
<td>8.76E+02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.56E+00</td>
<td>67</td>
<td>9.48E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.07E+02</td>
<td>68</td>
<td>5.39E+02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.12 – Sampled Values for Parameter CULEBRA:MINP_FAC (LHS Variable 23) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>6.39E+02</td>
<td>35</td>
<td>4.34E+00</td>
<td>69</td>
<td>8.86E+02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.28E+02</td>
<td>36</td>
<td>1.78E+01</td>
<td>70</td>
<td>5.35E+02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.14E+02</td>
<td>37</td>
<td>5.75E+02</td>
<td>71</td>
<td>9.37E+02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.26E+02</td>
<td>38</td>
<td>6.99E+02</td>
<td>72</td>
<td>1.39E+02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.47E+02</td>
<td>39</td>
<td>7.07E+02</td>
<td>73</td>
<td>5.62E+02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.22E+02</td>
<td>40</td>
<td>7.57E+02</td>
<td>74</td>
<td>2.09E+02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.89E+02</td>
<td>41</td>
<td>7.88E+02</td>
<td>75</td>
<td>2.21E+02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.32E+02</td>
<td>42</td>
<td>5.88E+02</td>
<td>76</td>
<td>6.76E+02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.17E+02</td>
<td>43</td>
<td>3.77E+02</td>
<td>77</td>
<td>5.30E+02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.49E+02</td>
<td>44</td>
<td>2.99E+02</td>
<td>78</td>
<td>9.60E+02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.54E+02</td>
<td>45</td>
<td>2.66E+02</td>
<td>79</td>
<td>3.87E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9.12E+01</td>
<td>46</td>
<td>4.39E+02</td>
<td>80</td>
<td>3.11E+02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9.54E+02</td>
<td>47</td>
<td>4.30E+01</td>
<td>81</td>
<td>2.50E+02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.77E+02</td>
<td>48</td>
<td>1.92E+02</td>
<td>82</td>
<td>4.16E+02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.56E+02</td>
<td>49</td>
<td>9.19E+02</td>
<td>83</td>
<td>7.17E+02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.75E+02</td>
<td>50</td>
<td>2.81E+02</td>
<td>84</td>
<td>8.91E+02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.69E+02</td>
<td>51</td>
<td>4.44E+02</td>
<td>85</td>
<td>3.84E+02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.68E+02</td>
<td>52</td>
<td>8.38E+02</td>
<td>86</td>
<td>4.53E+02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.95E+02</td>
<td>53</td>
<td>3.02E+02</td>
<td>87</td>
<td>1.63E+02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8.02E+02</td>
<td>54</td>
<td>9.92E+02</td>
<td>88</td>
<td>8.52E+02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.53E+02</td>
<td>55</td>
<td>2.81E+01</td>
<td>89</td>
<td>1.89E+02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8.66E+01</td>
<td>56</td>
<td>3.91E+02</td>
<td>90</td>
<td>5.99E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.93E+02</td>
<td>57</td>
<td>1.72E+02</td>
<td>91</td>
<td>4.88E+02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.25E+01</td>
<td>58</td>
<td>6.27E+02</td>
<td>92</td>
<td>4.23E+02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.58E+02</td>
<td>59</td>
<td>7.66E+02</td>
<td>93</td>
<td>2.37E+02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.61E+02</td>
<td>60</td>
<td>6.02E+02</td>
<td>94</td>
<td>1.13E+02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>8.29E+02</td>
<td>61</td>
<td>4.02E+02</td>
<td>95</td>
<td>2.75E+02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>9.03E+02</td>
<td>62</td>
<td>4.71E+02</td>
<td>96</td>
<td>8.13E+02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.05E+02</td>
<td>63</td>
<td>3.26E+02</td>
<td>97</td>
<td>1.08E+02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.92E+02</td>
<td>64</td>
<td>3.55E+02</td>
<td>98</td>
<td>9.47E+02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.16E+02</td>
<td>65</td>
<td>1.43E+02</td>
<td>99</td>
<td>8.43E+02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.64E+02</td>
<td>66</td>
<td>7.38E+02</td>
<td>100</td>
<td>7.48E+02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.49E+02</td>
<td>67</td>
<td>8.75E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.79E+01</td>
<td>68</td>
<td>9.83E+02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.13 – Sampled Values for Parameter GLOBAL:TRANSIDX (LHS Variable 24)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.56E-01</td>
<td>35</td>
<td>1.27E-01</td>
<td>69</td>
<td>2.79E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.86E-01</td>
<td>36</td>
<td>6.97E-01</td>
<td>70</td>
<td>7.28E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.26E-01</td>
<td>37</td>
<td>2.10E-01</td>
<td>71</td>
<td>3.29E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.97E-01</td>
<td>38</td>
<td>5.94E-01</td>
<td>72</td>
<td>8.70E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.76E-01</td>
<td>39</td>
<td>6.21E-02</td>
<td>73</td>
<td>3.31E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.57E-01</td>
<td>40</td>
<td>3.48E-02</td>
<td>74</td>
<td>3.94E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.56E-01</td>
<td>41</td>
<td>1.61E-01</td>
<td>75</td>
<td>2.04E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.05E-01</td>
<td>42</td>
<td>5.71E-01</td>
<td>76</td>
<td>7.91E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9.42E-01</td>
<td>43</td>
<td>6.31E-01</td>
<td>77</td>
<td>4.85E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.05E-01</td>
<td>44</td>
<td>1.39E-01</td>
<td>78</td>
<td>6.67E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.16E-01</td>
<td>45</td>
<td>1.42E-01</td>
<td>79</td>
<td>8.34E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8.47E-01</td>
<td>46</td>
<td>2.42E-01</td>
<td>80</td>
<td>9.00E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.85E-01</td>
<td>47</td>
<td>7.34E-01</td>
<td>81</td>
<td>4.94E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.57E-01</td>
<td>48</td>
<td>9.88E-01</td>
<td>82</td>
<td>5.80E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.37E-01</td>
<td>49</td>
<td>8.96E-01</td>
<td>83</td>
<td>5.84E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8.22E-01</td>
<td>50</td>
<td>7.05E-01</td>
<td>84</td>
<td>8.12E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.73E-01</td>
<td>51</td>
<td>3.44E-01</td>
<td>85</td>
<td>3.70E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.82E-01</td>
<td>52</td>
<td>4.78E-01</td>
<td>86</td>
<td>6.03E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.80E-01</td>
<td>53</td>
<td>5.29E-01</td>
<td>87</td>
<td>3.08E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.10E-01</td>
<td>54</td>
<td>7.43E-01</td>
<td>88</td>
<td>1.15E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.12E-01</td>
<td>55</td>
<td>4.06E-01</td>
<td>89</td>
<td>6.42E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.60E-01</td>
<td>56</td>
<td>4.35E-01</td>
<td>90</td>
<td>3.77E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.86E-01</td>
<td>57</td>
<td>9.68E-02</td>
<td>91</td>
<td>7.69E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.70E-01</td>
<td>58</td>
<td>2.32E-01</td>
<td>92</td>
<td>8.87E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.58E-02</td>
<td>59</td>
<td>1.03E-01</td>
<td>93</td>
<td>1.41E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.98E-01</td>
<td>60</td>
<td>5.52E-01</td>
<td>94</td>
<td>9.98E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.72E-01</td>
<td>61</td>
<td>5.47E-01</td>
<td>95</td>
<td>5.36E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>7.95E-03</td>
<td>62</td>
<td>6.24E-01</td>
<td>96</td>
<td>4.66E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.78E-01</td>
<td>63</td>
<td>5.61E-01</td>
<td>97</td>
<td>4.40E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.62E-01</td>
<td>64</td>
<td>8.30E-01</td>
<td>98</td>
<td>5.12E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>9.65E-01</td>
<td>65</td>
<td>8.57E-01</td>
<td>99</td>
<td>4.26E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9.12E-01</td>
<td>66</td>
<td>2.28E-01</td>
<td>100</td>
<td>6.58E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>7.55E-01</td>
<td>67</td>
<td>7.12E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.72E-01</td>
<td>68</td>
<td>4.08E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.13 – Sampled Values for Parameter GLOBAL:TRANSIDX (LHS Variable 24) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>7.26E-01</td>
<td>35</td>
<td>4.22E-01</td>
<td>69</td>
<td>3.10E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.52E-01</td>
<td>36</td>
<td>9.50E-01</td>
<td>70</td>
<td>9.36E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.05E-01</td>
<td>37</td>
<td>5.92E-01</td>
<td>71</td>
<td>1.67E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.42E-01</td>
<td>38</td>
<td>5.11E-01</td>
<td>72</td>
<td>5.78E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.33E-01</td>
<td>39</td>
<td>1.90E-01</td>
<td>73</td>
<td>3.93E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.07E-01</td>
<td>40</td>
<td>2.25E-01</td>
<td>74</td>
<td>7.50E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.62E-01</td>
<td>41</td>
<td>9.17E-01</td>
<td>75</td>
<td>6.16E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.88E-01</td>
<td>42</td>
<td>5.80E-01</td>
<td>76</td>
<td>5.21E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.51E-01</td>
<td>43</td>
<td>8.43E-01</td>
<td>77</td>
<td>7.33E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.83E-03</td>
<td>44</td>
<td>1.43E-01</td>
<td>78</td>
<td>4.64E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7.94E-01</td>
<td>45</td>
<td>7.53E-01</td>
<td>79</td>
<td>6.34E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.91E-01</td>
<td>46</td>
<td>4.72E-01</td>
<td>80</td>
<td>8.54E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.56E-01</td>
<td>47</td>
<td>2.06E-01</td>
<td>81</td>
<td>3.11E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.72E-02</td>
<td>48</td>
<td>5.00E-01</td>
<td>82</td>
<td>5.39E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.48E-01</td>
<td>49</td>
<td>2.60E-02</td>
<td>83</td>
<td>8.16E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3.73E-01</td>
<td>50</td>
<td>3.60E-01</td>
<td>84</td>
<td>8.81E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.84E-01</td>
<td>51</td>
<td>6.61E-02</td>
<td>85</td>
<td>5.42E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.92E-01</td>
<td>52</td>
<td>4.39E-01</td>
<td>86</td>
<td>3.46E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.67E-01</td>
<td>53</td>
<td>4.84E-01</td>
<td>87</td>
<td>9.64E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.75E-01</td>
<td>54</td>
<td>1.89E-01</td>
<td>88</td>
<td>8.27E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.07E-01</td>
<td>55</td>
<td>2.80E-01</td>
<td>89</td>
<td>6.67E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.62E-02</td>
<td>56</td>
<td>8.01E-01</td>
<td>90</td>
<td>4.53E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.43E-01</td>
<td>57</td>
<td>2.74E-01</td>
<td>91</td>
<td>7.76E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.70E-02</td>
<td>58</td>
<td>2.63E-01</td>
<td>92</td>
<td>8.40E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.94E-01</td>
<td>59</td>
<td>6.23E-01</td>
<td>93</td>
<td>3.24E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.24E-01</td>
<td>60</td>
<td>4.14E-01</td>
<td>94</td>
<td>3.39E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.69E-01</td>
<td>61</td>
<td>3.82E-01</td>
<td>95</td>
<td>9.43E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.34E-01</td>
<td>62</td>
<td>1.17E-01</td>
<td>96</td>
<td>8.74E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.16E-01</td>
<td>63</td>
<td>9.79E-01</td>
<td>97</td>
<td>7.12E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.24E-01</td>
<td>64</td>
<td>9.88E-01</td>
<td>98</td>
<td>4.10E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.71E-01</td>
<td>65</td>
<td>2.43E-01</td>
<td>99</td>
<td>8.92E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.10E-01</td>
<td>66</td>
<td>1.59E-01</td>
<td>100</td>
<td>2.53E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.56E-01</td>
<td>67</td>
<td>1.04E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.47E-01</td>
<td>68</td>
<td>2.97E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.13 – Sampled Values for Parameter GLOBAL:TRANSIDX (LHS Variable 24) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4.67E-01</td>
<td>35</td>
<td>6.80E-01</td>
<td>69</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.50E-01</td>
<td>36</td>
<td>4.12E-01</td>
<td>70</td>
<td>8.92E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.99E-01</td>
<td>37</td>
<td>5.47E-01</td>
<td>71</td>
<td>9.03E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.25E-01</td>
<td>38</td>
<td>4.77E-01</td>
<td>72</td>
<td>4.25E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.64E-01</td>
<td>39</td>
<td>3.31E-01</td>
<td>73</td>
<td>5.91E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.05E-01</td>
<td>40</td>
<td>4.06E-01</td>
<td>74</td>
<td>7.73E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.97E-01</td>
<td>41</td>
<td>8.48E-01</td>
<td>75</td>
<td>7.70E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.22E-01</td>
<td>42</td>
<td>7.38E-01</td>
<td>76</td>
<td>2.35E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9.32E-01</td>
<td>43</td>
<td>9.92E-01</td>
<td>77</td>
<td>1.69E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.57E-01</td>
<td>44</td>
<td>4.49E-01</td>
<td>78</td>
<td>5.37E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.95E-01</td>
<td>45</td>
<td>7.93E-01</td>
<td>79</td>
<td>3.52E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.71E-01</td>
<td>46</td>
<td>1.81E-02</td>
<td>80</td>
<td>9.49E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8.06E-01</td>
<td>47</td>
<td>9.77E-01</td>
<td>81</td>
<td>6.70E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.42E-02</td>
<td>48</td>
<td>7.18E-01</td>
<td>82</td>
<td>6.41E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.87E-01</td>
<td>49</td>
<td>2.42E-01</td>
<td>83</td>
<td>1.36E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8.73E-01</td>
<td>50</td>
<td>3.77E-01</td>
<td>84</td>
<td>6.58E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.64E-01</td>
<td>51</td>
<td>5.73E-01</td>
<td>85</td>
<td>2.56E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.54E-01</td>
<td>52</td>
<td>3.52E-01</td>
<td>86</td>
<td>1.14E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.04E-02</td>
<td>53</td>
<td>8.59E-01</td>
<td>87</td>
<td>4.26E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.30E-02</td>
<td>54</td>
<td>7.27E-01</td>
<td>88</td>
<td>1.72E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.28E-01</td>
<td>55</td>
<td>8.39E-01</td>
<td>89</td>
<td>7.08E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.40E-01</td>
<td>56</td>
<td>5.40E-02</td>
<td>90</td>
<td>1.88E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.05E-01</td>
<td>57</td>
<td>3.89E-01</td>
<td>91</td>
<td>6.25E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.56E-01</td>
<td>58</td>
<td>9.86E-01</td>
<td>92</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.14E-01</td>
<td>59</td>
<td>2.13E-01</td>
<td>93</td>
<td>6.60E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.40E-01</td>
<td>60</td>
<td>2.75E-01</td>
<td>94</td>
<td>1.03E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.61E-03</td>
<td>61</td>
<td>8.80E-01</td>
<td>95</td>
<td>3.13E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.82E-01</td>
<td>62</td>
<td>3.97E-01</td>
<td>96</td>
<td>9.28E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.50E-01</td>
<td>63</td>
<td>9.18E-01</td>
<td>97</td>
<td>3.49E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.97E-01</td>
<td>64</td>
<td>5.20E-01</td>
<td>98</td>
<td>5.58E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>7.87E-01</td>
<td>65</td>
<td>5.62E-01</td>
<td>99</td>
<td>2.86E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.06E-01</td>
<td>66</td>
<td>2.07E-01</td>
<td>100</td>
<td>6.11E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>8.26E-01</td>
<td>67</td>
<td>2.67E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>8.10E-02</td>
<td>68</td>
<td>3.63E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.14 – Sampled Values for Parameter GLOBAL:CLIMTIDX (LHS Variable 25)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.09E+00</td>
<td>35</td>
<td>1.19E+00</td>
<td>69</td>
<td>1.21E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.17E+00</td>
<td>36</td>
<td>1.54E+00</td>
<td>70</td>
<td>1.57E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.20E+00</td>
<td>37</td>
<td>1.10E+00</td>
<td>71</td>
<td>1.98E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.01E+00</td>
<td>38</td>
<td>2.15E+00</td>
<td>72</td>
<td>2.02E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.04E+00</td>
<td>39</td>
<td>1.22E+00</td>
<td>73</td>
<td>1.66E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.59E+00</td>
<td>40</td>
<td>1.03E+00</td>
<td>74</td>
<td>2.18E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.19E+00</td>
<td>41</td>
<td>1.03E+00</td>
<td>75</td>
<td>2.08E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.12E+00</td>
<td>42</td>
<td>1.16E+00</td>
<td>76</td>
<td>1.15E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.17E+00</td>
<td>43</td>
<td>1.05E+00</td>
<td>77</td>
<td>1.22E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.13E+00</td>
<td>44</td>
<td>1.03E+00</td>
<td>78</td>
<td>1.07E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.15E+00</td>
<td>45</td>
<td>1.02E+00</td>
<td>79</td>
<td>1.02E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.24E+00</td>
<td>46</td>
<td>1.05E+00</td>
<td>80</td>
<td>1.50E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.07E+00</td>
<td>47</td>
<td>1.15E+00</td>
<td>81</td>
<td>1.18E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.24E+00</td>
<td>48</td>
<td>1.08E+00</td>
<td>82</td>
<td>1.04E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.21E+00</td>
<td>49</td>
<td>1.06E+00</td>
<td>83</td>
<td>1.91E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.03E+00</td>
<td>50</td>
<td>1.06E+00</td>
<td>84</td>
<td>2.11E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.16E+00</td>
<td>51</td>
<td>1.11E+00</td>
<td>85</td>
<td>1.12E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.75E+00</td>
<td>52</td>
<td>1.21E+00</td>
<td>86</td>
<td>1.10E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.16E+00</td>
<td>53</td>
<td>1.02E+00</td>
<td>87</td>
<td>1.08E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.62E+00</td>
<td>54</td>
<td>1.05E+00</td>
<td>88</td>
<td>1.08E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.07E+00</td>
<td>55</td>
<td>1.09E+00</td>
<td>89</td>
<td>1.84E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.01E+00</td>
<td>56</td>
<td>1.00E+00</td>
<td>90</td>
<td>1.12E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.14E+00</td>
<td>57</td>
<td>1.94E+00</td>
<td>91</td>
<td>2.20E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.71E+00</td>
<td>58</td>
<td>1.22E+00</td>
<td>92</td>
<td>1.23E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.24E+00</td>
<td>59</td>
<td>1.19E+00</td>
<td>93</td>
<td>1.19E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.13E+00</td>
<td>60</td>
<td>1.11E+00</td>
<td>94</td>
<td>1.14E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.18E+00</td>
<td>61</td>
<td>1.23E+00</td>
<td>95</td>
<td>1.10E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.07E+00</td>
<td>62</td>
<td>1.00E+00</td>
<td>96</td>
<td>2.24E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.13E+00</td>
<td>63</td>
<td>1.22E+00</td>
<td>97</td>
<td>1.78E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.88E+00</td>
<td>64</td>
<td>1.81E+00</td>
<td>98</td>
<td>1.70E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.11E+00</td>
<td>65</td>
<td>1.07E+00</td>
<td>99</td>
<td>1.16E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.17E+00</td>
<td>66</td>
<td>1.04E+00</td>
<td>100</td>
<td>1.20E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.24E+00</td>
<td>67</td>
<td>1.25E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.10E+00</td>
<td>68</td>
<td>2.01E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.14 – Sampled Values for Parameter GLOBAL:CLIMTIDX (LHS Variable 25) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.01E+00</td>
<td>35</td>
<td>1.19E+00</td>
<td>69</td>
<td>1.09E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.05E+00</td>
<td>36</td>
<td>1.08E+00</td>
<td>70</td>
<td>1.19E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.90E+00</td>
<td>37</td>
<td>1.20E+00</td>
<td>71</td>
<td>1.05E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.06E+00</td>
<td>38</td>
<td>1.74E+00</td>
<td>72</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.14E+00</td>
<td>39</td>
<td>1.08E+00</td>
<td>73</td>
<td>1.79E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.23E+00</td>
<td>40</td>
<td>1.18E+00</td>
<td>74</td>
<td>1.19E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.07E+00</td>
<td>41</td>
<td>1.12E+00</td>
<td>75</td>
<td>1.74E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.99E+00</td>
<td>42</td>
<td>2.05E+00</td>
<td>76</td>
<td>1.11E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.14E+00</td>
<td>43</td>
<td>1.15E+00</td>
<td>77</td>
<td>1.70E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.11E+00</td>
<td>44</td>
<td>2.02E+00</td>
<td>78</td>
<td>1.10E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.25E+00</td>
<td>45</td>
<td>1.67E+00</td>
<td>79</td>
<td>2.19E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.07E+00</td>
<td>46</td>
<td>1.00E+00</td>
<td>80</td>
<td>1.03E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.04E+00</td>
<td>47</td>
<td>1.12E+00</td>
<td>81</td>
<td>1.11E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.23E+00</td>
<td>48</td>
<td>1.20E+00</td>
<td>82</td>
<td>1.24E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.21E+00</td>
<td>49</td>
<td>1.53E+00</td>
<td>83</td>
<td>1.13E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.18E+00</td>
<td>50</td>
<td>1.61E+00</td>
<td>84</td>
<td>1.07E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.13E+00</td>
<td>51</td>
<td>1.16E+00</td>
<td>85</td>
<td>1.15E+00</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.14E+00</td>
<td>52</td>
<td>1.97E+00</td>
<td>86</td>
<td>2.12E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.12E+00</td>
<td>53</td>
<td>1.10E+00</td>
<td>87</td>
<td>1.07E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.58E+00</td>
<td>54</td>
<td>1.22E+00</td>
<td>88</td>
<td>2.19E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.20E+00</td>
<td>55</td>
<td>1.02E+00</td>
<td>89</td>
<td>1.22E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.21E+00</td>
<td>56</td>
<td>1.16E+00</td>
<td>90</td>
<td>1.18E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.17E+00</td>
<td>57</td>
<td>1.81E+00</td>
<td>91</td>
<td>1.55E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.08E+00</td>
<td>58</td>
<td>1.25E+00</td>
<td>92</td>
<td>1.12E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.84E+00</td>
<td>59</td>
<td>1.24E+00</td>
<td>93</td>
<td>1.05E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.08E+00</td>
<td>60</td>
<td>1.09E+00</td>
<td>94</td>
<td>1.01E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.93E+00</td>
<td>61</td>
<td>1.16E+00</td>
<td>95</td>
<td>2.25E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.03E+00</td>
<td>62</td>
<td>1.64E+00</td>
<td>96</td>
<td>1.23E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.20E+00</td>
<td>63</td>
<td>1.22E+00</td>
<td>97</td>
<td>1.03E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.10E+00</td>
<td>64</td>
<td>1.02E+00</td>
<td>98</td>
<td>1.86E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.15E+00</td>
<td>65</td>
<td>1.01E+00</td>
<td>99</td>
<td>1.24E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.05E+00</td>
<td>66</td>
<td>1.14E+00</td>
<td>100</td>
<td>1.04E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.06E+00</td>
<td>67</td>
<td>1.02E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.15E+00</td>
<td>68</td>
<td>1.17E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.14 – Sampled Values for Parameter GLOBAL:CLIMTIDX (LHS Variable 25) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1.11E+00</td>
<td>35</td>
<td>1.12E+00</td>
<td>69</td>
<td>1.08E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.69E+00</td>
<td>36</td>
<td>1.04E+00</td>
<td>70</td>
<td>1.03E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.23E+00</td>
<td>37</td>
<td>1.19E+00</td>
<td>71</td>
<td>1.21E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.20E+00</td>
<td>38</td>
<td>1.04E+00</td>
<td>72</td>
<td>1.05E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.17E+00</td>
<td>39</td>
<td>1.25E+00</td>
<td>73</td>
<td>1.17E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.65E+00</td>
<td>40</td>
<td>1.15E+00</td>
<td>74</td>
<td>2.24E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.01E+00</td>
<td>41</td>
<td>1.22E+00</td>
<td>75</td>
<td>1.79E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.01E+00</td>
<td>42</td>
<td>1.21E+00</td>
<td>76</td>
<td>1.08E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.08E+00</td>
<td>43</td>
<td>1.02E+00</td>
<td>77</td>
<td>1.02E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.16E+00</td>
<td>44</td>
<td>1.55E+00</td>
<td>78</td>
<td>1.24E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.66E+00</td>
<td>45</td>
<td>1.19E+00</td>
<td>79</td>
<td>1.07E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.17E+00</td>
<td>46</td>
<td>1.14E+00</td>
<td>80</td>
<td>1.13E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.12E+00</td>
<td>47</td>
<td>1.95E+00</td>
<td>81</td>
<td>1.01E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.75E+00</td>
<td>48</td>
<td>1.14E+00</td>
<td>82</td>
<td>1.53E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.11E+00</td>
<td>49</td>
<td>1.24E+00</td>
<td>83</td>
<td>1.93E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.19E+00</td>
<td>50</td>
<td>1.07E+00</td>
<td>84</td>
<td>1.04E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.62E+00</td>
<td>51</td>
<td>1.15E+00</td>
<td>85</td>
<td>1.71E+00</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.20E+00</td>
<td>52</td>
<td>1.57E+00</td>
<td>86</td>
<td>1.17E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.10E+00</td>
<td>53</td>
<td>1.18E+00</td>
<td>87</td>
<td>1.16E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.17E+00</td>
<td>54</td>
<td>1.23E+00</td>
<td>88</td>
<td>1.90E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.86E+00</td>
<td>55</td>
<td>1.18E+00</td>
<td>89</td>
<td>1.10E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.20E+00</td>
<td>56</td>
<td>1.09E+00</td>
<td>90</td>
<td>1.11E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.20E+00</td>
<td>57</td>
<td>2.10E+00</td>
<td>91</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.19E+00</td>
<td>58</td>
<td>1.21E+00</td>
<td>92</td>
<td>1.03E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.15E+00</td>
<td>59</td>
<td>1.09E+00</td>
<td>93</td>
<td>1.23E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.12E+00</td>
<td>60</td>
<td>1.22E+00</td>
<td>94</td>
<td>1.14E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.11E+00</td>
<td>61</td>
<td>2.10E+00</td>
<td>95</td>
<td>1.06E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.87E+00</td>
<td>62</td>
<td>1.01E+00</td>
<td>96</td>
<td>1.13E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.01E+00</td>
<td>63</td>
<td>1.06E+00</td>
<td>97</td>
<td>1.25E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.82E+00</td>
<td>64</td>
<td>1.07E+00</td>
<td>98</td>
<td>1.09E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.13E+00</td>
<td>65</td>
<td>2.05E+00</td>
<td>99</td>
<td>1.06E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.16E+00</td>
<td>66</td>
<td>1.04E+00</td>
<td>100</td>
<td>1.02E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.07E+00</td>
<td>67</td>
<td>1.05E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.22E+00</td>
<td>68</td>
<td>1.98E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.15 – Sampled Values for Parameter CULEBRA:HM_BLKLT (LHS Variable 26)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (m)</th>
<th>Vector #</th>
<th>Value (m)</th>
<th>Vector #</th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.73E-01</td>
<td>35</td>
<td>2.16E-01</td>
<td>69</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.73E-01</td>
<td>36</td>
<td>1.14E-01</td>
<td>70</td>
<td>4.72E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.27E-01</td>
<td>37</td>
<td>4.05E-01</td>
<td>71</td>
<td>2.19E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.10E-01</td>
<td>38</td>
<td>2.05E-01</td>
<td>72</td>
<td>4.74E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.37E-01</td>
<td>39</td>
<td>6.34E-02</td>
<td>73</td>
<td>7.48E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.50E-01</td>
<td>40</td>
<td>2.47E-01</td>
<td>74</td>
<td>4.91E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.47E-01</td>
<td>41</td>
<td>4.44E-01</td>
<td>75</td>
<td>8.65E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.67E-01</td>
<td>42</td>
<td>3.82E-01</td>
<td>76</td>
<td>4.82E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.26E-02</td>
<td>43</td>
<td>3.56E-01</td>
<td>77</td>
<td>1.62E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.98E-01</td>
<td>44</td>
<td>1.02E-01</td>
<td>78</td>
<td>1.26E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.34E-01</td>
<td>45</td>
<td>2.60E-01</td>
<td>79</td>
<td>3.56E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.38E-01</td>
<td>46</td>
<td>2.56E-01</td>
<td>80</td>
<td>5.64E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.99E-01</td>
<td>47</td>
<td>1.13E-01</td>
<td>81</td>
<td>1.65E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.21E-01</td>
<td>48</td>
<td>3.09E-01</td>
<td>82</td>
<td>1.71E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.07E-01</td>
<td>49</td>
<td>2.83E-01</td>
<td>83</td>
<td>2.89E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.66E-01</td>
<td>50</td>
<td>1.42E-01</td>
<td>84</td>
<td>4.11E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.97E-01</td>
<td>51</td>
<td>3.12E-01</td>
<td>85</td>
<td>9.59E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.64E-01</td>
<td>52</td>
<td>3.84E-01</td>
<td>86</td>
<td>1.84E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.99E-01</td>
<td>53</td>
<td>2.29E-01</td>
<td>87</td>
<td>4.53E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.63E-01</td>
<td>54</td>
<td>2.37E-01</td>
<td>88</td>
<td>7.10E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.20E-01</td>
<td>55</td>
<td>2.78E-01</td>
<td>89</td>
<td>1.93E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.86E-01</td>
<td>56</td>
<td>2.68E-01</td>
<td>90</td>
<td>6.59E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.16E-01</td>
<td>57</td>
<td>3.77E-01</td>
<td>91</td>
<td>1.85E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.90E-01</td>
<td>58</td>
<td>1.35E-01</td>
<td>92</td>
<td>9.39E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.08E-01</td>
<td>59</td>
<td>4.48E-01</td>
<td>93</td>
<td>1.21E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.65E-01</td>
<td>60</td>
<td>8.39E-02</td>
<td>94</td>
<td>3.36E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.73E-01</td>
<td>61</td>
<td>3.31E-01</td>
<td>95</td>
<td>3.47E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.86E-01</td>
<td>62</td>
<td>4.38E-01</td>
<td>96</td>
<td>1.38E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.93E-01</td>
<td>63</td>
<td>1.57E-01</td>
<td>97</td>
<td>4.31E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.52E-01</td>
<td>64</td>
<td>1.78E-01</td>
<td>98</td>
<td>3.88E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.40E-01</td>
<td>65</td>
<td>3.93E-01</td>
<td>99</td>
<td>2.23E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>8.01E-02</td>
<td>66</td>
<td>3.28E-01</td>
<td>100</td>
<td>2.03E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.21E-01</td>
<td>67</td>
<td>1.28E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.03E-01</td>
<td>68</td>
<td>4.56E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.15 – Sampled Values for Parameter CULEBRA:HMBLKLT (LHS Variable 26) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (m)</th>
<th>Vector #</th>
<th>Value (m)</th>
<th>Vector #</th>
<th>Value (m)</th>
<th>Vector #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.37E-01</td>
<td>35</td>
<td>1.24E-01</td>
<td>69</td>
<td>3.56E-01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.37E-02</td>
<td>36</td>
<td>4.82E-01</td>
<td>70</td>
<td>4.49E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.13E-01</td>
<td>37</td>
<td>4.60E-01</td>
<td>71</td>
<td>3.58E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.70E-01</td>
<td>38</td>
<td>4.16E-01</td>
<td>72</td>
<td>1.03E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.14E-01</td>
<td>39</td>
<td>4.58E-01</td>
<td>73</td>
<td>2.43E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.91E-01</td>
<td>40</td>
<td>4.06E-01</td>
<td>74</td>
<td>3.31E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.64E-01</td>
<td>41</td>
<td>1.93E-01</td>
<td>75</td>
<td>6.96E-02</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.82E-01</td>
<td>42</td>
<td>1.76E-01</td>
<td>76</td>
<td>2.28E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.31E-01</td>
<td>43</td>
<td>3.76E-01</td>
<td>77</td>
<td>1.07E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.70E-01</td>
<td>44</td>
<td>4.31E-01</td>
<td>78</td>
<td>1.96E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.40E-01</td>
<td>45</td>
<td>3.17E-01</td>
<td>79</td>
<td>4.52E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.82E-01</td>
<td>46</td>
<td>1.31E-01</td>
<td>80</td>
<td>2.18E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.96E-01</td>
<td>47</td>
<td>8.44E-02</td>
<td>81</td>
<td>1.61E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.84E-01</td>
<td>48</td>
<td>2.87E-01</td>
<td>82</td>
<td>2.45E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.86E-01</td>
<td>49</td>
<td>1.55E-01</td>
<td>83</td>
<td>3.07E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.52E-01</td>
<td>50</td>
<td>4.35E-01</td>
<td>84</td>
<td>5.86E-02</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.35E-01</td>
<td>51</td>
<td>1.40E-01</td>
<td>85</td>
<td>3.01E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8.94E-02</td>
<td>52</td>
<td>1.21E-01</td>
<td>86</td>
<td>4.87E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.05E-01</td>
<td>53</td>
<td>3.97E-01</td>
<td>87</td>
<td>3.20E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.69E-01</td>
<td>54</td>
<td>1.39E-01</td>
<td>88</td>
<td>2.51E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3.25E-01</td>
<td>55</td>
<td>2.09E-01</td>
<td>89</td>
<td>3.70E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3.92E-01</td>
<td>56</td>
<td>1.48E-01</td>
<td>90</td>
<td>2.23E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>9.21E-02</td>
<td>57</td>
<td>4.25E-01</td>
<td>91</td>
<td>3.45E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.59E-01</td>
<td>58</td>
<td>5.97E-02</td>
<td>92</td>
<td>8.14E-02</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.39E-02</td>
<td>59</td>
<td>9.79E-02</td>
<td>93</td>
<td>3.63E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.73E-01</td>
<td>60</td>
<td>2.79E-01</td>
<td>94</td>
<td>3.96E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.32E-01</td>
<td>61</td>
<td>3.51E-01</td>
<td>95</td>
<td>2.14E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.02E-01</td>
<td>62</td>
<td>3.42E-01</td>
<td>96</td>
<td>1.11E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6.58E-02</td>
<td>63</td>
<td>2.97E-01</td>
<td>97</td>
<td>3.80E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.05E-01</td>
<td>64</td>
<td>4.71E-01</td>
<td>98</td>
<td>2.89E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4.02E-01</td>
<td>65</td>
<td>4.74E-01</td>
<td>99</td>
<td>4.43E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.74E-01</td>
<td>66</td>
<td>2.64E-01</td>
<td>100</td>
<td>4.68E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.88E-01</td>
<td>67</td>
<td>4.22E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.11E-01</td>
<td>68</td>
<td>2.53E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.15 – Sampled Values for Parameter CULEBRA:HMBLKLT (LHS Variable 26) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (m)</th>
<th>#</th>
<th>Value (m)</th>
<th>#</th>
<th>Value (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>4.45E-01</td>
<td>35</td>
<td>1.57E-01</td>
<td>69</td>
<td>5.41E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2.93E-01</td>
<td>36</td>
<td>3.17E-01</td>
<td>70</td>
<td>3.13E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.62E-01</td>
<td>37</td>
<td>7.08E-02</td>
<td>71</td>
<td>3.38E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.98E-01</td>
<td>38</td>
<td>2.72E-01</td>
<td>72</td>
<td>1.50E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.23E-01</td>
<td>39</td>
<td>2.01E-01</td>
<td>73</td>
<td>2.56E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>2.92E-01</td>
<td>40</td>
<td>4.94E-01</td>
<td>74</td>
<td>3.53E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>3.33E-01</td>
<td>41</td>
<td>4.69E-01</td>
<td>75</td>
<td>7.33E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3.05E-01</td>
<td>42</td>
<td>4.89E-01</td>
<td>76</td>
<td>9.49E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.27E-01</td>
<td>43</td>
<td>4.22E-01</td>
<td>77</td>
<td>3.72E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.83E-01</td>
<td>44</td>
<td>1.85E-01</td>
<td>78</td>
<td>2.13E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1.72E-01</td>
<td>45</td>
<td>4.80E-01</td>
<td>79</td>
<td>8.82E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3.79E-01</td>
<td>46</td>
<td>4.54E-01</td>
<td>80</td>
<td>4.12E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>8.53E-02</td>
<td>47</td>
<td>5.84E-02</td>
<td>81</td>
<td>4.84E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>2.41E-01</td>
<td>48</td>
<td>3.28E-01</td>
<td>82</td>
<td>3.60E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.42E-01</td>
<td>49</td>
<td>3.47E-01</td>
<td>83</td>
<td>3.90E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.11E-01</td>
<td>50</td>
<td>2.07E-01</td>
<td>84</td>
<td>1.64E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.67E-01</td>
<td>51</td>
<td>1.16E-01</td>
<td>85</td>
<td>1.62E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>4.09E-01</td>
<td>52</td>
<td>4.02E-01</td>
<td>86</td>
<td>3.23E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>4.48E-01</td>
<td>53</td>
<td>2.09E-01</td>
<td>87</td>
<td>2.36E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>9.53E-02</td>
<td>54</td>
<td>4.19E-01</td>
<td>88</td>
<td>1.05E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>3.86E-01</td>
<td>55</td>
<td>4.35E-01</td>
<td>89</td>
<td>2.26E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.76E-01</td>
<td>56</td>
<td>2.17E-01</td>
<td>90</td>
<td>3.69E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>3.95E-01</td>
<td>57</td>
<td>2.70E-01</td>
<td>91</td>
<td>2.64E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2.45E-01</td>
<td>58</td>
<td>2.59E-01</td>
<td>92</td>
<td>2.32E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4.96E-01</td>
<td>59</td>
<td>1.34E-01</td>
<td>93</td>
<td>1.90E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>4.74E-01</td>
<td>60</td>
<td>2.87E-01</td>
<td>94</td>
<td>4.55E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>4.39E-01</td>
<td>61</td>
<td>4.29E-01</td>
<td>95</td>
<td>2.23E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>1.38E-01</td>
<td>62</td>
<td>2.81E-01</td>
<td>96</td>
<td>1.45E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>1.19E-01</td>
<td>63</td>
<td>2.98E-01</td>
<td>97</td>
<td>3.97E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>2.76E-01</td>
<td>64</td>
<td>3.11E-01</td>
<td>98</td>
<td>5.92E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>2.48E-01</td>
<td>65</td>
<td>8.08E-02</td>
<td>99</td>
<td>9.97E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>6.79E-02</td>
<td>66</td>
<td>4.25E-01</td>
<td>100</td>
<td>3.44E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>4.67E-01</td>
<td>67</td>
<td>4.61E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>3.74E-01</td>
<td>68</td>
<td>3.36E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.16 – Sampled Values for Parameter CULEBRA:APOROS (LHS Variable 27)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3.47E-04</td>
<td>35</td>
<td>2.30E-04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.17E-04</td>
<td>36</td>
<td>4.80E-03</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.08E-04</td>
<td>37</td>
<td>2.84E-04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.76E-03</td>
<td>38</td>
<td>2.65E-04</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.70E-03</td>
<td>39</td>
<td>5.27E-04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.51E-03</td>
<td>40</td>
<td>1.28E-04</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.13E-03</td>
<td>41</td>
<td>2.28E-04</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.46E-04</td>
<td>42</td>
<td>8.95E-04</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8.13E-04</td>
<td>43</td>
<td>4.14E-03</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.18E-03</td>
<td>44</td>
<td>4.67E-03</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.22E-04</td>
<td>45</td>
<td>5.92E-04</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.58E-04</td>
<td>46</td>
<td>1.01E-03</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.65E-04</td>
<td>47</td>
<td>7.56E-04</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>8.58E-03</td>
<td>48</td>
<td>5.64E-03</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.82E-04</td>
<td>49</td>
<td>3.64E-03</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.95E-04</td>
<td>50</td>
<td>3.49E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.46E-04</td>
<td>51</td>
<td>3.35E-04</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.46E-04</td>
<td>52</td>
<td>9.82E-03</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.08E-04</td>
<td>53</td>
<td>2.04E-03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.26E-04</td>
<td>54</td>
<td>1.44E-03</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.66E-03</td>
<td>55</td>
<td>7.61E-04</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.26E-03</td>
<td>56</td>
<td>4.39E-03</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.20E-04</td>
<td>57</td>
<td>2.90E-03</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.61E-03</td>
<td>58</td>
<td>3.28E-04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.64E-04</td>
<td>59</td>
<td>1.24E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.27E-03</td>
<td>60</td>
<td>6.83E-04</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.26E-03</td>
<td>61</td>
<td>1.91E-03</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.98E-03</td>
<td>62</td>
<td>1.01E-04</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>9.67E-04</td>
<td>63</td>
<td>8.75E-03</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.13E-04</td>
<td>64</td>
<td>9.37E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.10E-04</td>
<td>65</td>
<td>2.37E-03</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.09E-03</td>
<td>66</td>
<td>5.85E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.83E-04</td>
<td>67</td>
<td>5.22E-03</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.73E-04</td>
<td>68</td>
<td>2.64E-03</td>
</tr>
</tbody>
</table>
Table A.16 – Sampled Values for Parameter CULEBRA:APOROS (LHS Variable 27) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>4.47E-04</td>
<td>35</td>
<td>2.25E-04</td>
<td>69</td>
<td>1.16E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.59E-03</td>
<td>36</td>
<td>1.80E-03</td>
<td>70</td>
<td>6.89E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.14E-03</td>
<td>37</td>
<td>1.73E-03</td>
<td>71</td>
<td>1.93E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2.71E-04</td>
<td>38</td>
<td>1.48E-04</td>
<td>72</td>
<td>3.03E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>7.17E-03</td>
<td>39</td>
<td>9.44E-04</td>
<td>73</td>
<td>1.48E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>2.40E-04</td>
<td>40</td>
<td>3.40E-04</td>
<td>74</td>
<td>7.55E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.91E-04</td>
<td>41</td>
<td>3.27E-04</td>
<td>75</td>
<td>3.16E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>2.85E-03</td>
<td>42</td>
<td>6.40E-03</td>
<td>76</td>
<td>1.10E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>7.52E-04</td>
<td>43</td>
<td>2.76E-04</td>
<td>77</td>
<td>1.05E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2.47E-04</td>
<td>44</td>
<td>1.65E-03</td>
<td>78</td>
<td>1.27E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>9.99E-04</td>
<td>45</td>
<td>1.10E-04</td>
<td>79</td>
<td>4.77E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>9.51E-03</td>
<td>46</td>
<td>1.40E-04</td>
<td>80</td>
<td>7.69E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>9.58E-03</td>
<td>47</td>
<td>3.87E-03</td>
<td>81</td>
<td>1.20E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.09E-04</td>
<td>48</td>
<td>8.81E-03</td>
<td>82</td>
<td>1.65E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3.59E-04</td>
<td>49</td>
<td>2.36E-03</td>
<td>83</td>
<td>2.57E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.58E-03</td>
<td>50</td>
<td>2.01E-04</td>
<td>84</td>
<td>2.93E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>8.29E-03</td>
<td>51</td>
<td>8.22E-04</td>
<td>85</td>
<td>6.72E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>4.98E-04</td>
<td>52</td>
<td>4.34E-04</td>
<td>86</td>
<td>1.24E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>3.35E-03</td>
<td>53</td>
<td>5.63E-04</td>
<td>87</td>
<td>1.19E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>4.69E-03</td>
<td>54</td>
<td>1.10E-03</td>
<td>88</td>
<td>3.29E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>7.10E-04</td>
<td>55</td>
<td>4.22E-03</td>
<td>89</td>
<td>4.94E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.26E-04</td>
<td>56</td>
<td>5.10E-04</td>
<td>90</td>
<td>2.94E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.32E-03</td>
<td>57</td>
<td>5.35E-04</td>
<td>91</td>
<td>3.76E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>5.63E-03</td>
<td>58</td>
<td>2.21E-03</td>
<td>92</td>
<td>1.02E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1.89E-04</td>
<td>59</td>
<td>4.14E-03</td>
<td>93</td>
<td>6.35E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2.12E-03</td>
<td>60</td>
<td>3.63E-04</td>
<td>94</td>
<td>8.34E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>5.26E-03</td>
<td>61</td>
<td>4.50E-03</td>
<td>95</td>
<td>1.32E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>8.89E-04</td>
<td>62</td>
<td>4.01E-04</td>
<td>96</td>
<td>2.16E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>5.07E-03</td>
<td>63</td>
<td>1.39E-03</td>
<td>97</td>
<td>5.80E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>2.05E-03</td>
<td>64</td>
<td>5.82E-04</td>
<td>98</td>
<td>3.89E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>2.46E-03</td>
<td>65</td>
<td>1.70E-04</td>
<td>99</td>
<td>1.54E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>7.63E-03</td>
<td>66</td>
<td>2.59E-04</td>
<td>100</td>
<td>2.70E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>6.20E-04</td>
<td>67</td>
<td>1.83E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>1.80E-04</td>
<td>68</td>
<td>8.61E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.16 – Sampled Values for Parameter CULEBRA:APOROS (LHS Variable 27) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicate</td>
<td>Vector #</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4.72E-04</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.01E-03</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.35E-04</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.82E-03</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.13E-03</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.47E-03</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.99E-03</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.08E-04</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.68E-04</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.39E-03</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.40E-04</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.56E-03</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.50E-04</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.06E-03</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.60E-03</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.02E-04</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.65E-03</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.39E-03</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.62E-04</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.76E-04</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.88E-04</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.35E-03</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.87E-04</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.01E-03</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.74E-03</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.54E-03</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.86E-03</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.56E-04</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.34E-03</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.75E-04</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.67E-04</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9.37E-04</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.98E-04</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.54E-04</td>
<td>68</td>
</tr>
</tbody>
</table>
Table A.17 – Sampled Values for Parameter CULEBRA:DPOROS (LHS Variable 28)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.44E-01</td>
<td>35</td>
<td>1.52E-01</td>
<td>69</td>
<td>1.54E-01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.20E-01</td>
<td>36</td>
<td>1.21E-01</td>
<td>70</td>
<td>1.11E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.33E-01</td>
<td>37</td>
<td>1.17E-01</td>
<td>71</td>
<td>1.28E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.74E-01</td>
<td>38</td>
<td>1.19E-01</td>
<td>72</td>
<td>1.78E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.97E-01</td>
<td>39</td>
<td>1.76E-01</td>
<td>73</td>
<td>1.80E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.07E-01</td>
<td>40</td>
<td>1.73E-01</td>
<td>74</td>
<td>2.46E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.93E-01</td>
<td>41</td>
<td>1.48E-01</td>
<td>75</td>
<td>1.88E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.49E-01</td>
<td>42</td>
<td>1.66E-01</td>
<td>76</td>
<td>1.64E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.08E-01</td>
<td>43</td>
<td>1.68E-01</td>
<td>77</td>
<td>1.87E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.77E-01</td>
<td>44</td>
<td>1.09E-01</td>
<td>78</td>
<td>1.61E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.72E-01</td>
<td>45</td>
<td>1.19E-01</td>
<td>79</td>
<td>1.42E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.89E-01</td>
<td>46</td>
<td>2.28E-01</td>
<td>80</td>
<td>1.25E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.74E-01</td>
<td>47</td>
<td>1.46E-01</td>
<td>81</td>
<td>1.19E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.62E-01</td>
<td>48</td>
<td>1.39E-01</td>
<td>82</td>
<td>2.33E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.36E-01</td>
<td>49</td>
<td>1.65E-01</td>
<td>83</td>
<td>1.79E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.85E-01</td>
<td>50</td>
<td>1.69E-01</td>
<td>84</td>
<td>1.63E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.03E-01</td>
<td>51</td>
<td>1.82E-01</td>
<td>85</td>
<td>2.22E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.90E-01</td>
<td>52</td>
<td>1.84E-01</td>
<td>86</td>
<td>1.88E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.84E-01</td>
<td>53</td>
<td>1.53E-01</td>
<td>87</td>
<td>1.17E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.57E-01</td>
<td>54</td>
<td>1.30E-01</td>
<td>88</td>
<td>1.34E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.63E-01</td>
<td>55</td>
<td>1.10E-01</td>
<td>89</td>
<td>1.23E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.15E-01</td>
<td>56</td>
<td>1.06E-01</td>
<td>90</td>
<td>1.83E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.79E-01</td>
<td>57</td>
<td>1.10E-01</td>
<td>91</td>
<td>1.12E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.02E-01</td>
<td>58</td>
<td>1.12E-01</td>
<td>92</td>
<td>1.14E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.61E-01</td>
<td>59</td>
<td>1.86E-01</td>
<td>93</td>
<td>1.38E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.76E-01</td>
<td>60</td>
<td>1.73E-01</td>
<td>94</td>
<td>1.17E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.04E-01</td>
<td>61</td>
<td>1.68E-01</td>
<td>95</td>
<td>1.08E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.58E-01</td>
<td>62</td>
<td>1.28E-01</td>
<td>96</td>
<td>1.82E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.70E-01</td>
<td>63</td>
<td>1.40E-01</td>
<td>97</td>
<td>1.71E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.81E-01</td>
<td>64</td>
<td>2.38E-01</td>
<td>98</td>
<td>1.59E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1.67E-01</td>
<td>65</td>
<td>2.03E-01</td>
<td>99</td>
<td>1.00E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.13E-01</td>
<td>66</td>
<td>1.86E-01</td>
<td>100</td>
<td>1.16E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.24E-01</td>
<td>67</td>
<td>1.45E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.15E-01</td>
<td>68</td>
<td>1.03E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.17 – Sampled Values for Parameter CULEBRA:DPOROS (LHS Variable 28)
(continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.81E-01</td>
<td>35</td>
<td>1.20E-01</td>
<td>69</td>
<td>1.31E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.99E-01</td>
<td>36</td>
<td>1.76E-01</td>
<td>70</td>
<td>1.45E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.09E-01</td>
<td>37</td>
<td>1.12E-01</td>
<td>71</td>
<td>2.19E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.19E-01</td>
<td>38</td>
<td>1.16E-01</td>
<td>72</td>
<td>1.06E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.32E-01</td>
<td>39</td>
<td>1.09E-01</td>
<td>73</td>
<td>1.49E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.84E-01</td>
<td>40</td>
<td>1.03E-01</td>
<td>74</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.84E-01</td>
<td>41</td>
<td>1.68E-01</td>
<td>75</td>
<td>2.48E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.13E-01</td>
<td>42</td>
<td>1.18E-01</td>
<td>76</td>
<td>1.61E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.00E-01</td>
<td>43</td>
<td>1.24E-01</td>
<td>77</td>
<td>1.06E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.15E-01</td>
<td>44</td>
<td>1.88E-01</td>
<td>78</td>
<td>1.11E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.77E-01</td>
<td>45</td>
<td>1.71E-01</td>
<td>79</td>
<td>1.86E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.04E-01</td>
<td>46</td>
<td>1.80E-01</td>
<td>80</td>
<td>1.12E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.08E-01</td>
<td>47</td>
<td>1.79E-01</td>
<td>81</td>
<td>1.40E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.17E-01</td>
<td>48</td>
<td>1.75E-01</td>
<td>82</td>
<td>1.82E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.75E-01</td>
<td>49</td>
<td>1.65E-01</td>
<td>83</td>
<td>1.28E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.22E-01</td>
<td>50</td>
<td>1.04E-01</td>
<td>84</td>
<td>1.48E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.87E-01</td>
<td>51</td>
<td>1.43E-01</td>
<td>85</td>
<td>1.60E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.38E-01</td>
<td>52</td>
<td>2.11E-01</td>
<td>86</td>
<td>1.83E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.27E-01</td>
<td>53</td>
<td>1.56E-01</td>
<td>87</td>
<td>1.68E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.11E-01</td>
<td>54</td>
<td>1.85E-01</td>
<td>88</td>
<td>1.36E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.24E-01</td>
<td>55</td>
<td>1.82E-01</td>
<td>89</td>
<td>1.78E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.64E-01</td>
<td>56</td>
<td>1.51E-01</td>
<td>90</td>
<td>1.61E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.64E-01</td>
<td>57</td>
<td>1.73E-01</td>
<td>91</td>
<td>1.66E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.16E-01</td>
<td>58</td>
<td>1.69E-01</td>
<td>92</td>
<td>1.58E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.53E-01</td>
<td>59</td>
<td>1.01E-01</td>
<td>93</td>
<td>1.90E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.42E-01</td>
<td>60</td>
<td>1.79E-01</td>
<td>94</td>
<td>1.55E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.72E-01</td>
<td>61</td>
<td>1.14E-01</td>
<td>95</td>
<td>1.35E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.29E-01</td>
<td>62</td>
<td>1.20E-01</td>
<td>96</td>
<td>1.63E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.33E-01</td>
<td>63</td>
<td>1.67E-01</td>
<td>97</td>
<td>1.71E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.62E-01</td>
<td>64</td>
<td>1.18E-01</td>
<td>98</td>
<td>2.34E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.86E-01</td>
<td>65</td>
<td>1.91E-01</td>
<td>99</td>
<td>1.41E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.02E-01</td>
<td>66</td>
<td>1.89E-01</td>
<td>100</td>
<td>1.70E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.25E-01</td>
<td>67</td>
<td>1.15E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.74E-01</td>
<td>68</td>
<td>1.88E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.17 – Sampled Values for Parameter CULEBRA:DPOROS (LHS Variable 28) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1.56E-01</td>
<td>35</td>
<td>1.66E-01</td>
<td>69</td>
<td>1.17E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.80E-01</td>
<td>36</td>
<td>1.35E-01</td>
<td>70</td>
<td>1.77E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.89E-01</td>
<td>37</td>
<td>1.99E-01</td>
<td>71</td>
<td>2.36E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.53E-01</td>
<td>38</td>
<td>1.77E-01</td>
<td>72</td>
<td>1.61E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.76E-01</td>
<td>39</td>
<td>1.01E-01</td>
<td>73</td>
<td>1.43E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.48E-01</td>
<td>40</td>
<td>1.23E-01</td>
<td>74</td>
<td>1.58E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.75E-01</td>
<td>41</td>
<td>1.15E-01</td>
<td>75</td>
<td>1.39E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.73E-01</td>
<td>42</td>
<td>1.16E-01</td>
<td>76</td>
<td>1.64E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.18E-01</td>
<td>43</td>
<td>1.79E-01</td>
<td>77</td>
<td>1.14E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.22E-01</td>
<td>44</td>
<td>1.71E-01</td>
<td>78</td>
<td>1.69E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.68E-01</td>
<td>45</td>
<td>1.09E-01</td>
<td>79</td>
<td>1.83E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.78E-01</td>
<td>46</td>
<td>1.33E-01</td>
<td>80</td>
<td>1.14E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.74E-01</td>
<td>47</td>
<td>1.62E-01</td>
<td>81</td>
<td>1.25E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.29E-01</td>
<td>48</td>
<td>1.03E-01</td>
<td>82</td>
<td>1.19E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.87E-01</td>
<td>49</td>
<td>1.82E-01</td>
<td>83</td>
<td>1.62E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.14E-01</td>
<td>50</td>
<td>1.72E-01</td>
<td>84</td>
<td>1.45E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.20E-01</td>
<td>51</td>
<td>1.58E-01</td>
<td>85</td>
<td>1.10E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.04E-01</td>
<td>52</td>
<td>1.11E-01</td>
<td>86</td>
<td>1.86E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.81E-01</td>
<td>53</td>
<td>1.54E-01</td>
<td>87</td>
<td>1.41E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.02E-01</td>
<td>54</td>
<td>1.60E-01</td>
<td>88</td>
<td>1.87E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.71E-01</td>
<td>55</td>
<td>2.13E-01</td>
<td>89</td>
<td>1.12E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.00E-01</td>
<td>56</td>
<td>1.19E-01</td>
<td>90</td>
<td>1.89E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.28E-01</td>
<td>57</td>
<td>1.49E-01</td>
<td>91</td>
<td>1.80E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.82E-01</td>
<td>58</td>
<td>1.20E-01</td>
<td>92</td>
<td>1.06E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.27E-01</td>
<td>59</td>
<td>1.13E-01</td>
<td>93</td>
<td>1.42E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.51E-01</td>
<td>60</td>
<td>1.64E-01</td>
<td>94</td>
<td>2.49E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.91E-01</td>
<td>61</td>
<td>1.05E-01</td>
<td>95</td>
<td>1.84E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.24E-01</td>
<td>62</td>
<td>1.85E-01</td>
<td>96</td>
<td>2.44E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.83E-01</td>
<td>63</td>
<td>1.09E-01</td>
<td>97</td>
<td>1.90E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.31E-01</td>
<td>64</td>
<td>1.30E-01</td>
<td>98</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.06E-01</td>
<td>65</td>
<td>1.65E-01</td>
<td>99</td>
<td>1.68E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.17E-01</td>
<td>66</td>
<td>1.08E-01</td>
<td>100</td>
<td>1.66E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.85E-01</td>
<td>67</td>
<td>1.70E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.12E-01</td>
<td>68</td>
<td>1.37E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.18 – Sampled Values for Parameter U+6:MKD_U (LHS Variable 29)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>#</th>
<th>Value (m3/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.33E-03</td>
<td>35</td>
<td>2.56E-04</td>
<td>69</td>
<td>2.16E-04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.05E-05</td>
<td>36</td>
<td>3.77E-03</td>
<td>70</td>
<td>1.50E-04</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.68E-03</td>
<td>37</td>
<td>8.64E-03</td>
<td>71</td>
<td>4.00E-04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.78E-04</td>
<td>38</td>
<td>5.20E-05</td>
<td>72</td>
<td>6.18E-03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.68E-03</td>
<td>39</td>
<td>2.82E-03</td>
<td>73</td>
<td>1.16E-03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.62E-05</td>
<td>40</td>
<td>7.35E-03</td>
<td>74</td>
<td>9.83E-05</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.96E-04</td>
<td>41</td>
<td>2.32E-03</td>
<td>75</td>
<td>3.41E-04</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.52E-03</td>
<td>42</td>
<td>2.64E-04</td>
<td>76</td>
<td>1.20E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.31E-04</td>
<td>43</td>
<td>1.99E-04</td>
<td>77</td>
<td>4.51E-05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.68E-04</td>
<td>44</td>
<td>8.66E-04</td>
<td>78</td>
<td>5.61E-05</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.62E-03</td>
<td>45</td>
<td>9.95E-04</td>
<td>79</td>
<td>5.52E-04</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.98E-03</td>
<td>46</td>
<td>3.20E-05</td>
<td>80</td>
<td>1.40E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.95E-03</td>
<td>47</td>
<td>1.87E-04</td>
<td>81</td>
<td>3.11E-03</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.43E-04</td>
<td>48</td>
<td>5.19E-04</td>
<td>82</td>
<td>7.86E-04</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.60E-03</td>
<td>49</td>
<td>1.45E-02</td>
<td>83</td>
<td>6.19E-04</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.11E-04</td>
<td>50</td>
<td>6.02E-05</td>
<td>84</td>
<td>1.11E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>8.51E-03</td>
<td>51</td>
<td>1.86E-02</td>
<td>85</td>
<td>1.74E-04</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.18E-03</td>
<td>52</td>
<td>7.82E-03</td>
<td>86</td>
<td>9.18E-03</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.64E-05</td>
<td>53</td>
<td>5.79E-03</td>
<td>87</td>
<td>7.12E-05</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.34E-03</td>
<td>54</td>
<td>1.85E-03</td>
<td>88</td>
<td>1.44E-03</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.95E-05</td>
<td>55</td>
<td>3.25E-04</td>
<td>89</td>
<td>1.12E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.74E-04</td>
<td>56</td>
<td>4.28E-03</td>
<td>90</td>
<td>7.65E-05</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.09E-05</td>
<td>57</td>
<td>2.84E-04</td>
<td>91</td>
<td>5.61E-04</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.28E-03</td>
<td>58</td>
<td>7.06E-04</td>
<td>92</td>
<td>6.62E-03</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.35E-05</td>
<td>59</td>
<td>6.60E-04</td>
<td>93</td>
<td>1.62E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.05E-04</td>
<td>60</td>
<td>1.55E-02</td>
<td>94</td>
<td>3.66E-05</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.61E-04</td>
<td>61</td>
<td>3.73E-04</td>
<td>95</td>
<td>2.39E-03</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.97E-02</td>
<td>62</td>
<td>8.91E-04</td>
<td>96</td>
<td>5.41E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.04E-03</td>
<td>63</td>
<td>2.28E-04</td>
<td>97</td>
<td>1.14E-04</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.69E-02</td>
<td>64</td>
<td>1.11E-03</td>
<td>98</td>
<td>4.29E-05</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.97E-03</td>
<td>65</td>
<td>1.03E-02</td>
<td>99</td>
<td>1.79E-03</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.14E-05</td>
<td>66</td>
<td>1.29E-02</td>
<td>100</td>
<td>4.13E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>8.31E-05</td>
<td>67</td>
<td>1.34E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.51E-05</td>
<td>68</td>
<td>1.19E-04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.18 – Sampled Values for Parameter U+6:MKD_U (LHS Variable 29) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6.33E-05</td>
<td>35</td>
<td>1.32E-04</td>
<td>69</td>
<td>1.85E-03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.95E-03</td>
<td>36</td>
<td>1.51E-02</td>
<td>70</td>
<td>6.57E-03</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.60E-04</td>
<td>37</td>
<td>3.69E-03</td>
<td>71</td>
<td>3.51E-05</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.05E-05</td>
<td>38</td>
<td>1.86E-02</td>
<td>72</td>
<td>2.79E-04</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.69E-04</td>
<td>39</td>
<td>3.78E-04</td>
<td>73</td>
<td>1.22E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.24E-03</td>
<td>40</td>
<td>3.31E-04</td>
<td>74</td>
<td>4.62E-05</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.39E-04</td>
<td>41</td>
<td>3.64E-03</td>
<td>75</td>
<td>1.00E-04</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.71E-04</td>
<td>42</td>
<td>2.21E-03</td>
<td>76</td>
<td>1.40E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8.75E-03</td>
<td>43</td>
<td>1.69E-03</td>
<td>77</td>
<td>3.11E-05</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.80E-03</td>
<td>44</td>
<td>2.11E-03</td>
<td>78</td>
<td>4.15E-04</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.82E-04</td>
<td>45</td>
<td>4.22E-03</td>
<td>79</td>
<td>5.38E-03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.51E-04</td>
<td>46</td>
<td>5.05E-03</td>
<td>80</td>
<td>4.94E-05</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.57E-03</td>
<td>47</td>
<td>1.11E-03</td>
<td>81</td>
<td>1.99E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.85E-04</td>
<td>48</td>
<td>3.34E-05</td>
<td>82</td>
<td>8.62E-05</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.27E-03</td>
<td>49</td>
<td>1.38E-04</td>
<td>83</td>
<td>7.31E-04</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.79E-03</td>
<td>50</td>
<td>4.78E-04</td>
<td>84</td>
<td>9.48E-04</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.62E-04</td>
<td>51</td>
<td>2.19E-04</td>
<td>85</td>
<td>3.07E-03</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.54E-04</td>
<td>52</td>
<td>6.29E-04</td>
<td>86</td>
<td>7.23E-05</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.07E-05</td>
<td>53</td>
<td>5.05E-04</td>
<td>87</td>
<td>5.77E-03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.69E-04</td>
<td>54</td>
<td>2.43E-03</td>
<td>88</td>
<td>1.23E-04</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.87E-04</td>
<td>55</td>
<td>9.36E-04</td>
<td>89</td>
<td>7.93E-05</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>9.54E-05</td>
<td>56</td>
<td>2.08E-04</td>
<td>90</td>
<td>3.09E-04</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.05E-04</td>
<td>57</td>
<td>3.76E-05</td>
<td>91</td>
<td>5.27E-04</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.32E-02</td>
<td>58</td>
<td>1.12E-02</td>
<td>92</td>
<td>4.03E-04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.33E-03</td>
<td>59</td>
<td>9.71E-03</td>
<td>93</td>
<td>1.56E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.17E-03</td>
<td>60</td>
<td>5.88E-05</td>
<td>94</td>
<td>2.81E-03</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.26E-04</td>
<td>61</td>
<td>4.17E-03</td>
<td>95</td>
<td>5.97E-04</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>7.87E-04</td>
<td>62</td>
<td>4.19E-05</td>
<td>96</td>
<td>7.62E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.75E-02</td>
<td>63</td>
<td>1.41E-03</td>
<td>97</td>
<td>1.26E-03</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.49E-03</td>
<td>64</td>
<td>6.19E-03</td>
<td>98</td>
<td>8.31E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.06E-02</td>
<td>65</td>
<td>8.39E-05</td>
<td>99</td>
<td>1.50E-04</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.58E-05</td>
<td>66</td>
<td>1.99E-03</td>
<td>100</td>
<td>1.16E-04</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.60E-05</td>
<td>67</td>
<td>4.60E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.03E-03</td>
<td>68</td>
<td>2.96E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (m3/kg)</td>
<td>#</td>
<td>Value (m3/kg)</td>
<td>#</td>
<td>Value (m3/kg)</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------------</td>
<td>----</td>
<td>-----------------</td>
<td>----</td>
<td>-----------------</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>7.67E-04</td>
<td>35</td>
<td>9.67E-05</td>
<td>69</td>
<td>2.65E-04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.05E-04</td>
<td>36</td>
<td>6.48E-05</td>
<td>70</td>
<td>8.80E-04</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.46E-05</td>
<td>37</td>
<td>4.77E-04</td>
<td>71</td>
<td>2.13E-04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.22E-05</td>
<td>38</td>
<td>2.25E-03</td>
<td>72</td>
<td>6.09E-05</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.75E-05</td>
<td>39</td>
<td>3.72E-05</td>
<td>73</td>
<td>3.78E-03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.94E-03</td>
<td>40</td>
<td>1.81E-02</td>
<td>74</td>
<td>1.39E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7.37E-05</td>
<td>41</td>
<td>5.82E-03</td>
<td>75</td>
<td>2.05E-03</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.17E-05</td>
<td>42</td>
<td>1.16E-04</td>
<td>76</td>
<td>2.36E-03</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.45E-03</td>
<td>43</td>
<td>5.34E-04</td>
<td>77</td>
<td>1.19E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.99E-03</td>
<td>44</td>
<td>1.30E-02</td>
<td>78</td>
<td>3.43E-04</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.29E-04</td>
<td>45</td>
<td>1.46E-04</td>
<td>79</td>
<td>1.78E-03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8.22E-03</td>
<td>46</td>
<td>2.04E-04</td>
<td>80</td>
<td>1.52E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.60E-02</td>
<td>47</td>
<td>2.29E-04</td>
<td>81</td>
<td>4.11E-05</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.79E-05</td>
<td>48</td>
<td>9.33E-04</td>
<td>82</td>
<td>3.85E-04</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.80E-04</td>
<td>49</td>
<td>3.66E-04</td>
<td>83</td>
<td>6.65E-04</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.12E-03</td>
<td>50</td>
<td>1.39E-03</td>
<td>84</td>
<td>1.36E-04</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.18E-04</td>
<td>51</td>
<td>6.78E-05</td>
<td>85</td>
<td>2.75E-03</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.16E-03</td>
<td>52</td>
<td>3.47E-05</td>
<td>86</td>
<td>1.62E-04</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.97E-04</td>
<td>53</td>
<td>2.62E-03</td>
<td>87</td>
<td>7.77E-04</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.89E-04</td>
<td>54</td>
<td>1.17E-02</td>
<td>88</td>
<td>4.53E-05</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.97E-03</td>
<td>55</td>
<td>1.27E-03</td>
<td>89</td>
<td>4.81E-03</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.72E-04</td>
<td>56</td>
<td>3.38E-03</td>
<td>90</td>
<td>4.78E-03</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.28E-04</td>
<td>57</td>
<td>4.20E-04</td>
<td>91</td>
<td>3.54E-03</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.86E-03</td>
<td>58</td>
<td>2.86E-04</td>
<td>92</td>
<td>7.49E-03</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.00E-03</td>
<td>59</td>
<td>5.22E-04</td>
<td>93</td>
<td>5.24E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.40E-05</td>
<td>60</td>
<td>1.72E-04</td>
<td>94</td>
<td>2.41E-04</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.13E-04</td>
<td>61</td>
<td>4.39E-04</td>
<td>95</td>
<td>1.75E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.10E-02</td>
<td>62</td>
<td>1.88E-02</td>
<td>96</td>
<td>3.06E-05</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.51E-05</td>
<td>63</td>
<td>1.27E-04</td>
<td>97</td>
<td>2.15E-03</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.65E-03</td>
<td>64</td>
<td>2.86E-03</td>
<td>98</td>
<td>1.21E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.54E-03</td>
<td>65</td>
<td>4.40E-03</td>
<td>99</td>
<td>8.75E-03</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.51E-03</td>
<td>66</td>
<td>4.90E-05</td>
<td>100</td>
<td>9.68E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.74E-03</td>
<td>67</td>
<td>1.03E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.60E-04</td>
<td>68</td>
<td>8.29E-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.19 – Sampled Values for Parameter U+4:MKD_U (LHS Variable 30)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.09E-01</td>
<td>35</td>
<td>9.31E-01</td>
<td>69</td>
<td>1.77E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.35E+01</td>
<td>36</td>
<td>2.98E-02</td>
<td>70</td>
<td>6.44E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.87E-03</td>
<td>37</td>
<td>2.19E-02</td>
<td>71</td>
<td>2.01E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.19E-01</td>
<td>38</td>
<td>1.52E-03</td>
<td>72</td>
<td>3.19E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.20E+00</td>
<td>39</td>
<td>4.79E-01</td>
<td>73</td>
<td>1.23E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.92E-03</td>
<td>40</td>
<td>1.23E-01</td>
<td>74</td>
<td>8.70E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.44E-04</td>
<td>41</td>
<td>2.70E-02</td>
<td>75</td>
<td>1.89E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.43E+00</td>
<td>42</td>
<td>4.24E-03</td>
<td>76</td>
<td>6.28E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.61E-01</td>
<td>43</td>
<td>1.79E-03</td>
<td>77</td>
<td>5.65E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.47E+00</td>
<td>44</td>
<td>8.53E-04</td>
<td>78</td>
<td>1.17E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.07E-03</td>
<td>45</td>
<td>1.38E-02</td>
<td>79</td>
<td>7.64E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.73E-02</td>
<td>46</td>
<td>2.07E-02</td>
<td>80</td>
<td>5.74E-04</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.86E-04</td>
<td>47</td>
<td>6.59E-02</td>
<td>81</td>
<td>1.86E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.50E+00</td>
<td>48</td>
<td>8.28E+00</td>
<td>82</td>
<td>2.48E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.95E-00</td>
<td>49</td>
<td>3.43E-01</td>
<td>83</td>
<td>4.92E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.64E-04</td>
<td>50</td>
<td>2.85E-03</td>
<td>84</td>
<td>1.07E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.53E-02</td>
<td>51</td>
<td>3.05E+00</td>
<td>85</td>
<td>6.16E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.14E-02</td>
<td>52</td>
<td>3.93E-02</td>
<td>86</td>
<td>3.56E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.49E-02</td>
<td>53</td>
<td>2.60E-03</td>
<td>87</td>
<td>5.48E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.32E-03</td>
<td>54</td>
<td>1.03E-01</td>
<td>88</td>
<td>4.97E-03</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.74E+00</td>
<td>55</td>
<td>1.54E+00</td>
<td>89</td>
<td>1.65E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.49E-03</td>
<td>56</td>
<td>6.20E-01</td>
<td>90</td>
<td>8.28E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.24E-02</td>
<td>57</td>
<td>3.99E-03</td>
<td>91</td>
<td>1.95E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.33E-01</td>
<td>58</td>
<td>9.42E+00</td>
<td>92</td>
<td>1.03E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.43E-03</td>
<td>59</td>
<td>3.83E-01</td>
<td>93</td>
<td>4.31E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.13E-03</td>
<td>60</td>
<td>9.14E-03</td>
<td>94</td>
<td>5.68E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.43E-02</td>
<td>61</td>
<td>1.27E+00</td>
<td>95</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.20E-01</td>
<td>62</td>
<td>4.61E+00</td>
<td>96</td>
<td>2.73E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.05E-03</td>
<td>63</td>
<td>9.16E-01</td>
<td>97</td>
<td>3.51E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.72E+00</td>
<td>64</td>
<td>5.43E-03</td>
<td>98</td>
<td>6.36E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.10E+00</td>
<td>65</td>
<td>5.45E-04</td>
<td>99</td>
<td>9.69E-04</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.84E-03</td>
<td>66</td>
<td>2.72E+00</td>
<td>100</td>
<td>1.10E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>8.06E-03</td>
<td>67</td>
<td>7.62E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.21E-01</td>
<td>68</td>
<td>2.23E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.19 – Sampled Values for Parameter U+4:MKD_U (LHS Variable 30) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>Vector</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>Vector</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.42E-01</td>
<td>35</td>
<td>1.96E-03</td>
<td>69</td>
<td>1.26E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.96E-02</td>
<td>36</td>
<td>7.23E-02</td>
<td>70</td>
<td>3.43E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.99E-02</td>
<td>37</td>
<td>8.98E-03</td>
<td>71</td>
<td>4.78E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.07E-03</td>
<td>38</td>
<td>1.56E-02</td>
<td>72</td>
<td>1.40E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.75E+00</td>
<td>39</td>
<td>1.30E-03</td>
<td>73</td>
<td>8.56E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.10E+03</td>
<td>40</td>
<td>4.74E-02</td>
<td>74</td>
<td>1.01E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.90E-03</td>
<td>41</td>
<td>4.96E-03</td>
<td>75</td>
<td>1.14E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.07E-04</td>
<td>42</td>
<td>4.33E-01</td>
<td>76</td>
<td>1.20E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.12E+00</td>
<td>43</td>
<td>3.54E-03</td>
<td>77</td>
<td>8.18E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.84E-02</td>
<td>44</td>
<td>6.24E+00</td>
<td>78</td>
<td>5.80E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.26E-02</td>
<td>45</td>
<td>3.20E-01</td>
<td>79</td>
<td>1.26E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.01E+00</td>
<td>46</td>
<td>8.30E-03</td>
<td>80</td>
<td>1.77E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9.74E+00</td>
<td>47</td>
<td>9.05E-04</td>
<td>81</td>
<td>7.93E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.88E-01</td>
<td>48</td>
<td>6.53E-04</td>
<td>82</td>
<td>2.72E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.91E-03</td>
<td>49</td>
<td>2.00E-01</td>
<td>83</td>
<td>2.03E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.28E+00</td>
<td>50</td>
<td>3.86E-02</td>
<td>84</td>
<td>2.69E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.68E-03</td>
<td>51</td>
<td>3.05E-03</td>
<td>85</td>
<td>9.85E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.67E-03</td>
<td>52</td>
<td>1.62E-01</td>
<td>86</td>
<td>2.65E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.63E+00</td>
<td>53</td>
<td>2.37E-01</td>
<td>87</td>
<td>5.50E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.26E-03</td>
<td>54</td>
<td>1.63E-02</td>
<td>88</td>
<td>1.01E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.70E-02</td>
<td>55</td>
<td>3.74E-01</td>
<td>89</td>
<td>2.97E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.98E-01</td>
<td>56</td>
<td>5.95E+00</td>
<td>90</td>
<td>2.21E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.14E-02</td>
<td>57</td>
<td>1.10E-02</td>
<td>91</td>
<td>9.47E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8.77E+00</td>
<td>58</td>
<td>3.49E-02</td>
<td>92</td>
<td>3.16E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.90E-02</td>
<td>59</td>
<td>6.21E-01</td>
<td>93</td>
<td>2.14E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.41E-02</td>
<td>60</td>
<td>7.55E-03</td>
<td>94</td>
<td>7.10E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.54E-01</td>
<td>61</td>
<td>4.75E-03</td>
<td>95</td>
<td>3.72E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.55E+00</td>
<td>62</td>
<td>7.11E-01</td>
<td>96</td>
<td>1.14E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.63E-03</td>
<td>63</td>
<td>9.18E-01</td>
<td>97</td>
<td>4.33E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.30E-01</td>
<td>64</td>
<td>2.83E+00</td>
<td>98</td>
<td>1.20E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.94E+00</td>
<td>65</td>
<td>5.07E+00</td>
<td>99</td>
<td>4.97E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.49E+00</td>
<td>66</td>
<td>1.47E-03</td>
<td>100</td>
<td>5.72E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.03E+00</td>
<td>67</td>
<td>5.20E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.48E+00</td>
<td>68</td>
<td>7.67E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td></td>
<td>#</td>
<td>Value (m³/kg)</td>
<td></td>
<td>#</td>
<td>Value (m³/kg)</td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>2.36E-03</td>
<td>35</td>
<td>1.83E+00</td>
<td>69</td>
<td>7.44E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.96E+00</td>
<td>36</td>
<td>3.36E+00</td>
<td>70</td>
<td>5.01E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>7.22E-02</td>
<td>37</td>
<td>6.18E+00</td>
<td>71</td>
<td>2.29E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.36E-03</td>
<td>38</td>
<td>8.23E-02</td>
<td>72</td>
<td>1.28E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2.71E+00</td>
<td>39</td>
<td>5.65E-02</td>
<td>73</td>
<td>3.95E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>7.37E+00</td>
<td>40</td>
<td>4.65E+00</td>
<td>74</td>
<td>1.67E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.90E-01</td>
<td>41</td>
<td>2.83E-03</td>
<td>75</td>
<td>9.05E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4.91E-02</td>
<td>42</td>
<td>8.82E+00</td>
<td>76</td>
<td>4.47E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>2.07E+00</td>
<td>43</td>
<td>1.74E-03</td>
<td>77</td>
<td>1.38E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>8.87E-02</td>
<td>44</td>
<td>5.07E-04</td>
<td>78</td>
<td>3.15E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>8.03E-00</td>
<td>45</td>
<td>9.78E-04</td>
<td>79</td>
<td>7.30E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>6.37E-01</td>
<td>46</td>
<td>2.29E-02</td>
<td>80</td>
<td>6.05E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1.24E-03</td>
<td>47</td>
<td>4.63E-02</td>
<td>81</td>
<td>1.90E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>3.42E+00</td>
<td>48</td>
<td>3.88E+00</td>
<td>82</td>
<td>2.76E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.01E+00</td>
<td>49</td>
<td>5.86E-03</td>
<td>83</td>
<td>1.64E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.96E-03</td>
<td>50</td>
<td>1.04E-03</td>
<td>84</td>
<td>9.83E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.45E-03</td>
<td>51</td>
<td>6.20E-04</td>
<td>85</td>
<td>3.64E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>3.79E-02</td>
<td>52</td>
<td>8.59E-03</td>
<td>86</td>
<td>1.61E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1.52E-02</td>
<td>53</td>
<td>2.50E-03</td>
<td>87</td>
<td>1.42E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.27E-02</td>
<td>54</td>
<td>3.50E-02</td>
<td>88</td>
<td>3.38E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>5.57E-04</td>
<td>55</td>
<td>1.17E-03</td>
<td>89</td>
<td>2.48E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>3.97E-02</td>
<td>56</td>
<td>2.66E-01</td>
<td>90</td>
<td>7.09E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>9.88E+00</td>
<td>57</td>
<td>1.95E-01</td>
<td>91</td>
<td>2.59E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>7.66E-04</td>
<td>58</td>
<td>6.95E-03</td>
<td>92</td>
<td>4.56E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>3.27E-03</td>
<td>59</td>
<td>1.15E-02</td>
<td>93</td>
<td>4.43E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>7.64E-01</td>
<td>60</td>
<td>5.33E-01</td>
<td>94</td>
<td>4.89E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>2.03E-03</td>
<td>61</td>
<td>9.88E-03</td>
<td>95</td>
<td>6.99E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>2.22E-01</td>
<td>62</td>
<td>5.93E-02</td>
<td>96</td>
<td>3.95E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>1.10E-01</td>
<td>63</td>
<td>2.08E-02</td>
<td>97</td>
<td>5.07E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>9.66E-03</td>
<td>64</td>
<td>1.09E+00</td>
<td>98</td>
<td>3.47E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>6.42E-03</td>
<td>65</td>
<td>1.63E+00</td>
<td>99</td>
<td>5.72E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>1.34E-02</td>
<td>66</td>
<td>3.06E-01</td>
<td>100</td>
<td>1.16E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>1.37E+00</td>
<td>67</td>
<td>1.39E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>2.68E-02</td>
<td>68</td>
<td>8.28E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.20 – Sampled Values for Parameter PU+3:MKD_PU (LHS Variable 31)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>Vector</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>Vector</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.24E-02</td>
<td>35</td>
<td>3.04E-02</td>
<td>69</td>
<td>5.13E-02</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.52E-01</td>
<td>36</td>
<td>2.43E-01</td>
<td>70</td>
<td>4.92E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.52E-02</td>
<td>37</td>
<td>2.29E-01</td>
<td>71</td>
<td>2.10E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.79E-02</td>
<td>38</td>
<td>1.87E-01</td>
<td>72</td>
<td>1.28E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.58E-02</td>
<td>39</td>
<td>1.25E-02</td>
<td>73</td>
<td>1.45E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.01E-02</td>
<td>40</td>
<td>1.25E-01</td>
<td>74</td>
<td>2.78E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.35E-03</td>
<td>41</td>
<td>1.84E-02</td>
<td>75</td>
<td>1.40E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.37E-02</td>
<td>42</td>
<td>6.36E-03</td>
<td>76</td>
<td>9.89E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.66E-02</td>
<td>43</td>
<td>1.22E-01</td>
<td>77</td>
<td>6.97E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.66E-01</td>
<td>44</td>
<td>1.51E-02</td>
<td>78</td>
<td>2.56E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.51E-01</td>
<td>45</td>
<td>3.69E-02</td>
<td>79</td>
<td>2.98E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.41E-03</td>
<td>46</td>
<td>3.79E-01</td>
<td>80</td>
<td>1.94E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.81E-01</td>
<td>47</td>
<td>1.34E-02</td>
<td>81</td>
<td>1.88E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.22E-01</td>
<td>48</td>
<td>8.44E-03</td>
<td>82</td>
<td>8.01E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.72E-01</td>
<td>49</td>
<td>1.18E-02</td>
<td>83</td>
<td>2.20E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.10E-01</td>
<td>50</td>
<td>8.85E-02</td>
<td>84</td>
<td>3.44E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.57E-02</td>
<td>51</td>
<td>7.77E-03</td>
<td>85</td>
<td>3.48E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7.70E-03</td>
<td>52</td>
<td>3.37E-02</td>
<td>86</td>
<td>6.03E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.57E-02</td>
<td>53</td>
<td>3.79E-02</td>
<td>87</td>
<td>1.46E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.03E-02</td>
<td>54</td>
<td>5.02E-03</td>
<td>88</td>
<td>2.24E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.50E-02</td>
<td>55</td>
<td>6.82E-03</td>
<td>89</td>
<td>8.55E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>9.42E-02</td>
<td>56</td>
<td>1.68E-02</td>
<td>90</td>
<td>9.96E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.49E-03</td>
<td>57</td>
<td>1.76E-01</td>
<td>91</td>
<td>1.34E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.02E-02</td>
<td>58</td>
<td>3.96E-01</td>
<td>92</td>
<td>2.89E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.07E-02</td>
<td>59</td>
<td>4.30E-02</td>
<td>93</td>
<td>3.26E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.18E-02</td>
<td>60</td>
<td>2.21E-02</td>
<td>94</td>
<td>9.10E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.06E-02</td>
<td>61</td>
<td>8.40E-02</td>
<td>95</td>
<td>3.59E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.79E-03</td>
<td>62</td>
<td>1.75E-02</td>
<td>96</td>
<td>4.51E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.06E-01</td>
<td>63</td>
<td>6.87E-02</td>
<td>97</td>
<td>2.55E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.32E-01</td>
<td>64</td>
<td>2.33E-02</td>
<td>98</td>
<td>5.53E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.96E-02</td>
<td>65</td>
<td>3.18E-01</td>
<td>99</td>
<td>1.14E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.64E-01</td>
<td>66</td>
<td>1.15E-01</td>
<td>100</td>
<td>6.09E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.04E-01</td>
<td>67</td>
<td>6.57E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.00E-02</td>
<td>68</td>
<td>5.28E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.20 – Sampled Values for Parameter PU+3:MKD_PU (LHS Variable 31) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>8.09E-03</td>
<td>35</td>
<td>1.07E-01</td>
<td>69</td>
<td>5.58E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.58E-01</td>
<td>36</td>
<td>2.12E-01</td>
<td>70</td>
<td>1.54E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.43E-02</td>
<td>37</td>
<td>4.48E-02</td>
<td>71</td>
<td>1.81E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.07E-02</td>
<td>38</td>
<td>1.16E-02</td>
<td>72</td>
<td>2.42E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.26E-02</td>
<td>39</td>
<td>3.00E-02</td>
<td>73</td>
<td>5.00E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3.69E-01</td>
<td>40</td>
<td>3.95E-01</td>
<td>74</td>
<td>2.19E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>7.90E-02</td>
<td>41</td>
<td>1.01E-02</td>
<td>75</td>
<td>8.67E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3.38E-01</td>
<td>42</td>
<td>1.10E-01</td>
<td>76</td>
<td>5.91E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>2.24E-02</td>
<td>43</td>
<td>1.21E-02</td>
<td>77</td>
<td>3.16E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>6.63E-03</td>
<td>44</td>
<td>1.73E-01</td>
<td>78</td>
<td>7.15E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>6.69E-02</td>
<td>45</td>
<td>4.43E-02</td>
<td>79</td>
<td>6.16E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>8.16E-02</td>
<td>46</td>
<td>1.86E-01</td>
<td>80</td>
<td>3.35E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>2.04E-02</td>
<td>47</td>
<td>1.90E-02</td>
<td>81</td>
<td>7.41E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>9.20E-02</td>
<td>48</td>
<td>1.42E-01</td>
<td>82</td>
<td>2.65E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.83E-02</td>
<td>49</td>
<td>1.28E-01</td>
<td>83</td>
<td>1.01E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.58E-02</td>
<td>50</td>
<td>3.03E-01</td>
<td>84</td>
<td>2.82E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.14E-01</td>
<td>51</td>
<td>2.24E-01</td>
<td>85</td>
<td>1.64E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>3.98E-02</td>
<td>52</td>
<td>1.10E-02</td>
<td>86</td>
<td>1.12E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>5.59E-02</td>
<td>53</td>
<td>1.26E-01</td>
<td>87</td>
<td>2.64E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.69E-02</td>
<td>54</td>
<td>1.52E-01</td>
<td>88</td>
<td>1.50E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>5.24E-02</td>
<td>55</td>
<td>2.41E-02</td>
<td>89</td>
<td>2.65E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.18E-01</td>
<td>56</td>
<td>8.57E-02</td>
<td>90</td>
<td>8.11E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>2.01E-01</td>
<td>57</td>
<td>8.74E-03</td>
<td>91</td>
<td>9.52E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2.80E-01</td>
<td>58</td>
<td>5.56E-02</td>
<td>92</td>
<td>3.53E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>7.05E-03</td>
<td>59</td>
<td>3.70E-02</td>
<td>93</td>
<td>5.06E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>4.85E-02</td>
<td>60</td>
<td>2.00E-02</td>
<td>94</td>
<td>3.83E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>2.36E-01</td>
<td>61</td>
<td>1.45E-02</td>
<td>95</td>
<td>6.43E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>1.77E-02</td>
<td>62</td>
<td>3.15E-01</td>
<td>96</td>
<td>6.51E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>3.33E-01</td>
<td>63</td>
<td>2.52E-01</td>
<td>97</td>
<td>4.15E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>5.78E-03</td>
<td>64</td>
<td>1.91E-01</td>
<td>98</td>
<td>2.48E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>2.80E-02</td>
<td>65</td>
<td>1.34E-01</td>
<td>99</td>
<td>6.13E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>5.35E-03</td>
<td>66</td>
<td>9.60E-03</td>
<td>100</td>
<td>1.05E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>1.35E-02</td>
<td>67</td>
<td>9.02E-03</td>
<td></td>
<td>Information Only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>7.72E-03</td>
<td>68</td>
<td>7.19E-03</td>
<td></td>
<td>Information Only</td>
</tr>
</tbody>
</table>
Table A.20 – Sampled Values for Parameter PU+3:MKD_PU (LHS Variable 31) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>7.06E-02</td>
<td>35</td>
<td>1.73E-02</td>
<td>69</td>
<td>1.25E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.88E-02</td>
<td>36</td>
<td>1.05E-02</td>
<td>70</td>
<td>2.96E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.26E-01</td>
<td>37</td>
<td>7.42E-02</td>
<td>71</td>
<td>4.87E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.24E-02</td>
<td>38</td>
<td>5.02E-02</td>
<td>72</td>
<td>2.60E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.45E-01</td>
<td>39</td>
<td>5.48E-03</td>
<td>73</td>
<td>7.40E-03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.04E-02</td>
<td>40</td>
<td>8.78E-02</td>
<td>74</td>
<td>4.13E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.50E-02</td>
<td>41</td>
<td>1.35E-01</td>
<td>75</td>
<td>1.72E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.91E-02</td>
<td>42</td>
<td>5.40E-02</td>
<td>76</td>
<td>3.43E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.38E-02</td>
<td>43</td>
<td>1.31E-02</td>
<td>77</td>
<td>1.67E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.10E-01</td>
<td>44</td>
<td>2.42E-02</td>
<td>78</td>
<td>4.39E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.62E-01</td>
<td>45</td>
<td>5.83E-02</td>
<td>79</td>
<td>3.34E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9.40E-02</td>
<td>46</td>
<td>2.81E-02</td>
<td>80</td>
<td>1.08E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.46E-01</td>
<td>47</td>
<td>9.74E-03</td>
<td>81</td>
<td>1.87E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.72E-02</td>
<td>48</td>
<td>2.75E-01</td>
<td>82</td>
<td>1.15E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.35E-03</td>
<td>49</td>
<td>2.20E-01</td>
<td>83</td>
<td>1.39E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8.73E-03</td>
<td>50</td>
<td>3.11E-02</td>
<td>84</td>
<td>1.19E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.00E-01</td>
<td>51</td>
<td>6.75E-03</td>
<td>85</td>
<td>6.84E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.12E-02</td>
<td>52</td>
<td>5.66E-02</td>
<td>86</td>
<td>3.15E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.19E-02</td>
<td>53</td>
<td>6.54E-02</td>
<td>87</td>
<td>2.03E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.79E-02</td>
<td>54</td>
<td>6.95E-03</td>
<td>88</td>
<td>6.16E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.33E-02</td>
<td>55</td>
<td>7.87E-02</td>
<td>89</td>
<td>2.00E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.59E-02</td>
<td>56</td>
<td>6.34E-03</td>
<td>90</td>
<td>1.31E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.13E-02</td>
<td>57</td>
<td>1.60E-02</td>
<td>91</td>
<td>1.74E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>9.08E-03</td>
<td>58</td>
<td>6.12E-03</td>
<td>92</td>
<td>9.96E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.06E-02</td>
<td>59</td>
<td>3.80E-01</td>
<td>93</td>
<td>2.84E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.08E-03</td>
<td>60</td>
<td>1.28E-02</td>
<td>94</td>
<td>2.28E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.58E-01</td>
<td>61</td>
<td>8.35E-02</td>
<td>95</td>
<td>2.69E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.64E-02</td>
<td>62</td>
<td>5.74E-03</td>
<td>96</td>
<td>1.54E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>3.91E-02</td>
<td>63</td>
<td>3.59E-01</td>
<td>97</td>
<td>2.24E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.02E-01</td>
<td>64</td>
<td>5.04E-03</td>
<td>98</td>
<td>5.26E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.93E-01</td>
<td>65</td>
<td>1.05E-01</td>
<td>99</td>
<td>2.54E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.60E-03</td>
<td>66</td>
<td>4.48E-02</td>
<td>100</td>
<td>8.35E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.08E-02</td>
<td>67</td>
<td>1.43E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.35E-03</td>
<td>68</td>
<td>1.48E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.21 – Sampled Values for Parameter PU+4:MKD_PU (LHS Variable 32)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>#</th>
<th>Value (m3/kg)</th>
<th>#</th>
<th>Value (m3/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.50E-03</td>
<td>35</td>
<td>8.25E-03</td>
<td>69</td>
<td>4.56E-03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.40E-03</td>
<td>36</td>
<td>1.51E+00</td>
<td>70</td>
<td>4.54E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.27E+00</td>
<td>37</td>
<td>2.36E-01</td>
<td>71</td>
<td>1.40E-03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.98E-03</td>
<td>38</td>
<td>1.90E-02</td>
<td>72</td>
<td>2.23E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.89E-03</td>
<td>39</td>
<td>3.61E-02</td>
<td>73</td>
<td>6.84E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.79E-01</td>
<td>40</td>
<td>2.15E+00</td>
<td>74</td>
<td>2.58E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.54E-02</td>
<td>41</td>
<td>1.57E-02</td>
<td>75</td>
<td>5.14E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.51E-01</td>
<td>42</td>
<td>3.88E-03</td>
<td>76</td>
<td>4.77E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.22E-01</td>
<td>43</td>
<td>1.36E+00</td>
<td>77</td>
<td>1.71E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.05E+00</td>
<td>44</td>
<td>2.11E-03</td>
<td>78</td>
<td>8.17E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7.58E-02</td>
<td>45</td>
<td>6.19E-04</td>
<td>79</td>
<td>1.05E-03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.50E-01</td>
<td>46</td>
<td>2.06E-02</td>
<td>80</td>
<td>1.06E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.18E+00</td>
<td>47</td>
<td>1.15E-01</td>
<td>81</td>
<td>2.99E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.96E-01</td>
<td>48</td>
<td>3.11E-03</td>
<td>82</td>
<td>5.59E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.09E-04</td>
<td>49</td>
<td>9.73E-01</td>
<td>83</td>
<td>6.17E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9.06E-02</td>
<td>50</td>
<td>2.49E-02</td>
<td>84</td>
<td>5.72E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.44E-03</td>
<td>51</td>
<td>3.27E-01</td>
<td>85</td>
<td>8.86E+00</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.76E+00</td>
<td>52</td>
<td>1.19E+00</td>
<td>86</td>
<td>5.00E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>9.39E-04</td>
<td>53</td>
<td>4.77E-02</td>
<td>87</td>
<td>1.60E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.82E-02</td>
<td>54</td>
<td>1.24E-02</td>
<td>88</td>
<td>4.20E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8.36E-02</td>
<td>55</td>
<td>7.51E+00</td>
<td>89</td>
<td>3.61E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.12E+00</td>
<td>56</td>
<td>1.12E+00</td>
<td>90</td>
<td>5.90E-04</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.78E-01</td>
<td>57</td>
<td>3.91E-01</td>
<td>91</td>
<td>4.38E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.02E+00</td>
<td>58</td>
<td>1.27E-01</td>
<td>92</td>
<td>3.22E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.80E-01</td>
<td>59</td>
<td>8.79E-04</td>
<td>93</td>
<td>2.24E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.72E-02</td>
<td>60</td>
<td>5.17E-03</td>
<td>94</td>
<td>1.89E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.71E-01</td>
<td>61</td>
<td>3.91E+00</td>
<td>95</td>
<td>4.32E-03</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>9.65E-03</td>
<td>62</td>
<td>1.14E-02</td>
<td>96</td>
<td>2.67E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.86E-01</td>
<td>63</td>
<td>1.52E-01</td>
<td>97</td>
<td>1.44E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.13E-03</td>
<td>64</td>
<td>1.34E-03</td>
<td>98</td>
<td>1.79E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.87E+00</td>
<td>65</td>
<td>1.62E-03</td>
<td>99</td>
<td>9.64E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9.69E+00</td>
<td>66</td>
<td>7.53E-01</td>
<td>100</td>
<td>7.64E-04</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.19E-04</td>
<td>67</td>
<td>7.05E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.31E-01</td>
<td>68</td>
<td>2.87E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.21 – Sampled Values for Parameter PU+4:MKD_PU (LHS Variable 32) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.81E+00</td>
<td>35</td>
<td>2.66E+00</td>
<td>69</td>
<td>3.17E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.20E+03</td>
<td>36</td>
<td>8.21E-04</td>
<td>70</td>
<td>8.85E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.34E-01</td>
<td>37</td>
<td>8.21E-02</td>
<td>71</td>
<td>1.03E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.68E-02</td>
<td>38</td>
<td>1.13E-02</td>
<td>72</td>
<td>3.64E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.71E-01</td>
<td>39</td>
<td>2.05E-01</td>
<td>73</td>
<td>1.29E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.23E+00</td>
<td>40</td>
<td>2.77E-01</td>
<td>74</td>
<td>1.65E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.82E-02</td>
<td>41</td>
<td>8.82E-03</td>
<td>75</td>
<td>1.65E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.61E-01</td>
<td>42</td>
<td>7.00E-01</td>
<td>76</td>
<td>7.12E-04</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.91E-02</td>
<td>43</td>
<td>5.57E-04</td>
<td>77</td>
<td>2.73E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.37E-03</td>
<td>44</td>
<td>5.14E+00</td>
<td>78</td>
<td>1.52E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.68E-02</td>
<td>45</td>
<td>1.48E-02</td>
<td>79</td>
<td>4.67E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.51E+00</td>
<td>46</td>
<td>2.97E-02</td>
<td>80</td>
<td>3.89E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.28E-03</td>
<td>47</td>
<td>6.38E-01</td>
<td>81</td>
<td>3.35E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.19E-03</td>
<td>48</td>
<td>4.01E-03</td>
<td>82</td>
<td>3.93E-03</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.55E-00</td>
<td>49</td>
<td>1.17E-01</td>
<td>83</td>
<td>4.56E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.21E-02</td>
<td>50</td>
<td>1.02E-03</td>
<td>84</td>
<td>2.71E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.45E-03</td>
<td>51</td>
<td>6.24E-04</td>
<td>85</td>
<td>3.89E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.89E+00</td>
<td>52</td>
<td>1.43E-02</td>
<td>86</td>
<td>9.28E-04</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.37E+00</td>
<td>53</td>
<td>1.66E+00</td>
<td>87</td>
<td>4.73E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.98E+00</td>
<td>54</td>
<td>1.27E-03</td>
<td>88</td>
<td>4.84E-03</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.23E-01</td>
<td>55</td>
<td>7.77E-03</td>
<td>89</td>
<td>5.21E-04</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.10E-02</td>
<td>56</td>
<td>1.83E-03</td>
<td>90</td>
<td>5.89E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.06E+00</td>
<td>57</td>
<td>5.04E-02</td>
<td>91</td>
<td>5.72E-03</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.93E-01</td>
<td>58</td>
<td>1.14E-01</td>
<td>92</td>
<td>2.56E-03</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.82E-02</td>
<td>59</td>
<td>1.03E-02</td>
<td>93</td>
<td>2.04E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.76E-04</td>
<td>60</td>
<td>2.23E-03</td>
<td>94</td>
<td>2.20E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.94E-02</td>
<td>61</td>
<td>8.90E-03</td>
<td>95</td>
<td>2.51E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>7.50E-02</td>
<td>62</td>
<td>2.50E+00</td>
<td>96</td>
<td>4.13E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.21E+00</td>
<td>63</td>
<td>5.16E-01</td>
<td>97</td>
<td>9.28E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.78E+00</td>
<td>64</td>
<td>1.52E-03</td>
<td>98</td>
<td>3.67E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.19E-01</td>
<td>65</td>
<td>1.13E+00</td>
<td>99</td>
<td>1.80E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.11E-02</td>
<td>66</td>
<td>8.91E+00</td>
<td>100</td>
<td>5.10E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.36E-02</td>
<td>67</td>
<td>6.38E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.84E-01</td>
<td>68</td>
<td>3.54E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.21 – Sampled Values for Parameter PU+4:MKD_PU (LHS Variable 32) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2.69E+00</td>
<td>35</td>
<td>9.89E-03</td>
<td>69</td>
<td>3.67E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.45E-03</td>
<td>36</td>
<td>5.87E-03</td>
<td>70</td>
<td>2.42E-03</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.19E-01</td>
<td>37</td>
<td>4.57E-01</td>
<td>71</td>
<td>5.65E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.38E-04</td>
<td>38</td>
<td>2.16E-01</td>
<td>72</td>
<td>6.85E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.59E-01</td>
<td>39</td>
<td>3.85E-01</td>
<td>73</td>
<td>4.53E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.02E-02</td>
<td>40</td>
<td>8.32E-04</td>
<td>74</td>
<td>1.25E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.04E+00</td>
<td>41</td>
<td>8.88E-03</td>
<td>75</td>
<td>7.51E-04</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.61E-04</td>
<td>42</td>
<td>3.14E-01</td>
<td>76</td>
<td>1.10E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.03E+00</td>
<td>43</td>
<td>5.64E-02</td>
<td>77</td>
<td>1.70E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.34E-04</td>
<td>44</td>
<td>3.51E-01</td>
<td>78</td>
<td>2.04E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.28E+00</td>
<td>45</td>
<td>6.56E+00</td>
<td>79</td>
<td>8.51E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.72E+00</td>
<td>46</td>
<td>1.93E-02</td>
<td>80</td>
<td>1.23E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.91E-01</td>
<td>47</td>
<td>1.27E-03</td>
<td>81</td>
<td>4.93E-03</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.96E-03</td>
<td>48</td>
<td>2.45E-01</td>
<td>82</td>
<td>1.03E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.60E-03</td>
<td>49</td>
<td>1.48E+00</td>
<td>83</td>
<td>6.43E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.11E-03</td>
<td>50</td>
<td>1.01E+00</td>
<td>84</td>
<td>5.12E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.98E-04</td>
<td>51</td>
<td>3.76E-02</td>
<td>85</td>
<td>1.50E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.71E-02</td>
<td>52</td>
<td>6.34E-03</td>
<td>86</td>
<td>1.06E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.01E-03</td>
<td>53</td>
<td>7.06E-03</td>
<td>87</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.77E+00</td>
<td>54</td>
<td>4.61E+00</td>
<td>88</td>
<td>1.57E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.15E-03</td>
<td>55</td>
<td>1.68E-01</td>
<td>89</td>
<td>3.06E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8.09E-02</td>
<td>56</td>
<td>4.94E-01</td>
<td>90</td>
<td>6.81E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.36E+00</td>
<td>57</td>
<td>3.33E-03</td>
<td>91</td>
<td>5.72E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.40E-02</td>
<td>58</td>
<td>9.64E+00</td>
<td>92</td>
<td>1.87E-03</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.41E-02</td>
<td>59</td>
<td>2.48E-03</td>
<td>93</td>
<td>9.52E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.99E-01</td>
<td>60</td>
<td>4.60E-02</td>
<td>94</td>
<td>2.23E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.96E-02</td>
<td>61</td>
<td>4.62E-03</td>
<td>95</td>
<td>4.06E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.93E-02</td>
<td>62</td>
<td>1.01E-03</td>
<td>96</td>
<td>3.70E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.21E-02</td>
<td>63</td>
<td>5.83E-02</td>
<td>97</td>
<td>1.33E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.23E-03</td>
<td>64</td>
<td>2.19E+00</td>
<td>98</td>
<td>1.70E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.54E-02</td>
<td>65</td>
<td>8.21E-01</td>
<td>99</td>
<td>7.45E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.30E-03</td>
<td>66</td>
<td>1.63E-03</td>
<td>100</td>
<td>5.89E-04</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.55E-01</td>
<td>67</td>
<td>1.79E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.75E-02</td>
<td>68</td>
<td>2.27E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.22 – Sampled Values for Parameter TH+4:MKD_TH (LHS Variable 33)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th># Value (m3/kg)</th>
<th>Vector</th>
<th># Value (m3/kg)</th>
<th>Vector</th>
<th># Value (m3/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1 5.64E+00</td>
<td>35</td>
<td>3.45E-01</td>
<td>69</td>
<td>2.93E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 3.16E-03</td>
<td>36</td>
<td>8.98E-04</td>
<td>70</td>
<td>9.69E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1.16E-03</td>
<td>37</td>
<td>7.44E-03</td>
<td>71</td>
<td>1.18E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 1.86E-02</td>
<td>38</td>
<td>1.99E-01</td>
<td>72</td>
<td>3.68E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 1.44E-03</td>
<td>39</td>
<td>1.42E+00</td>
<td>73</td>
<td>5.60E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 2.10E-02</td>
<td>40</td>
<td>2.18E-01</td>
<td>74</td>
<td>1.11E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 3.89E-03</td>
<td>41</td>
<td>9.16E-03</td>
<td>75</td>
<td>2.32E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 8.03E+00</td>
<td>42</td>
<td>2.24E+00</td>
<td>76</td>
<td>9.97E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 1.25E-02</td>
<td>43</td>
<td>9.67E-04</td>
<td>77</td>
<td>3.38E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3.29E-02</td>
<td>44</td>
<td>4.36E+00</td>
<td>78</td>
<td>1.28E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 4.30E-02</td>
<td>45</td>
<td>7.58E-02</td>
<td>79</td>
<td>5.20E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 1.17E+00</td>
<td>46</td>
<td>1.07E+00</td>
<td>80</td>
<td>5.71E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 6.29E+00</td>
<td>47</td>
<td>2.73E-03</td>
<td>81</td>
<td>1.49E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 2.01E+00</td>
<td>48</td>
<td>8.46E-03</td>
<td>82</td>
<td>4.57E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 2.66E-01</td>
<td>49</td>
<td>2.21E-03</td>
<td>83</td>
<td>7.20E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 5.44E-01</td>
<td>50</td>
<td>1.67E-02</td>
<td>84</td>
<td>1.68E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 1.80E+00</td>
<td>51</td>
<td>3.04E+00</td>
<td>85</td>
<td>6.60E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 4.58E-03</td>
<td>52</td>
<td>1.38E+00</td>
<td>86</td>
<td>2.28E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 1.84E-03</td>
<td>53</td>
<td>5.58E-02</td>
<td>87</td>
<td>4.02E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 6.66E-02</td>
<td>54</td>
<td>3.27E-01</td>
<td>88</td>
<td>1.57E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 1.80E-03</td>
<td>55</td>
<td>4.63E+00</td>
<td>89</td>
<td>5.43E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 1.50E-01</td>
<td>56</td>
<td>1.37E-02</td>
<td>90</td>
<td>3.89E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 1.10E-03</td>
<td>57</td>
<td>7.37E-04</td>
<td>91</td>
<td>7.83E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 4.24E-01</td>
<td>58</td>
<td>5.04E-02</td>
<td>92</td>
<td>6.10E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 1.34E-01</td>
<td>59</td>
<td>2.54E-01</td>
<td>93</td>
<td>3.27E+00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 8.25E-02</td>
<td>60</td>
<td>6.63E-03</td>
<td>94</td>
<td>2.76E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 1.01E+00</td>
<td>61</td>
<td>4.07E-03</td>
<td>95</td>
<td>3.39E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 9.06E-02</td>
<td>62</td>
<td>8.67E-01</td>
<td>96</td>
<td>5.82E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 1.56E+00</td>
<td>63</td>
<td>2.47E-02</td>
<td>97</td>
<td>1.78E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 6.24E-04</td>
<td>64</td>
<td>8.33E+00</td>
<td>98</td>
<td>7.46E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31 1.11E-02</td>
<td>65</td>
<td>7.02E+00</td>
<td>99</td>
<td>6.43E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 1.03E-01</td>
<td>66</td>
<td>2.36E-03</td>
<td>100</td>
<td>2.65E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 2.67E+00</td>
<td>67</td>
<td>3.07E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34 5.03E-01</td>
<td>68</td>
<td>5.30E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.22 – Sampled Values for Parameter TH+4:MKD_TH (LHS Variable 33) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (m³/kg)</th>
<th>Value (m³/kg)</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.00E-03</td>
<td>4.68E-01</td>
<td>69 4.75E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.47E-01</td>
<td>1.92E-03</td>
<td>70 9.00E-03</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.44E-03</td>
<td>5.28E-02</td>
<td>71 2.32E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.09E-01</td>
<td>4.05E+00</td>
<td>72 5.51E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.98E-02</td>
<td>7.47E-04</td>
<td>73 2.01E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.64E-03</td>
<td>3.53E-02</td>
<td>74 4.81E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.58E-02</td>
<td>1.28E-02</td>
<td>75 3.73E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.35E-01</td>
<td>1.27E-01</td>
<td>76 1.76E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9.49E-02</td>
<td>5.80E+00</td>
<td>77 9.98E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.89E-03</td>
<td>5.84E-02</td>
<td>78 3.91E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>7.25E-02</td>
<td>1.20E-03</td>
<td>79 5.25E-04</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.45E-04</td>
<td>3.19E-01</td>
<td>80 2.53E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.38E-01</td>
<td>5.22E-02</td>
<td>81 1.58E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.63E-01</td>
<td>8.22E-03</td>
<td>82 3.00E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.75E-04</td>
<td>1.44E+00</td>
<td>83 6.05E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.83E-02</td>
<td>1.06E+00</td>
<td>84 1.30E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.36E-01</td>
<td>5.85E-04</td>
<td>85 2.82E-03</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.43E+00</td>
<td>8.15E+00</td>
<td>86 1.30E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.12E-02</td>
<td>8.97E-01</td>
<td>87 6.58E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.49E-01</td>
<td>1.45E-02</td>
<td>88 2.45E-03</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.19E+00</td>
<td>2.99E+00</td>
<td>89 1.43E-03</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.86E-04</td>
<td>1.51E-03</td>
<td>90 8.04E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.64E-01</td>
<td>2.51E+00</td>
<td>91 3.15E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.18E+00</td>
<td>1.76E-01</td>
<td>92 5.89E-03</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.69E-02</td>
<td>2.94E-02</td>
<td>93 6.78E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.34E+00</td>
<td>4.04E-03</td>
<td>94 1.84E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.67E-03</td>
<td>3.02E-03</td>
<td>95 1.31E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.08E-03</td>
<td>2.06E-01</td>
<td>96 3.45E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.39E+00</td>
<td>6.44E-03</td>
<td>97 4.28E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.57E+00</td>
<td>1.34E-02</td>
<td>98 2.25E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.00E-03</td>
<td>9.76E+00</td>
<td>99 7.39E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.87E-02</td>
<td>7.52E-03</td>
<td>100 2.26E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.27E-03</td>
<td>2.15E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.05E+00</td>
<td>4.00E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table A.22 – Sampled Values for Parameter TH+4:MKD_TH (LHS Variable 33)
(continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (m3/kg)</th>
<th>Vector #</th>
<th>Value (m3/kg)</th>
<th>Vector #</th>
<th>Value (m3/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1.82E-03</td>
<td>35</td>
<td>7.04E+00</td>
<td>69</td>
<td>1.03E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.79E-04</td>
<td>36</td>
<td>5.36E-02</td>
<td>70</td>
<td>5.91E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.72E-02</td>
<td>37</td>
<td>2.48E-03</td>
<td>71</td>
<td>4.72E-03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.26E-03</td>
<td>38</td>
<td>9.71E-03</td>
<td>72</td>
<td>1.32E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.05E+00</td>
<td>39</td>
<td>3.49E-01</td>
<td>73</td>
<td>5.24E-04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.26E-01</td>
<td>40</td>
<td>1.48E-01</td>
<td>74</td>
<td>4.09E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.74E-01</td>
<td>41</td>
<td>9.75E+00</td>
<td>75</td>
<td>1.29E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.85E-02</td>
<td>42</td>
<td>2.09E-02</td>
<td>76</td>
<td>3.62E-03</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.06E-03</td>
<td>43</td>
<td>3.40E-01</td>
<td>77</td>
<td>2.71E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.95E+00</td>
<td>44</td>
<td>6.18E+00</td>
<td>78</td>
<td>4.71E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.95E-02</td>
<td>45</td>
<td>1.62E+00</td>
<td>79</td>
<td>2.99E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.43E-01</td>
<td>46</td>
<td>1.57E-01</td>
<td>80</td>
<td>2.84E-03</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.64E-04</td>
<td>47</td>
<td>3.91E-03</td>
<td>81</td>
<td>6.43E-03</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.81E-01</td>
<td>48</td>
<td>8.70E-01</td>
<td>82</td>
<td>5.62E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.07E-01</td>
<td>49</td>
<td>8.31E-03</td>
<td>83</td>
<td>4.35E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.79E-03</td>
<td>50</td>
<td>1.16E-02</td>
<td>84</td>
<td>2.06E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.99E-02</td>
<td>51</td>
<td>8.03E+00</td>
<td>85</td>
<td>2.21E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.38E-03</td>
<td>52</td>
<td>1.14E-03</td>
<td>86</td>
<td>8.30E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.34E-03</td>
<td>53</td>
<td>1.39E+00</td>
<td>87</td>
<td>4.94E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.26E-02</td>
<td>54</td>
<td>5.86E-02</td>
<td>88</td>
<td>1.91E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.43E-01</td>
<td>55</td>
<td>7.97E-01</td>
<td>89</td>
<td>1.82E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.83E-03</td>
<td>56</td>
<td>6.65E-04</td>
<td>90</td>
<td>1.82E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.77E-01</td>
<td>57</td>
<td>1.41E-02</td>
<td>91</td>
<td>2.37E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.70E-02</td>
<td>58</td>
<td>9.54E-01</td>
<td>92</td>
<td>9.53E-04</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.34E-02</td>
<td>59</td>
<td>6.83E-02</td>
<td>93</td>
<td>1.15E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.08E-01</td>
<td>60</td>
<td>2.36E-02</td>
<td>94</td>
<td>1.68E-03</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.36E-03</td>
<td>61</td>
<td>4.93E-03</td>
<td>95</td>
<td>6.02E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.52E+00</td>
<td>62</td>
<td>4.14E-01</td>
<td>96</td>
<td>1.05E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.13E+00</td>
<td>63</td>
<td>1.23E-03</td>
<td>97</td>
<td>7.40E-04</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.68E-04</td>
<td>64</td>
<td>2.60E-02</td>
<td>98</td>
<td>3.19E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.61E-02</td>
<td>65</td>
<td>1.24E-02</td>
<td>99</td>
<td>2.75E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.57E-03</td>
<td>66</td>
<td>2.94E-01</td>
<td>100</td>
<td>3.80E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.52E-02</td>
<td>67</td>
<td>5.13E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.25E+00</td>
<td>68</td>
<td>8.55E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (m³/kg)</td>
<td>#</td>
<td>Value (m³/kg)</td>
<td>#</td>
<td>Value (m³/kg)</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>1.59E-01</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9.72E-02</td>
<td>35</td>
<td>3.51E-02</td>
<td>70</td>
<td>3.97E-01</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4.37E-02</td>
<td>36</td>
<td>3.25E-02</td>
<td>71</td>
<td>5.91E-02</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3.69E-02</td>
<td>37</td>
<td>6.25E-02</td>
<td>72</td>
<td>8.40E-03</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1.42E-01</td>
<td>38</td>
<td>1.14E-02</td>
<td>73</td>
<td>2.07E-01</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1.08E-02</td>
<td>39</td>
<td>1.28E-02</td>
<td>74</td>
<td>8.45E-02</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1.59E-02</td>
<td>40</td>
<td>6.56E-02</td>
<td>75</td>
<td>1.88E-02</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>7.19E-02</td>
<td>41</td>
<td>6.09E-02</td>
<td>76</td>
<td>2.18E-01</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.72E-01</td>
<td>42</td>
<td>5.51E-03</td>
<td>77</td>
<td>6.92E-03</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3.13E-02</td>
<td>43</td>
<td>2.08E-01</td>
<td>78</td>
<td>5.06E-02</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>7.90E-03</td>
<td>44</td>
<td>9.35E-03</td>
<td>79</td>
<td>1.22E-01</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>2.30E-01</td>
<td>45</td>
<td>1.28E-01</td>
<td>80</td>
<td>3.34E-01</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>2.02E-02</td>
<td>46</td>
<td>2.26E-02</td>
<td>81</td>
<td>6.74E-03</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>1.04E-02</td>
<td>47</td>
<td>7.37E-02</td>
<td>82</td>
<td>1.34E-01</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>1.41E-02</td>
<td>48</td>
<td>1.22E-02</td>
<td>83</td>
<td>8.89E-02</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>6.89E-02</td>
<td>49</td>
<td>1.76E-01</td>
<td>84</td>
<td>5.27E-02</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>3.00E-02</td>
<td>50</td>
<td>4.48E-02</td>
<td>85</td>
<td>2.38E-01</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>5.91E-03</td>
<td>51</td>
<td>1.29E-01</td>
<td>86</td>
<td>5.64E-02</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>6.21E-03</td>
<td>52</td>
<td>2.07E-02</td>
<td>87</td>
<td>2.82E-01</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>8.78E-03</td>
<td>53</td>
<td>3.32E-02</td>
<td>88</td>
<td>4.06E-02</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>7.65E-02</td>
<td>54</td>
<td>1.66E-02</td>
<td>89</td>
<td>5.39E-03</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>9.23E-02</td>
<td>55</td>
<td>5.02E-03</td>
<td>90</td>
<td>1.86E-01</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>8.04E-02</td>
<td>56</td>
<td>2.40E-02</td>
<td>91</td>
<td>2.95E-01</td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>7.70E-03</td>
<td>57</td>
<td>8.94E-03</td>
<td>92</td>
<td>1.17E-02</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>3.58E-01</td>
<td>58</td>
<td>7.27E-03</td>
<td>93</td>
<td>3.08E-01</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>2.82E-01</td>
<td>59</td>
<td>1.79E-02</td>
<td>94</td>
<td>3.73E-01</td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>1.50E-02</td>
<td>60</td>
<td>5.40E-02</td>
<td>95</td>
<td>3.92E-02</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>2.13E-02</td>
<td>61</td>
<td>4.16E-02</td>
<td>96</td>
<td>2.50E-01</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>2.61E-01</td>
<td>62</td>
<td>1.04E-01</td>
<td>97</td>
<td>1.12E-01</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>1.98E-01</td>
<td>63</td>
<td>1.77E-02</td>
<td>98</td>
<td>9.65E-03</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>1.33E-02</td>
<td>64</td>
<td>4.75E-02</td>
<td>99</td>
<td>2.58E-02</td>
</tr>
<tr>
<td>1</td>
<td>31</td>
<td>1.63E-01</td>
<td>65</td>
<td>2.45E-02</td>
<td>100</td>
<td>3.41E-01</td>
</tr>
</tbody>
</table>
Table A.23 – Sampled Values for Parameter AM+3:MKD_AM (LHS Variable 34)
(continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.48E-02</td>
<td>35</td>
<td>4.72E-02</td>
<td>69</td>
<td>5.91E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.49E-03</td>
<td>36</td>
<td>1.24E-01</td>
<td>70</td>
<td>2.47E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.00E-02</td>
<td>37</td>
<td>3.21E-02</td>
<td>71</td>
<td>1.80E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.11E-01</td>
<td>38</td>
<td>7.35E-03</td>
<td>72</td>
<td>2.40E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.59E-02</td>
<td>39</td>
<td>2.04E-02</td>
<td>73</td>
<td>8.12E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.13E-02</td>
<td>40</td>
<td>3.65E-02</td>
<td>74</td>
<td>1.08E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.20E-02</td>
<td>41</td>
<td>3.42E-02</td>
<td>75</td>
<td>5.58E-03</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.30E-03</td>
<td>42</td>
<td>4.42E-02</td>
<td>76</td>
<td>6.96E-03</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.29E-02</td>
<td>43</td>
<td>9.96E-02</td>
<td>77</td>
<td>3.19E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.24E-01</td>
<td>44</td>
<td>5.46E-02</td>
<td>78</td>
<td>2.25E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.57E-02</td>
<td>45</td>
<td>1.40E-01</td>
<td>79</td>
<td>2.48E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.40E-02</td>
<td>46</td>
<td>3.89E-01</td>
<td>80</td>
<td>1.04E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.39E-01</td>
<td>47</td>
<td>5.00E-02</td>
<td>81</td>
<td>3.09E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.02E-02</td>
<td>48</td>
<td>1.06E-01</td>
<td>82</td>
<td>8.15E-03</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.11E-02</td>
<td>49</td>
<td>1.24E-02</td>
<td>83</td>
<td>1.62E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.15E-02</td>
<td>50</td>
<td>7.30E-02</td>
<td>84</td>
<td>1.65E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.82E-02</td>
<td>51</td>
<td>6.90E-02</td>
<td>85</td>
<td>2.07E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.74E-01</td>
<td>52</td>
<td>9.72E-03</td>
<td>86</td>
<td>1.83E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.93E-01</td>
<td>53</td>
<td>5.85E-03</td>
<td>87</td>
<td>1.17E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.36E-01</td>
<td>54</td>
<td>8.44E-02</td>
<td>88</td>
<td>3.83E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.15E-02</td>
<td>55</td>
<td>3.50E-02</td>
<td>89</td>
<td>1.51E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.76E-02</td>
<td>56</td>
<td>3.70E-01</td>
<td>90</td>
<td>2.54E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.73E-02</td>
<td>57</td>
<td>2.79E-01</td>
<td>91</td>
<td>6.62E-03</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.62E-01</td>
<td>58</td>
<td>1.20E-01</td>
<td>92</td>
<td>1.34E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.99E-02</td>
<td>59</td>
<td>9.81E-02</td>
<td>93</td>
<td>1.91E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.45E-01</td>
<td>60</td>
<td>1.87E-02</td>
<td>94</td>
<td>7.73E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.06E-02</td>
<td>61</td>
<td>2.95E-01</td>
<td>95</td>
<td>9.15E-03</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.17E-03</td>
<td>62</td>
<td>7.51E-03</td>
<td>96</td>
<td>8.71E-03</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>3.61E-01</td>
<td>63</td>
<td>3.47E-01</td>
<td>97</td>
<td>1.47E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.84E-02</td>
<td>64</td>
<td>4.01E-02</td>
<td>98</td>
<td>3.31E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.17E-03</td>
<td>65</td>
<td>1.29E-01</td>
<td>99</td>
<td>1.40E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.16E-02</td>
<td>66</td>
<td>9.34E-02</td>
<td>100</td>
<td>5.39E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.55E-01</td>
<td>67</td>
<td>8.07E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.12E-01</td>
<td>68</td>
<td>1.75E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.23 – Sampled Values for Parameter AM+3:MKD_AM (LHS Variable 34) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
<th>#</th>
<th>Value (m³/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>1.93E-02</td>
<td>35</td>
<td>6.94E-03</td>
<td>69</td>
<td>1.85E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>7.98E-03</td>
<td>36</td>
<td>1.11E-01</td>
<td>70</td>
<td>1.42E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2.49E-01</td>
<td>37</td>
<td>1.50E-01</td>
<td>71</td>
<td>2.59E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.00E-01</td>
<td>38</td>
<td>1.76E-02</td>
<td>72</td>
<td>1.09E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>6.67E-03</td>
<td>39</td>
<td>7.58E-02</td>
<td>73</td>
<td>1.99E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.16E-01</td>
<td>40</td>
<td>9.19E-03</td>
<td>74</td>
<td>5.97E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.18E-02</td>
<td>41</td>
<td>2.11E-01</td>
<td>75</td>
<td>1.38E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.23E-02</td>
<td>42</td>
<td>4.13E-02</td>
<td>76</td>
<td>1.03E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3.25E-01</td>
<td>43</td>
<td>3.88E-02</td>
<td>77</td>
<td>6.26E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.32E-01</td>
<td>44</td>
<td>2.99E-01</td>
<td>78</td>
<td>3.41E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>5.01E-02</td>
<td>45</td>
<td>7.50E-02</td>
<td>79</td>
<td>4.78E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.93E-01</td>
<td>46</td>
<td>1.23E-01</td>
<td>80</td>
<td>8.06E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>5.21E-03</td>
<td>47</td>
<td>1.70E-02</td>
<td>81</td>
<td>5.17E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>3.16E-01</td>
<td>48</td>
<td>9.40E-02</td>
<td>82</td>
<td>7.62E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>4.44E-02</td>
<td>49</td>
<td>1.85E-01</td>
<td>83</td>
<td>5.49E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.04E-01</td>
<td>50</td>
<td>5.44E-03</td>
<td>84</td>
<td>2.86E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2.20E-01</td>
<td>51</td>
<td>1.61E-01</td>
<td>85</td>
<td>3.63E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1.61E-02</td>
<td>52</td>
<td>7.11E-03</td>
<td>86</td>
<td>4.48E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1.59E-01</td>
<td>53</td>
<td>1.21E-01</td>
<td>87</td>
<td>9.24E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>8.56E-02</td>
<td>54</td>
<td>1.56E-02</td>
<td>88</td>
<td>9.57E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>5.69E-02</td>
<td>55</td>
<td>2.02E-02</td>
<td>89</td>
<td>3.93E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>3.45E-01</td>
<td>56</td>
<td>2.34E-02</td>
<td>90</td>
<td>3.81E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.75E-01</td>
<td>57</td>
<td>2.49E-02</td>
<td>91</td>
<td>3.23E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>2.74E-01</td>
<td>58</td>
<td>1.46E-02</td>
<td>92</td>
<td>3.06E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>4.03E-02</td>
<td>59</td>
<td>2.37E-01</td>
<td>93</td>
<td>6.07E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2.06E-02</td>
<td>60</td>
<td>5.47E-02</td>
<td>94</td>
<td>2.61E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>1.30E-02</td>
<td>61</td>
<td>8.95E-02</td>
<td>95</td>
<td>8.81E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>5.73E-03</td>
<td>62</td>
<td>6.36E-02</td>
<td>96</td>
<td>1.73E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>8.25E-03</td>
<td>63</td>
<td>2.14E-02</td>
<td>97</td>
<td>2.80E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>7.09E-02</td>
<td>64</td>
<td>3.53E-02</td>
<td>98</td>
<td>2.22E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>2.90E-02</td>
<td>65</td>
<td>6.32E-03</td>
<td>99</td>
<td>3.57E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>2.31E-01</td>
<td>66</td>
<td>1.11E-02</td>
<td>100</td>
<td>1.33E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>9.69E-03</td>
<td>67</td>
<td>1.38E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>2.70E-02</td>
<td>68</td>
<td>6.93E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.24 – Sampled Values for Parameter GLOBAL\textsubscript{ :GDEPFAC} (LHS Variable 35)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>6.38E-03</td>
<td>35</td>
<td>3.13E-01</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>4.01E-01</td>
<td>36</td>
<td>4.56E-01</td>
<td>70</td>
<td>3.98E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.18E-01</td>
<td>37</td>
<td>4.64E-01</td>
<td>71</td>
<td>1.10E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.90E-01</td>
<td>38</td>
<td>1.59E-01</td>
<td>72</td>
<td>1.51E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.67E-02</td>
<td>39</td>
<td>3.30E-01</td>
<td>73</td>
<td>4.14E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.71E-02</td>
<td>40</td>
<td>1.29E-01</td>
<td>74</td>
<td>3.94E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.66E-01</td>
<td>41</td>
<td>3.38E-01</td>
<td>75</td>
<td>1.78E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.74E-01</td>
<td>42</td>
<td>1.42E-01</td>
<td>76</td>
<td>4.42E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.26E-01</td>
<td>43</td>
<td>2.71E-01</td>
<td>77</td>
<td>4.66E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.20E-02</td>
<td>44</td>
<td>3.75E-01</td>
<td>78</td>
<td>3.20E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.05E-01</td>
<td>45</td>
<td>4.67E-02</td>
<td>79</td>
<td>2.41E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.23E-01</td>
<td>46</td>
<td>5.07E-02</td>
<td>80</td>
<td>3.80E-02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.84E-01</td>
<td>47</td>
<td>2.08E-01</td>
<td>81</td>
<td>4.86E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.50E-01</td>
<td>48</td>
<td>1.63E-02</td>
<td>82</td>
<td>4.26E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.10E-01</td>
<td>49</td>
<td>2.16E-01</td>
<td>83</td>
<td>6.23E-02</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.69E-01</td>
<td>50</td>
<td>3.19E-01</td>
<td>84</td>
<td>1.64E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.64E-01</td>
<td>51</td>
<td>2.60E-02</td>
<td>85</td>
<td>4.21E-03</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.38E-01</td>
<td>52</td>
<td>3.37E-02</td>
<td>86</td>
<td>3.08E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.47E-01</td>
<td>53</td>
<td>1.31E-01</td>
<td>87</td>
<td>2.77E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.25E-02</td>
<td>54</td>
<td>3.03E-01</td>
<td>88</td>
<td>1.98E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.91E-01</td>
<td>55</td>
<td>2.36E-01</td>
<td>89</td>
<td>2.97E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8.49E-02</td>
<td>56</td>
<td>1.74E-01</td>
<td>90</td>
<td>4.40E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.90E-01</td>
<td>57</td>
<td>2.93E-01</td>
<td>91</td>
<td>2.02E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.51E-01</td>
<td>58</td>
<td>1.04E-01</td>
<td>92</td>
<td>2.33E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.10E-01</td>
<td>59</td>
<td>2.37E-02</td>
<td>93</td>
<td>4.32E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.58E-01</td>
<td>60</td>
<td>1.86E-01</td>
<td>94</td>
<td>1.15E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7.89E-02</td>
<td>61</td>
<td>8.55E-02</td>
<td>95</td>
<td>6.51E-02</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.22E-01</td>
<td>62</td>
<td>3.45E-01</td>
<td>96</td>
<td>7.25E-02</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.82E-01</td>
<td>63</td>
<td>3.61E-01</td>
<td>97</td>
<td>3.27E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.56E-01</td>
<td>64</td>
<td>3.82E-01</td>
<td>98</td>
<td>2.88E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2.83E-01</td>
<td>65</td>
<td>3.78E-01</td>
<td>99</td>
<td>3.48E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3.54E-01</td>
<td>66</td>
<td>4.77E-01</td>
<td>100</td>
<td>2.48E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2.53E-01</td>
<td>67</td>
<td>1.21E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.69E-01</td>
<td>68</td>
<td>4.99E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td></td>
<td>Value (dimensionless)</td>
<td></td>
<td>Value (dimensionless)</td>
<td></td>
<td>Value (dimensionless)</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------------------</td>
<td>----</td>
<td>-----------------------</td>
<td>----</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1.79E-01</td>
<td>35</td>
<td>6.54E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.71E-01</td>
<td>36</td>
<td>4.00E-01</td>
<td>70</td>
<td>1.61E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.38E-01</td>
<td>37</td>
<td>1.33E-01</td>
<td>71</td>
<td>2.25E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.12E-01</td>
<td>38</td>
<td>4.16E-01</td>
<td>72</td>
<td>3.13E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.61E-01</td>
<td>39</td>
<td>3.21E-01</td>
<td>73</td>
<td>3.28E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.33E-02</td>
<td>40</td>
<td>4.47E-02</td>
<td>74</td>
<td>4.12E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.88E-01</td>
<td>41</td>
<td>3.60E-01</td>
<td>75</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.60E-01</td>
<td>42</td>
<td>4.79E-01</td>
<td>76</td>
<td>2.02E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.91E-01</td>
<td>43</td>
<td>2.94E-03</td>
<td>77</td>
<td>2.86E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.83E-02</td>
<td>44</td>
<td>1.55E-02</td>
<td>78</td>
<td>4.49E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.62E-01</td>
<td>45</td>
<td>3.67E-01</td>
<td>79</td>
<td>7.78E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.42E-01</td>
<td>46</td>
<td>4.41E-01</td>
<td>80</td>
<td>2.34E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.86E-01</td>
<td>47</td>
<td>1.12E-02</td>
<td>81</td>
<td>3.79E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.79E-01</td>
<td>48</td>
<td>1.08E-01</td>
<td>82</td>
<td>2.37E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.03E-01</td>
<td>49</td>
<td>4.31E-01</td>
<td>83</td>
<td>3.80E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.09E-01</td>
<td>50</td>
<td>4.96E-01</td>
<td>84</td>
<td>2.16E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>8.87E-02</td>
<td>51</td>
<td>2.25E-01</td>
<td>85</td>
<td>2.52E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.48E-02</td>
<td>52</td>
<td>2.47E-01</td>
<td>86</td>
<td>5.93E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.74E-01</td>
<td>53</td>
<td>3.80E-01</td>
<td>87</td>
<td>5.34E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.46E-02</td>
<td>54</td>
<td>4.09E-01</td>
<td>88</td>
<td>1.98E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.45E-01</td>
<td>55</td>
<td>5.00E-02</td>
<td>89</td>
<td>3.94E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.31E-01</td>
<td>56</td>
<td>1.81E-01</td>
<td>90</td>
<td>9.74E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.07E-01</td>
<td>57</td>
<td>3.44E-01</td>
<td>91</td>
<td>1.39E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.35E-02</td>
<td>58</td>
<td>8.90E-03</td>
<td>92</td>
<td>2.82E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.66E-01</td>
<td>59</td>
<td>4.29E-01</td>
<td>93</td>
<td>1.52E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.25E-01</td>
<td>60</td>
<td>1.71E-01</td>
<td>94</td>
<td>3.49E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.94E-01</td>
<td>61</td>
<td>4.54E-01</td>
<td>95</td>
<td>2.14E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.32E-01</td>
<td>62</td>
<td>3.15E-01</td>
<td>96</td>
<td>3.39E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.66E-01</td>
<td>63</td>
<td>3.03E-01</td>
<td>97</td>
<td>2.41E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.63E-01</td>
<td>64</td>
<td>6.01E-02</td>
<td>98</td>
<td>3.71E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.18E-01</td>
<td>65</td>
<td>4.00E-01</td>
<td>99</td>
<td>2.94E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.27E-01</td>
<td>66</td>
<td>4.85E-01</td>
<td>100</td>
<td>1.59E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.97E-01</td>
<td>67</td>
<td>4.59E-01</td>
<td></td>
<td>Information Only</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.70E-01</td>
<td>68</td>
<td>3.51E-01</td>
<td></td>
<td>Information Only</td>
</tr>
</tbody>
</table>
Table A.24 – Sampled Values for Parameter GLOBAL:GDEPFAC (LHS Variable 35) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3.98E-01</td>
<td>35</td>
<td>3.88E-01</td>
<td>69</td>
<td>4.08E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.58E-01</td>
<td>36</td>
<td>2.78E-01</td>
<td>70</td>
<td>4.76E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.67E-02</td>
<td>37</td>
<td>3.68E-01</td>
<td>71</td>
<td>3.53E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.70E-01</td>
<td>38</td>
<td>1.54E-01</td>
<td>72</td>
<td>7.01E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.53E-01</td>
<td>39</td>
<td>3.31E-01</td>
<td>73</td>
<td>1.12E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.31E-01</td>
<td>40</td>
<td>3.10E-01</td>
<td>74</td>
<td>3.02E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.59E-02</td>
<td>41</td>
<td>2.18E-01</td>
<td>75</td>
<td>1.73E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.35E-02</td>
<td>42</td>
<td>8.21E-02</td>
<td>76</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.08E-01</td>
<td>43</td>
<td>3.21E-03</td>
<td>77</td>
<td>9.92E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.98E-02</td>
<td>44</td>
<td>4.42E-01</td>
<td>78</td>
<td>2.20E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.21E-01</td>
<td>45</td>
<td>2.28E-02</td>
<td>79</td>
<td>3.46E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.62E-01</td>
<td>46</td>
<td>4.16E-01</td>
<td>80</td>
<td>4.61E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.56E-01</td>
<td>47</td>
<td>4.31E-01</td>
<td>81</td>
<td>1.44E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.51E-03</td>
<td>48</td>
<td>4.70E-01</td>
<td>82</td>
<td>4.91E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.99E-01</td>
<td>49</td>
<td>4.48E-01</td>
<td>83</td>
<td>3.80E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.28E-01</td>
<td>50</td>
<td>2.43E-01</td>
<td>84</td>
<td>2.01E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.37E-01</td>
<td>51</td>
<td>1.78E-01</td>
<td>85</td>
<td>4.69E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.37E-01</td>
<td>52</td>
<td>9.40E-02</td>
<td>86</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.72E-01</td>
<td>53</td>
<td>2.93E-01</td>
<td>87</td>
<td>5.85E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.27E-01</td>
<td>54</td>
<td>1.71E-01</td>
<td>88</td>
<td>3.50E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.39E-01</td>
<td>55</td>
<td>3.05E-01</td>
<td>89</td>
<td>4.27E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.89E-01</td>
<td>56</td>
<td>4.59E-01</td>
<td>90</td>
<td>2.95E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.15E-02</td>
<td>57</td>
<td>7.94E-02</td>
<td>91</td>
<td>2.09E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.49E-01</td>
<td>58</td>
<td>4.37E-01</td>
<td>92</td>
<td>2.68E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.57E-01</td>
<td>59</td>
<td>3.81E-01</td>
<td>93</td>
<td>1.02E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.24E-01</td>
<td>60</td>
<td>2.62E-01</td>
<td>94</td>
<td>1.88E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.96E-01</td>
<td>61</td>
<td>4.15E-01</td>
<td>95</td>
<td>4.72E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.94E-01</td>
<td>62</td>
<td>4.01E-01</td>
<td>96</td>
<td>4.82E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.86E-01</td>
<td>63</td>
<td>1.91E-01</td>
<td>97</td>
<td>1.18E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.11E-01</td>
<td>64</td>
<td>5.24E-02</td>
<td>98</td>
<td>2.32E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.68E-01</td>
<td>65</td>
<td>1.22E-02</td>
<td>99</td>
<td>1.63E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.84E-01</td>
<td>66</td>
<td>3.30E-01</td>
<td>100</td>
<td>3.16E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.83E-01</td>
<td>67</td>
<td>3.40E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.21E-02</td>
<td>68</td>
<td>2.53E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.25 – Sampled Values for Parameter WAS_AREA:BRUCITEC (LHS Variable 36)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.41E-08</td>
<td>35</td>
<td>5.39E-08</td>
<td>69</td>
<td>5.23E-08</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.04E-08</td>
<td>36</td>
<td>5.31E-08</td>
<td>70</td>
<td>5.48E-08</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.13E-08</td>
<td>37</td>
<td>5.25E-08</td>
<td>71</td>
<td>5.26E-08</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.43E-08</td>
<td>38</td>
<td>5.02E-08</td>
<td>72</td>
<td>5.54E-08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.14E-08</td>
<td>39</td>
<td>5.16E-08</td>
<td>73</td>
<td>4.87E-08</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.12E-08</td>
<td>40</td>
<td>5.35E-08</td>
<td>74</td>
<td>5.14E-08</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.03E-08</td>
<td>41</td>
<td>5.40E-08</td>
<td>75</td>
<td>4.97E-08</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.25E-08</td>
<td>42</td>
<td>5.17E-08</td>
<td>76</td>
<td>5.33E-08</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.39E-08</td>
<td>43</td>
<td>5.15E-08</td>
<td>77</td>
<td>5.08E-08</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.27E-08</td>
<td>44</td>
<td>5.10E-08</td>
<td>78</td>
<td>5.04E-08</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.48E-08</td>
<td>45</td>
<td>4.97E-08</td>
<td>79</td>
<td>5.19E-08</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.25E-08</td>
<td>46</td>
<td>5.52E-08</td>
<td>80</td>
<td>5.38E-08</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.06E-08</td>
<td>47</td>
<td>5.28E-08</td>
<td>81</td>
<td>5.44E-08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.37E-08</td>
<td>48</td>
<td>5.20E-08</td>
<td>82</td>
<td>5.45E-08</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.00E-08</td>
<td>49</td>
<td>4.99E-08</td>
<td>83</td>
<td>5.30E-08</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.11E-08</td>
<td>50</td>
<td>5.18E-08</td>
<td>84</td>
<td>5.02E-08</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.29E-08</td>
<td>51</td>
<td>5.09E-08</td>
<td>85</td>
<td>5.37E-08</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.46E-08</td>
<td>52</td>
<td>5.18E-08</td>
<td>86</td>
<td>4.98E-08</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5.15E-08</td>
<td>53</td>
<td>5.29E-08</td>
<td>87</td>
<td>4.86E-08</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.32E-08</td>
<td>54</td>
<td>5.20E-08</td>
<td>88</td>
<td>4.80E-08</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5.12E-08</td>
<td>55</td>
<td>5.15E-08</td>
<td>89</td>
<td>5.31E-08</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.10E-08</td>
<td>56</td>
<td>5.21E-08</td>
<td>90</td>
<td>5.63E-08</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.09E-08</td>
<td>57</td>
<td>5.33E-08</td>
<td>91</td>
<td>4.95E-08</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5.06E-08</td>
<td>58</td>
<td>4.84E-08</td>
<td>92</td>
<td>5.57E-08</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.06E-08</td>
<td>59</td>
<td>5.36E-08</td>
<td>93</td>
<td>5.17E-08</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.23E-08</td>
<td>60</td>
<td>5.22E-08</td>
<td>94</td>
<td>5.35E-08</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5.21E-08</td>
<td>61</td>
<td>5.01E-08</td>
<td>95</td>
<td>5.23E-08</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5.24E-08</td>
<td>62</td>
<td>5.34E-08</td>
<td>96</td>
<td>5.16E-08</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5.19E-08</td>
<td>63</td>
<td>5.13E-08</td>
<td>97</td>
<td>5.07E-08</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.22E-08</td>
<td>64</td>
<td>4.93E-08</td>
<td>98</td>
<td>5.28E-08</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5.27E-08</td>
<td>65</td>
<td>5.05E-08</td>
<td>99</td>
<td>5.11E-08</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5.50E-08</td>
<td>66</td>
<td>4.94E-08</td>
<td>100</td>
<td>5.32E-08</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.91E-08</td>
<td>67</td>
<td>5.28E-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.90E-08</td>
<td>68</td>
<td>5.42E-08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.25 – Sampled Values for Parameter WAS_AREA:BRUCITEC (LHS Variable 36) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>5.23E-08</td>
<td>35</td>
<td>5.61E-08</td>
<td>69</td>
<td>5.11E-08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.24E-08</td>
<td>36</td>
<td>5.46E-08</td>
<td>70</td>
<td>5.20E-08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.08E-08</td>
<td>37</td>
<td>5.25E-08</td>
<td>71</td>
<td>5.37E-08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.06E-08</td>
<td>38</td>
<td>5.03E-08</td>
<td>72</td>
<td>5.55E-08</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.52E-08</td>
<td>39</td>
<td>5.06E-08</td>
<td>73</td>
<td>5.13E-08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.31E-08</td>
<td>40</td>
<td>5.13E-08</td>
<td>74</td>
<td>5.03E-08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.48E-08</td>
<td>41</td>
<td>4.92E-08</td>
<td>75</td>
<td>5.16E-08</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.39E-08</td>
<td>42</td>
<td>5.17E-08</td>
<td>76</td>
<td>5.26E-08</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.07E-08</td>
<td>43</td>
<td>5.01E-08</td>
<td>77</td>
<td>5.30E-08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.05E-08</td>
<td>44</td>
<td>4.96E-08</td>
<td>78</td>
<td>4.93E-08</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.33E-08</td>
<td>45</td>
<td>5.27E-08</td>
<td>79</td>
<td>5.44E-08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.87E-08</td>
<td>46</td>
<td>5.28E-08</td>
<td>80</td>
<td>5.45E-08</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.37E-08</td>
<td>47</td>
<td>5.09E-08</td>
<td>81</td>
<td>4.99E-08</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.29E-08</td>
<td>48</td>
<td>5.14E-08</td>
<td>82</td>
<td>5.58E-08</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.19E-08</td>
<td>49</td>
<td>5.31E-08</td>
<td>83</td>
<td>5.24E-08</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.38E-08</td>
<td>50</td>
<td>5.13E-08</td>
<td>84</td>
<td>4.85E-08</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.26E-08</td>
<td>51</td>
<td>4.77E-08</td>
<td>85</td>
<td>5.23E-08</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.15E-08</td>
<td>52</td>
<td>5.24E-08</td>
<td>86</td>
<td>5.12E-08</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.11E-08</td>
<td>53</td>
<td>5.22E-08</td>
<td>87</td>
<td>4.82E-08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.00E-08</td>
<td>54</td>
<td>5.18E-08</td>
<td>88</td>
<td>5.35E-08</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.31E-08</td>
<td>55</td>
<td>5.31E-08</td>
<td>89</td>
<td>4.90E-08</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.14E-08</td>
<td>56</td>
<td>5.04E-08</td>
<td>90</td>
<td>5.26E-08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.21E-08</td>
<td>57</td>
<td>5.27E-08</td>
<td>91</td>
<td>5.11E-08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.01E-08</td>
<td>58</td>
<td>5.08E-08</td>
<td>92</td>
<td>5.36E-08</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.20E-08</td>
<td>59</td>
<td>5.42E-08</td>
<td>93</td>
<td>5.41E-08</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.47E-08</td>
<td>60</td>
<td>5.10E-08</td>
<td>94</td>
<td>5.16E-08</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.21E-08</td>
<td>61</td>
<td>5.34E-08</td>
<td>95</td>
<td>5.21E-08</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.09E-08</td>
<td>62</td>
<td>5.05E-08</td>
<td>96</td>
<td>5.29E-08</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.19E-08</td>
<td>63</td>
<td>5.16E-08</td>
<td>97</td>
<td>5.18E-08</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.92E-08</td>
<td>64</td>
<td>5.51E-08</td>
<td>98</td>
<td>5.41E-08</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.28E-08</td>
<td>65</td>
<td>4.95E-08</td>
<td>99</td>
<td>4.97E-08</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.32E-08</td>
<td>66</td>
<td>4.98E-08</td>
<td>100</td>
<td>5.39E-08</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.43E-08</td>
<td>67</td>
<td>5.02E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.18E-08</td>
<td>68</td>
<td>5.33E-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.25 – Sampled Values for Parameter WAS_AREA:BRUCITEC (LHS Variable 36) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.37E-08</td>
<td>35</td>
<td>5.44E-08</td>
<td>69</td>
<td>5.51E-08</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.93E-08</td>
<td>36</td>
<td>5.15E-08</td>
<td>70</td>
<td>5.12E-08</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.94E-08</td>
<td>37</td>
<td>5.16E-08</td>
<td>71</td>
<td>5.13E-08</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.01E-08</td>
<td>38</td>
<td>4.83E-08</td>
<td>72</td>
<td>4.96E-08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.42E-08</td>
<td>39</td>
<td>5.13E-08</td>
<td>73</td>
<td>5.26E-08</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.36E-08</td>
<td>40</td>
<td>4.87E-08</td>
<td>74</td>
<td>5.21E-08</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.28E-08</td>
<td>41</td>
<td>4.99E-08</td>
<td>75</td>
<td>4.89E-08</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.09E-08</td>
<td>42</td>
<td>5.37E-08</td>
<td>76</td>
<td>5.34E-08</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5.08E-08</td>
<td>43</td>
<td>4.95E-08</td>
<td>77</td>
<td>5.33E-08</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.03E-08</td>
<td>44</td>
<td>5.07E-08</td>
<td>78</td>
<td>5.29E-08</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.15E-08</td>
<td>45</td>
<td>5.10E-08</td>
<td>79</td>
<td>5.13E-08</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.27E-08</td>
<td>46</td>
<td>5.18E-08</td>
<td>80</td>
<td>5.16E-08</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.02E-08</td>
<td>47</td>
<td>5.19E-08</td>
<td>81</td>
<td>5.49E-08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.22E-08</td>
<td>48</td>
<td>5.11E-08</td>
<td>82</td>
<td>5.43E-08</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.58E-08</td>
<td>49</td>
<td>5.19E-08</td>
<td>83</td>
<td>4.91E-08</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.46E-08</td>
<td>50</td>
<td>5.01E-08</td>
<td>84</td>
<td>5.20E-08</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.23E-08</td>
<td>51</td>
<td>5.04E-08</td>
<td>85</td>
<td>5.23E-08</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.38E-08</td>
<td>52</td>
<td>5.31E-08</td>
<td>86</td>
<td>5.51E-08</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5.24E-08</td>
<td>53</td>
<td>5.25E-08</td>
<td>87</td>
<td>5.39E-08</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.26E-08</td>
<td>54</td>
<td>5.27E-08</td>
<td>88</td>
<td>4.98E-08</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5.25E-08</td>
<td>55</td>
<td>5.29E-08</td>
<td>89</td>
<td>5.40E-08</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.05E-08</td>
<td>56</td>
<td>4.87E-08</td>
<td>90</td>
<td>5.03E-08</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.14E-08</td>
<td>57</td>
<td>5.17E-08</td>
<td>91</td>
<td>5.06E-08</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5.20E-08</td>
<td>58</td>
<td>5.24E-08</td>
<td>92</td>
<td>5.11E-08</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.32E-08</td>
<td>59</td>
<td>5.15E-08</td>
<td>93</td>
<td>5.23E-08</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.07E-08</td>
<td>60</td>
<td>5.06E-08</td>
<td>94</td>
<td>5.22E-08</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.97E-08</td>
<td>61</td>
<td>5.48E-08</td>
<td>95</td>
<td>5.45E-08</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.77E-08</td>
<td>62</td>
<td>5.39E-08</td>
<td>96</td>
<td>5.18E-08</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5.10E-08</td>
<td>63</td>
<td>5.21E-08</td>
<td>97</td>
<td>5.61E-08</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.31E-08</td>
<td>64</td>
<td>5.12E-08</td>
<td>98</td>
<td>5.35E-08</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5.32E-08</td>
<td>65</td>
<td>5.30E-08</td>
<td>99</td>
<td>5.55E-08</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5.00E-08</td>
<td>66</td>
<td>5.28E-08</td>
<td>100</td>
<td>5.35E-08</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5.20E-08</td>
<td>67</td>
<td>5.08E-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5.41E-08</td>
<td>68</td>
<td>5.33E-08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.26 – Sampled Values for Parameter WAS_AREA:BRUCITES (LHS Variable 37)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.48E-08</td>
<td>35</td>
<td>5.69E-08</td>
<td>69</td>
<td>5.46E-08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.66E-08</td>
<td>36</td>
<td>5.93E-08</td>
<td>70</td>
<td>5.30E-08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.12E-08</td>
<td>37</td>
<td>5.13E-08</td>
<td>71</td>
<td>4.76E-08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.93E-08</td>
<td>38</td>
<td>5.11E-08</td>
<td>72</td>
<td>5.56E-08</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.96E-08</td>
<td>39</td>
<td>5.28E-08</td>
<td>73</td>
<td>4.57E-08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.36E-08</td>
<td>40</td>
<td>5.59E-08</td>
<td>74</td>
<td>5.32E-08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.99E-08</td>
<td>41</td>
<td>4.77E-08</td>
<td>75</td>
<td>5.35E-08</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.00E-08</td>
<td>42</td>
<td>5.56E-08</td>
<td>76</td>
<td>5.26E-08</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.65E-08</td>
<td>43</td>
<td>4.92E-08</td>
<td>77</td>
<td>5.71E-08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.32E-08</td>
<td>44</td>
<td>5.25E-08</td>
<td>78</td>
<td>4.98E-08</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.08E-08</td>
<td>45</td>
<td>5.22E-08</td>
<td>79</td>
<td>4.89E-08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.94E-08</td>
<td>46</td>
<td>4.84E-08</td>
<td>80</td>
<td>5.18E-08</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.27E-08</td>
<td>47</td>
<td>5.57E-08</td>
<td>81</td>
<td>4.99E-08</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.80E-08</td>
<td>48</td>
<td>5.21E-08</td>
<td>82</td>
<td>5.83E-08</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.50E-08</td>
<td>49</td>
<td>5.21E-08</td>
<td>83</td>
<td>4.42E-08</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.37E-08</td>
<td>50</td>
<td>5.02E-08</td>
<td>84</td>
<td>5.87E-08</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.53E-08</td>
<td>51</td>
<td>4.86E-08</td>
<td>85</td>
<td>5.42E-08</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.15E-08</td>
<td>52</td>
<td>5.23E-08</td>
<td>86</td>
<td>4.80E-08</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.67E-08</td>
<td>53</td>
<td>5.26E-08</td>
<td>87</td>
<td>4.69E-08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.73E-08</td>
<td>54</td>
<td>5.37E-08</td>
<td>88</td>
<td>5.39E-08</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.43E-08</td>
<td>55</td>
<td>5.76E-08</td>
<td>89</td>
<td>4.91E-08</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.16E-08</td>
<td>56</td>
<td>4.82E-08</td>
<td>90</td>
<td>4.97E-08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.05E-08</td>
<td>57</td>
<td>5.18E-08</td>
<td>91</td>
<td>5.20E-08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.62E-08</td>
<td>58</td>
<td>5.63E-08</td>
<td>92</td>
<td>5.40E-08</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.06E-08</td>
<td>59</td>
<td>4.87E-08</td>
<td>93</td>
<td>5.78E-08</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.72E-08</td>
<td>60</td>
<td>5.06E-08</td>
<td>94</td>
<td>5.64E-08</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.29E-08</td>
<td>61</td>
<td>4.34E-08</td>
<td>95</td>
<td>5.82E-08</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.41E-08</td>
<td>62</td>
<td>5.03E-08</td>
<td>96</td>
<td>4.85E-08</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.04E-08</td>
<td>63</td>
<td>4.59E-08</td>
<td>97</td>
<td>5.09E-08</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.45E-08</td>
<td>64</td>
<td>5.50E-08</td>
<td>98</td>
<td>5.34E-08</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.73E-08</td>
<td>65</td>
<td>5.09E-08</td>
<td>99</td>
<td>5.17E-08</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.52E-08</td>
<td>66</td>
<td>5.53E-08</td>
<td>100</td>
<td>5.61E-08</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.50E-08</td>
<td>67</td>
<td>5.12E-08</td>
<td>100</td>
<td>5.61E-08</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.45E-08</td>
<td>68</td>
<td>5.01E-08</td>
<td>100</td>
<td>5.61E-08</td>
</tr>
</tbody>
</table>
Table A.26 – Sampled Values for Parameter WAS_AREA:BRUCITES (LHS Variable 37) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4.55E-08</td>
<td>35</td>
<td>4.98E-08</td>
<td>69</td>
<td>4.65E-08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.51E-08</td>
<td>36</td>
<td>6.06E-08</td>
<td>70</td>
<td>5.16E-08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.82E-08</td>
<td>37</td>
<td>4.76E-08</td>
<td>71</td>
<td>5.26E-08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.49E-08</td>
<td>38</td>
<td>5.32E-08</td>
<td>72</td>
<td>5.28E-08</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.54E-08</td>
<td>39</td>
<td>4.85E-08</td>
<td>73</td>
<td>5.02E-08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.83E-08</td>
<td>40</td>
<td>4.51E-08</td>
<td>74</td>
<td>5.38E-08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.13E-08</td>
<td>41</td>
<td>5.66E-08</td>
<td>75</td>
<td>5.35E-08</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.21E-08</td>
<td>42</td>
<td>4.84E-08</td>
<td>76</td>
<td>4.93E-08</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.71E-08</td>
<td>43</td>
<td>5.06E-08</td>
<td>77</td>
<td>5.00E-08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.89E-08</td>
<td>44</td>
<td>4.67E-08</td>
<td>78</td>
<td>5.59E-08</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.25E-08</td>
<td>45</td>
<td>4.72E-08</td>
<td>79</td>
<td>4.95E-08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.44E-08</td>
<td>46</td>
<td>4.69E-08</td>
<td>80</td>
<td>5.78E-08</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.96E-08</td>
<td>47</td>
<td>5.86E-08</td>
<td>81</td>
<td>5.14E-08</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.97E-08</td>
<td>48</td>
<td>4.45E-08</td>
<td>82</td>
<td>5.08E-08</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.04E-08</td>
<td>49</td>
<td>5.05E-08</td>
<td>83</td>
<td>5.75E-08</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.58E-08</td>
<td>50</td>
<td>4.38E-08</td>
<td>84</td>
<td>4.99E-08</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.42E-08</td>
<td>51</td>
<td>5.26E-08</td>
<td>85</td>
<td>5.68E-08</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.87E-08</td>
<td>52</td>
<td>5.10E-08</td>
<td>86</td>
<td>5.73E-08</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.76E-08</td>
<td>53</td>
<td>5.28E-08</td>
<td>87</td>
<td>5.16E-08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.37E-08</td>
<td>54</td>
<td>5.61E-08</td>
<td>88</td>
<td>5.93E-08</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.11E-08</td>
<td>55</td>
<td>5.23E-08</td>
<td>89</td>
<td>5.22E-08</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.64E-08</td>
<td>56</td>
<td>5.39E-08</td>
<td>90</td>
<td>5.87E-08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.06E-08</td>
<td>57</td>
<td>5.43E-08</td>
<td>91</td>
<td>4.92E-08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.17E-08</td>
<td>58</td>
<td>4.74E-08</td>
<td>92</td>
<td>5.07E-08</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.61E-08</td>
<td>59</td>
<td>5.57E-08</td>
<td>93</td>
<td>5.30E-08</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.97E-08</td>
<td>60</td>
<td>5.53E-08</td>
<td>94</td>
<td>5.20E-08</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.80E-08</td>
<td>61</td>
<td>4.88E-08</td>
<td>95</td>
<td>5.19E-08</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.79E-08</td>
<td>62</td>
<td>5.52E-08</td>
<td>96</td>
<td>5.47E-08</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.59E-08</td>
<td>63</td>
<td>5.29E-08</td>
<td>97</td>
<td>5.63E-08</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.12E-08</td>
<td>64</td>
<td>5.21E-08</td>
<td>98</td>
<td>5.40E-08</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5.46E-08</td>
<td>65</td>
<td>5.35E-08</td>
<td>99</td>
<td>5.15E-08</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.90E-08</td>
<td>66</td>
<td>5.33E-08</td>
<td>100</td>
<td>5.03E-08</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.42E-08</td>
<td>67</td>
<td>5.49E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.32E-08</td>
<td>68</td>
<td>4.30E-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.26 – Sampled Values for Parameter WAS_AREA:BRUCITES (LHS Variable 37) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>5.29E-08</td>
<td>35</td>
<td>5.21E-08</td>
<td>69</td>
<td>5.16E-08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.51E-08</td>
<td>36</td>
<td>5.17E-08</td>
<td>70</td>
<td>4.96E-08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.43E-08</td>
<td>37</td>
<td>5.39E-08</td>
<td>71</td>
<td>5.06E-08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.86E-08</td>
<td>38</td>
<td>5.32E-08</td>
<td>72</td>
<td>4.80E-08</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.67E-08</td>
<td>39</td>
<td>5.49E-08</td>
<td>73</td>
<td>4.96E-08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.65E-08</td>
<td>40</td>
<td>5.28E-08</td>
<td>74</td>
<td>5.11E-08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.03E-08</td>
<td>41</td>
<td>4.75E-08</td>
<td>75</td>
<td>5.40E-08</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.00E-08</td>
<td>42</td>
<td>5.33E-08</td>
<td>76</td>
<td>5.69E-08</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.94E-08</td>
<td>43</td>
<td>4.84E-08</td>
<td>77</td>
<td>4.41E-08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.19E-08</td>
<td>44</td>
<td>5.76E-08</td>
<td>78</td>
<td>4.90E-08</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.23E-08</td>
<td>45</td>
<td>5.64E-08</td>
<td>79</td>
<td>5.08E-08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.48E-08</td>
<td>46</td>
<td>5.08E-08</td>
<td>80</td>
<td>5.58E-08</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.15E-08</td>
<td>47</td>
<td>4.97E-08</td>
<td>81</td>
<td>5.46E-08</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.96E-08</td>
<td>48</td>
<td>4.77E-08</td>
<td>82</td>
<td>6.11E-08</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.26E-08</td>
<td>49</td>
<td>4.85E-08</td>
<td>83</td>
<td>5.06E-08</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.89E-08</td>
<td>50</td>
<td>4.81E-08</td>
<td>84</td>
<td>5.37E-08</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.15E-08</td>
<td>51</td>
<td>5.60E-08</td>
<td>85</td>
<td>4.93E-08</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.59E-08</td>
<td>52</td>
<td>5.64E-08</td>
<td>86</td>
<td>5.42E-08</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.12E-08</td>
<td>53</td>
<td>5.35E-08</td>
<td>87</td>
<td>5.70E-08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.01E-08</td>
<td>54</td>
<td>5.81E-08</td>
<td>88</td>
<td>4.92E-08</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.61E-08</td>
<td>55</td>
<td>5.53E-08</td>
<td>89</td>
<td>5.45E-08</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.72E-08</td>
<td>56</td>
<td>4.69E-08</td>
<td>90</td>
<td>5.91E-08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.25E-08</td>
<td>57</td>
<td>4.51E-08</td>
<td>91</td>
<td>5.55E-08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.99E-08</td>
<td>58</td>
<td>4.72E-08</td>
<td>92</td>
<td>5.50E-08</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.89E-08</td>
<td>59</td>
<td>4.56E-08</td>
<td>93</td>
<td>5.24E-08</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.11E-08</td>
<td>60</td>
<td>5.56E-08</td>
<td>94</td>
<td>5.41E-08</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.20E-08</td>
<td>61</td>
<td>5.83E-08</td>
<td>95</td>
<td>5.21E-08</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.61E-08</td>
<td>62</td>
<td>5.29E-08</td>
<td>96</td>
<td>4.82E-08</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.88E-08</td>
<td>63</td>
<td>5.03E-08</td>
<td>97</td>
<td>5.04E-08</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.14E-08</td>
<td>64</td>
<td>5.31E-08</td>
<td>98</td>
<td>5.35E-08</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.28E-08</td>
<td>65</td>
<td>5.46E-08</td>
<td>99</td>
<td>4.67E-08</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.79E-08</td>
<td>66</td>
<td>5.24E-08</td>
<td>100</td>
<td>5.53E-08</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.30E-08</td>
<td>67</td>
<td>5.37E-08</td>
<td>100</td>
<td>5.53E-08</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.74E-08</td>
<td>68</td>
<td>5.10E-08</td>
<td>100</td>
<td>5.53E-08</td>
</tr>
</tbody>
</table>
Table A.27 – Sampled Values for Parameter WAS_AREA:BRUCITEH (LHS Variable 38)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.91E-08</td>
<td>35</td>
<td>1.94E-08</td>
<td>69</td>
<td>1.95E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.07E-08</td>
<td>36</td>
<td>1.94E-08</td>
<td>70</td>
<td>2.07E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.96E-08</td>
<td>37</td>
<td>2.01E-08</td>
<td>71</td>
<td>1.89E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.09E-08</td>
<td>38</td>
<td>1.82E-08</td>
<td>72</td>
<td>2.18E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.93E-08</td>
<td>39</td>
<td>2.03E-08</td>
<td>73</td>
<td>1.99E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.96E-08</td>
<td>40</td>
<td>2.07E-08</td>
<td>74</td>
<td>2.06E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.05E-08</td>
<td>41</td>
<td>2.12E-08</td>
<td>75</td>
<td>2.14E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.90E-08</td>
<td>42</td>
<td>2.06E-08</td>
<td>76</td>
<td>2.08E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.13E-08</td>
<td>43</td>
<td>2.09E-08</td>
<td>77</td>
<td>2.06E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.97E-08</td>
<td>44</td>
<td>1.91E-08</td>
<td>78</td>
<td>1.92E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.98E-08</td>
<td>45</td>
<td>2.16E-08</td>
<td>79</td>
<td>2.04E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.90E-08</td>
<td>46</td>
<td>2.02E-08</td>
<td>80</td>
<td>2.02E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.11E-08</td>
<td>47</td>
<td>1.86E-08</td>
<td>81</td>
<td>1.98E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.98E-08</td>
<td>48</td>
<td>2.03E-08</td>
<td>82</td>
<td>1.97E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.99E-08</td>
<td>49</td>
<td>1.92E-08</td>
<td>83</td>
<td>2.01E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.04E-08</td>
<td>50</td>
<td>2.00E-08</td>
<td>84</td>
<td>1.92E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.06E-08</td>
<td>51</td>
<td>1.87E-08</td>
<td>85</td>
<td>1.91E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.93E-08</td>
<td>52</td>
<td>1.88E-08</td>
<td>86</td>
<td>2.03E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.93E-08</td>
<td>53</td>
<td>1.98E-08</td>
<td>87</td>
<td>2.10E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.97E-08</td>
<td>54</td>
<td>1.95E-08</td>
<td>88</td>
<td>1.96E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.02E-08</td>
<td>55</td>
<td>2.02E-08</td>
<td>89</td>
<td>2.05E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.02E-08</td>
<td>56</td>
<td>2.01E-08</td>
<td>90</td>
<td>1.98E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.99E-08</td>
<td>57</td>
<td>2.14E-08</td>
<td>91</td>
<td>2.12E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.97E-08</td>
<td>58</td>
<td>2.03E-08</td>
<td>92</td>
<td>2.10E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.97E-08</td>
<td>59</td>
<td>2.00E-08</td>
<td>93</td>
<td>1.99E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.95E-08</td>
<td>60</td>
<td>1.99E-08</td>
<td>94</td>
<td>2.08E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.03E-08</td>
<td>61</td>
<td>1.94E-08</td>
<td>95</td>
<td>2.07E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.04E-08</td>
<td>62</td>
<td>1.89E-08</td>
<td>96</td>
<td>2.11E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.04E-08</td>
<td>63</td>
<td>2.00E-08</td>
<td>97</td>
<td>1.86E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.83E-08</td>
<td>64</td>
<td>2.10E-08</td>
<td>98</td>
<td>2.01E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.01E-08</td>
<td>65</td>
<td>2.00E-08</td>
<td>99</td>
<td>2.08E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.95E-08</td>
<td>66</td>
<td>1.95E-08</td>
<td>100</td>
<td>1.96E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.94E-08</td>
<td>67</td>
<td>2.05E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.05E-08</td>
<td>68</td>
<td>1.88E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.27 – Sampled Values for Parameter WAS_AREA:BRUCITEH (LHS Variable 38) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.99E-08</td>
<td>35</td>
<td>2.01E-08</td>
<td>69</td>
<td>2.05E-08</td>
</tr>
<tr>
<td>2</td>
<td>1.97E-08</td>
<td>36</td>
<td>1.99E-08</td>
<td>70</td>
<td>1.97E-08</td>
</tr>
<tr>
<td>3</td>
<td>2.15E-08</td>
<td>37</td>
<td>2.02E-08</td>
<td>71</td>
<td>1.91E-08</td>
</tr>
<tr>
<td>4</td>
<td>2.13E-08</td>
<td>38</td>
<td>1.95E-08</td>
<td>72</td>
<td>1.97E-08</td>
</tr>
<tr>
<td>5</td>
<td>2.08E-08</td>
<td>39</td>
<td>1.85E-08</td>
<td>73</td>
<td>1.98E-08</td>
</tr>
<tr>
<td>6</td>
<td>2.17E-08</td>
<td>40</td>
<td>2.05E-08</td>
<td>74</td>
<td>2.03E-08</td>
</tr>
<tr>
<td>7</td>
<td>2.04E-08</td>
<td>41</td>
<td>1.86E-08</td>
<td>75</td>
<td>1.93E-08</td>
</tr>
<tr>
<td>8</td>
<td>2.09E-08</td>
<td>42</td>
<td>1.99E-08</td>
<td>76</td>
<td>2.14E-08</td>
</tr>
<tr>
<td>9</td>
<td>2.00E-08</td>
<td>43</td>
<td>1.93E-08</td>
<td>77</td>
<td>2.11E-08</td>
</tr>
<tr>
<td>10</td>
<td>2.06E-08</td>
<td>44</td>
<td>2.02E-08</td>
<td>78</td>
<td>2.10E-08</td>
</tr>
<tr>
<td>11</td>
<td>2.04E-08</td>
<td>45</td>
<td>2.00E-08</td>
<td>79</td>
<td>1.94E-08</td>
</tr>
<tr>
<td>12</td>
<td>2.06E-08</td>
<td>46</td>
<td>1.95E-08</td>
<td>80</td>
<td>1.93E-08</td>
</tr>
<tr>
<td>13</td>
<td>2.01E-08</td>
<td>47</td>
<td>1.98E-08</td>
<td>81</td>
<td>1.99E-08</td>
</tr>
<tr>
<td>14</td>
<td>1.95E-08</td>
<td>48</td>
<td>1.84E-08</td>
<td>82</td>
<td>1.89E-08</td>
</tr>
<tr>
<td>15</td>
<td>2.00E-08</td>
<td>49</td>
<td>2.02E-08</td>
<td>83</td>
<td>2.09E-08</td>
</tr>
<tr>
<td>16</td>
<td>2.03E-08</td>
<td>50</td>
<td>1.94E-08</td>
<td>84</td>
<td>2.07E-08</td>
</tr>
<tr>
<td>17</td>
<td>2.08E-08</td>
<td>51</td>
<td>2.02E-08</td>
<td>85</td>
<td>1.94E-08</td>
</tr>
<tr>
<td>18</td>
<td>1.92E-08</td>
<td>52</td>
<td>2.01E-08</td>
<td>86</td>
<td>2.04E-08</td>
</tr>
<tr>
<td>19</td>
<td>2.04E-08</td>
<td>53</td>
<td>2.10E-08</td>
<td>87</td>
<td>2.12E-08</td>
</tr>
<tr>
<td>20</td>
<td>1.98E-08</td>
<td>54</td>
<td>2.06E-08</td>
<td>88</td>
<td>1.91E-08</td>
</tr>
<tr>
<td>21</td>
<td>1.98E-08</td>
<td>55</td>
<td>2.12E-08</td>
<td>89</td>
<td>2.05E-08</td>
</tr>
<tr>
<td>22</td>
<td>1.96E-08</td>
<td>56</td>
<td>1.90E-08</td>
<td>90</td>
<td>1.96E-08</td>
</tr>
<tr>
<td>23</td>
<td>1.93E-08</td>
<td>57</td>
<td>2.02E-08</td>
<td>91</td>
<td>1.95E-08</td>
</tr>
<tr>
<td>24</td>
<td>1.87E-08</td>
<td>58</td>
<td>2.07E-08</td>
<td>92</td>
<td>2.06E-08</td>
</tr>
<tr>
<td>25</td>
<td>2.00E-08</td>
<td>59</td>
<td>1.96E-08</td>
<td>93</td>
<td>1.96E-08</td>
</tr>
<tr>
<td>26</td>
<td>2.03E-08</td>
<td>60</td>
<td>2.01E-08</td>
<td>94</td>
<td>1.89E-08</td>
</tr>
<tr>
<td>27</td>
<td>1.92E-08</td>
<td>61</td>
<td>2.03E-08</td>
<td>95</td>
<td>2.06E-08</td>
</tr>
<tr>
<td>28</td>
<td>1.97E-08</td>
<td>62</td>
<td>2.00E-08</td>
<td>96</td>
<td>2.01E-08</td>
</tr>
<tr>
<td>29</td>
<td>1.97E-08</td>
<td>63</td>
<td>2.04E-08</td>
<td>97</td>
<td>1.90E-08</td>
</tr>
<tr>
<td>30</td>
<td>1.82E-08</td>
<td>64</td>
<td>1.95E-08</td>
<td>98</td>
<td>2.08E-08</td>
</tr>
<tr>
<td>31</td>
<td>1.99E-08</td>
<td>65</td>
<td>2.12E-08</td>
<td>99</td>
<td>1.90E-08</td>
</tr>
<tr>
<td>32</td>
<td>2.15E-08</td>
<td>66</td>
<td>2.09E-08</td>
<td>100</td>
<td>1.88E-08</td>
</tr>
<tr>
<td>33</td>
<td>1.92E-08</td>
<td>67</td>
<td>1.99E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.88E-08</td>
<td>68</td>
<td>2.07E-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.27 – Sampled Values for Parameter WAS_AREA:BRUCITEH (LHS Variable 38) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>Vector #</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1.98E-08</td>
<td>35</td>
<td>2.00E-08</td>
<td>69</td>
<td>1.95E-08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.14E-08</td>
<td>36</td>
<td>1.92E-08</td>
<td>70</td>
<td>2.01E-08</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.05E-08</td>
<td>37</td>
<td>2.04E-08</td>
<td>71</td>
<td>2.08E-08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.99E-08</td>
<td>38</td>
<td>1.89E-08</td>
<td>72</td>
<td>2.00E-08</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.02E-08</td>
<td>39</td>
<td>2.13E-08</td>
<td>73</td>
<td>1.91E-08</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.94E-08</td>
<td>40</td>
<td>1.97E-08</td>
<td>74</td>
<td>1.85E-08</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.98E-08</td>
<td>41</td>
<td>2.03E-08</td>
<td>75</td>
<td>1.97E-08</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.96E-08</td>
<td>42</td>
<td>1.88E-08</td>
<td>76</td>
<td>2.00E-08</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.86E-08</td>
<td>43</td>
<td>2.11E-08</td>
<td>77</td>
<td>2.17E-08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.97E-08</td>
<td>44</td>
<td>1.93E-08</td>
<td>78</td>
<td>1.90E-08</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.04E-08</td>
<td>45</td>
<td>1.96E-08</td>
<td>79</td>
<td>2.07E-08</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.06E-08</td>
<td>46</td>
<td>1.96E-08</td>
<td>80</td>
<td>1.95E-08</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.01E-08</td>
<td>47</td>
<td>1.84E-08</td>
<td>81</td>
<td>1.93E-08</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.98E-08</td>
<td>48</td>
<td>1.93E-08</td>
<td>82</td>
<td>1.94E-08</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.05E-08</td>
<td>49</td>
<td>1.94E-08</td>
<td>83</td>
<td>1.91E-08</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.12E-08</td>
<td>50</td>
<td>2.01E-08</td>
<td>84</td>
<td>2.15E-08</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.91E-08</td>
<td>51</td>
<td>1.87E-08</td>
<td>85</td>
<td>2.04E-08</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.95E-08</td>
<td>52</td>
<td>1.99E-08</td>
<td>86</td>
<td>1.98E-08</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.06E-08</td>
<td>53</td>
<td>2.02E-08</td>
<td>87</td>
<td>2.03E-08</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.02E-08</td>
<td>54</td>
<td>1.95E-08</td>
<td>88</td>
<td>2.01E-08</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.09E-08</td>
<td>55</td>
<td>2.04E-08</td>
<td>89</td>
<td>2.11E-08</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.05E-08</td>
<td>56</td>
<td>1.93E-08</td>
<td>90</td>
<td>2.02E-08</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.92E-08</td>
<td>57</td>
<td>2.09E-08</td>
<td>91</td>
<td>2.03E-08</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.82E-08</td>
<td>58</td>
<td>2.06E-08</td>
<td>92</td>
<td>1.92E-08</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.07E-08</td>
<td>59</td>
<td>2.09E-08</td>
<td>93</td>
<td>2.07E-08</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.99E-08</td>
<td>60</td>
<td>2.04E-08</td>
<td>94</td>
<td>2.02E-08</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.07E-08</td>
<td>61</td>
<td>2.16E-08</td>
<td>95</td>
<td>2.08E-08</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.97E-08</td>
<td>62</td>
<td>1.96E-08</td>
<td>96</td>
<td>2.00E-08</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.13E-08</td>
<td>63</td>
<td>1.98E-08</td>
<td>97</td>
<td>1.87E-08</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.00E-08</td>
<td>64</td>
<td>2.03E-08</td>
<td>98</td>
<td>1.89E-08</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.02E-08</td>
<td>65</td>
<td>2.10E-08</td>
<td>99</td>
<td>1.96E-08</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.10E-08</td>
<td>66</td>
<td>1.90E-08</td>
<td>100</td>
<td>2.00E-08</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.99E-08</td>
<td>67</td>
<td>2.06E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.09E-08</td>
<td>68</td>
<td>1.97E-08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.28 – Sampled Values for Parameter STEEL:CORRMCO2 (LHS Variable 39)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (m/s)</th>
<th>#</th>
<th>Value (m/s)</th>
<th>#</th>
<th>Value (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.58E-14</td>
<td>35</td>
<td>4.50E-15</td>
<td>69</td>
<td>7.42E-15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.40E-15</td>
<td>36</td>
<td>6.67E-15</td>
<td>70</td>
<td>8.30E-15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.18E-14</td>
<td>37</td>
<td>8.84E-15</td>
<td>71</td>
<td>7.99E-15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.54E-15</td>
<td>38</td>
<td>5.88E-15</td>
<td>72</td>
<td>1.19E-14</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.08E-14</td>
<td>39</td>
<td>1.57E-14</td>
<td>73</td>
<td>2.01E-14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.39E-14</td>
<td>40</td>
<td>1.53E-14</td>
<td>74</td>
<td>1.07E-14</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.32E-15</td>
<td>41</td>
<td>2.94E-14</td>
<td>75</td>
<td>1.59E-14</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.12E-14</td>
<td>42</td>
<td>6.79E-15</td>
<td>76</td>
<td>1.08E-14</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.31E-14</td>
<td>43</td>
<td>1.37E-14</td>
<td>77</td>
<td>1.42E-14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.18E-15</td>
<td>44</td>
<td>3.71E-14</td>
<td>78</td>
<td>3.98E-15</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.40E-14</td>
<td>45</td>
<td>9.34E-15</td>
<td>79</td>
<td>8.16E-15</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.22E-14</td>
<td>46</td>
<td>8.63E-15</td>
<td>80</td>
<td>7.94E-15</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.94E-14</td>
<td>47</td>
<td>3.64E-14</td>
<td>81</td>
<td>1.16E-14</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.28E-14</td>
<td>48</td>
<td>1.96E-14</td>
<td>82</td>
<td>4.90E-15</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.74E-15</td>
<td>49</td>
<td>6.48E-15</td>
<td>83</td>
<td>6.79E-15</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3.59E-15</td>
<td>50</td>
<td>1.38E-14</td>
<td>84</td>
<td>1.73E-14</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.71E-15</td>
<td>51</td>
<td>1.29E-14</td>
<td>85</td>
<td>5.77E-14</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.82E-14</td>
<td>52</td>
<td>6.89E-15</td>
<td>86</td>
<td>8.79E-15</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.26E-14</td>
<td>53</td>
<td>1.13E-14</td>
<td>87</td>
<td>1.32E-14</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.27E-14</td>
<td>54</td>
<td>9.10E-15</td>
<td>88</td>
<td>8.42E-15</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.01E-14</td>
<td>55</td>
<td>7.12E-16</td>
<td>89</td>
<td>9.86E-15</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.47E-14</td>
<td>56</td>
<td>1.18E-14</td>
<td>90</td>
<td>7.42E-14</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.59E-15</td>
<td>57</td>
<td>7.55E-15</td>
<td>91</td>
<td>6.44E-15</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.81E-14</td>
<td>58</td>
<td>5.23E-14</td>
<td>92</td>
<td>9.44E-15</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.50E-14</td>
<td>59</td>
<td>5.37E-16</td>
<td>93</td>
<td>5.15E-15</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.19E-14</td>
<td>60</td>
<td>5.70E-15</td>
<td>94</td>
<td>7.50E-15</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.07E-14</td>
<td>61</td>
<td>1.47E-14</td>
<td>95</td>
<td>1.31E-14</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.45E-14</td>
<td>62</td>
<td>2.84E-15</td>
<td>96</td>
<td>9.20E-15</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>6.09E-15</td>
<td>63</td>
<td>1.83E-14</td>
<td>97</td>
<td>1.36E-14</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.15E-14</td>
<td>64</td>
<td>9.49E-15</td>
<td>98</td>
<td>1.65E-14</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.05E-14</td>
<td>65</td>
<td>1.13E-14</td>
<td>99</td>
<td>1.49E-14</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.24E-15</td>
<td>66</td>
<td>1.27E-14</td>
<td>100</td>
<td>8.05E-15</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.24E-14</td>
<td>67</td>
<td>1.62E-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.14E-14</td>
<td>68</td>
<td>6.46E-15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.28 – Sampled Values for Parameter STEEL:CORRMCO2 (LHS Variable 39) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th># Value (m/s)</th>
<th># Value (m/s)</th>
<th># Value (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>8.58E-15</td>
<td>4.40E-15</td>
<td>1.10E-14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.36E-14</td>
<td>5.17E-15</td>
<td>3.64E-14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.47E-15</td>
<td>8.79E-15</td>
<td>1.06E-15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.46E-15</td>
<td>8.23E-15</td>
<td>1.39E-14</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.80E-14</td>
<td>9.32E-15</td>
<td>1.16E-14</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.46E-14</td>
<td>2.64E-14</td>
<td>1.07E-14</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.78E-15</td>
<td>1.13E-14</td>
<td>1.33E-14</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.08E-15</td>
<td>3.25E-14</td>
<td>2.94E-14</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.49E-15</td>
<td>8.86E-15</td>
<td>1.63E-14</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.13E-14</td>
<td>5.71E-15</td>
<td>1.48E-14</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.60E-14</td>
<td>8.04E-15</td>
<td>1.58E-14</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.71E-15</td>
<td>5.38E-14</td>
<td>1.15E-14</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.13E-14</td>
<td>1.27E-14</td>
<td>1.29E-14</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.74E-15</td>
<td>1.18E-14</td>
<td>1.22E-14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.02E-14</td>
<td>1.13E-14</td>
<td>2.75E-14</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.42E-15</td>
<td>1.41E-14</td>
<td>6.79E-15</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.29E-14</td>
<td>5.86E-15</td>
<td>1.95E-14</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.31E-15</td>
<td>6.61E-15</td>
<td>3.91E-14</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.26E-14</td>
<td>1.58E-14</td>
<td>1.53E-14</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.93E-14</td>
<td>6.48E-15</td>
<td>1.07E-14</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.72E-14</td>
<td>1.37E-14</td>
<td>1.23E-14</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.29E-14</td>
<td>1.38E-14</td>
<td>1.31E-14</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.07E-14</td>
<td>9.14E-15</td>
<td>4.82E-15</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.65E-15</td>
<td>8.43E-15</td>
<td>5.75E-15</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.08E-15</td>
<td>6.89E-15</td>
<td>7.27E-15</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.28E-14</td>
<td>1.43E-14</td>
<td>8.60E-15</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.19E-14</td>
<td>8.05E-15</td>
<td>1.71E-14</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.50E-14</td>
<td>7.96E-15</td>
<td>3.24E-14</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.85E-14</td>
<td>2.04E-15</td>
<td>7.61E-15</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.49E-14</td>
<td>2.11E-15</td>
<td>9.32E-15</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.31E-14</td>
<td>8.40E-15</td>
<td>3.71E-15</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.41E-15</td>
<td>5.89E-16</td>
<td>1.01E-14</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.05E-14</td>
<td>1.20E-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.45E-15</td>
<td>9.22E-15</td>
<td></td>
</tr>
</tbody>
</table>
Table A.28 – Sampled Values for Parameter STEEL:CORRMCO2 (LHS Variable 39) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (m/s)</th>
<th>Vector</th>
<th>Value (m/s)</th>
<th>Value (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.73E-14</td>
<td>35</td>
<td>6.47E-15</td>
<td>69 1.27E-14</td>
</tr>
<tr>
<td></td>
<td>8.32E-15</td>
<td>36</td>
<td>1.53E-14</td>
<td>70 1.17E-14</td>
</tr>
<tr>
<td></td>
<td>1.48E-14</td>
<td>37</td>
<td>7.42E-15</td>
<td>71 1.15E-14</td>
</tr>
<tr>
<td></td>
<td>5.54E-15</td>
<td>38</td>
<td>6.53E-15</td>
<td>72 2.35E-14</td>
</tr>
<tr>
<td></td>
<td>2.00E-14</td>
<td>39</td>
<td>1.43E-14</td>
<td>73 1.55E-14</td>
</tr>
<tr>
<td></td>
<td>1.19E-14</td>
<td>40</td>
<td>7.66E-15</td>
<td>74 3.67E-15</td>
</tr>
<tr>
<td></td>
<td>1.13E-14</td>
<td>41</td>
<td>7.95E-15</td>
<td>75 9.36E-15</td>
</tr>
<tr>
<td></td>
<td>8.87E-15</td>
<td>42</td>
<td>1.39E-16</td>
<td>76 2.12E-15</td>
</tr>
<tr>
<td></td>
<td>9.45E-15</td>
<td>43</td>
<td>6.25E-15</td>
<td>77 8.21E-15</td>
</tr>
<tr>
<td></td>
<td>1.67E-14</td>
<td>44</td>
<td>1.28E-14</td>
<td>78 1.03E-14</td>
</tr>
<tr>
<td></td>
<td>1.43E-15</td>
<td>45</td>
<td>8.42E-15</td>
<td>79 1.11E-15</td>
</tr>
<tr>
<td></td>
<td>3.12E-14</td>
<td>46</td>
<td>6.58E-15</td>
<td>80 1.19E-14</td>
</tr>
<tr>
<td></td>
<td>5.71E-15</td>
<td>47</td>
<td>6.98E-15</td>
<td>81 3.44E-14</td>
</tr>
<tr>
<td></td>
<td>1.59E-14</td>
<td>48</td>
<td>1.46E-14</td>
<td>82 7.15E-15</td>
</tr>
<tr>
<td></td>
<td>6.79E-15</td>
<td>49</td>
<td>1.39E-14</td>
<td>83 1.86E-14</td>
</tr>
<tr>
<td></td>
<td>1.13E-14</td>
<td>50</td>
<td>5.75E-15</td>
<td>84 1.28E-14</td>
</tr>
<tr>
<td></td>
<td>9.32E-15</td>
<td>51</td>
<td>1.07E-14</td>
<td>85 1.79E-14</td>
</tr>
<tr>
<td></td>
<td>1.19E-14</td>
<td>52</td>
<td>9.16E-15</td>
<td>86 9.26E-15</td>
</tr>
<tr>
<td></td>
<td>8.50E-15</td>
<td>53</td>
<td>3.77E-15</td>
<td>87 3.67E-14</td>
</tr>
<tr>
<td></td>
<td>1.36E-14</td>
<td>54</td>
<td>1.29E-14</td>
<td>88 6.75E-15</td>
</tr>
<tr>
<td></td>
<td>1.31E-14</td>
<td>55</td>
<td>1.32E-14</td>
<td>89 4.29E-15</td>
</tr>
<tr>
<td></td>
<td>1.13E-14</td>
<td>56</td>
<td>1.38E-14</td>
<td>90 7.58E-15</td>
</tr>
<tr>
<td></td>
<td>1.12E-14</td>
<td>57</td>
<td>1.24E-14</td>
<td>91 9.55E-15</td>
</tr>
<tr>
<td></td>
<td>7.16E-14</td>
<td>58</td>
<td>1.07E-14</td>
<td>92 3.70E-14</td>
</tr>
<tr>
<td></td>
<td>1.41E-14</td>
<td>59</td>
<td>6.28E-14</td>
<td>93 4.95E-14</td>
</tr>
<tr>
<td></td>
<td>8.39E-15</td>
<td>60</td>
<td>1.62E-14</td>
<td>94 1.86E-14</td>
</tr>
<tr>
<td></td>
<td>6.79E-15</td>
<td>61</td>
<td>5.77E-15</td>
<td>95 2.96E-14</td>
</tr>
<tr>
<td></td>
<td>1.09E-14</td>
<td>62</td>
<td>1.25E-14</td>
<td>96 1.51E-14</td>
</tr>
<tr>
<td></td>
<td>8.72E-15</td>
<td>63</td>
<td>1.49E-14</td>
<td>97 8.05E-15</td>
</tr>
<tr>
<td></td>
<td>1.37E-14</td>
<td>64</td>
<td>8.82E-15</td>
<td>98 4.95E-15</td>
</tr>
<tr>
<td></td>
<td>8.00E-15</td>
<td>65</td>
<td>2.94E-14</td>
<td>99 3.15E-15</td>
</tr>
<tr>
<td></td>
<td>1.21E-14</td>
<td>66</td>
<td>9.65E-15</td>
<td>100 2.90E-14</td>
</tr>
<tr>
<td></td>
<td>7.54E-15</td>
<td>67</td>
<td>1.07E-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.06E-15</td>
<td>68</td>
<td>1.31E-14</td>
<td></td>
</tr>
</tbody>
</table>
Table A.29 – Sampled Values for Parameter WAS_AREA:PROBDEG (LHS Variable 40)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00E+00</td>
<td>35</td>
<td>1.00E+00</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>2.00E+00</td>
<td>36</td>
<td>1.00E+00</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>2.00E+00</td>
<td>37</td>
<td>2.00E+00</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>1.00E+00</td>
<td>38</td>
<td>2.00E+00</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>2.00E+00</td>
<td>39</td>
<td>1.00E+00</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>2.00E+00</td>
<td>40</td>
<td>1.00E+00</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>1.00E+00</td>
<td>41</td>
<td>1.00E+00</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>1.00E+00</td>
<td>42</td>
<td>1.00E+00</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>2.00E+00</td>
<td>43</td>
<td>1.00E+00</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>1.00E+00</td>
<td>44</td>
<td>2.00E+00</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>1.00E+00</td>
<td>45</td>
<td>1.00E+00</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>2.00E+00</td>
<td>46</td>
<td>1.00E+00</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>1.00E+00</td>
<td>47</td>
<td>1.00E+00</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>2.00E+00</td>
<td>48</td>
<td>1.00E+00</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>2.00E+00</td>
<td>49</td>
<td>1.00E+00</td>
<td>83</td>
</tr>
<tr>
<td>16</td>
<td>1.00E+00</td>
<td>50</td>
<td>1.00E+00</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>1.00E+00</td>
<td>51</td>
<td>1.00E+00</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>1.00E+00</td>
<td>52</td>
<td>1.00E+00</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>1.00E+00</td>
<td>53</td>
<td>2.00E+00</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>2.00E+00</td>
<td>54</td>
<td>2.00E+00</td>
<td>88</td>
</tr>
<tr>
<td>21</td>
<td>1.00E+00</td>
<td>55</td>
<td>1.00E+00</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>1.00E+00</td>
<td>56</td>
<td>1.00E+00</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>1.00E+00</td>
<td>57</td>
<td>1.00E+00</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>1.00E+00</td>
<td>58</td>
<td>2.00E+00</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>2.00E+00</td>
<td>59</td>
<td>2.00E+00</td>
<td>93</td>
</tr>
<tr>
<td>26</td>
<td>1.00E+00</td>
<td>60</td>
<td>1.00E+00</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>1.00E+00</td>
<td>61</td>
<td>1.00E+00</td>
<td>95</td>
</tr>
<tr>
<td>28</td>
<td>2.00E+00</td>
<td>62</td>
<td>1.00E+00</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>1.00E+00</td>
<td>63</td>
<td>2.00E+00</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>1.00E+00</td>
<td>64</td>
<td>1.00E+00</td>
<td>98</td>
</tr>
<tr>
<td>31</td>
<td>1.00E+00</td>
<td>65</td>
<td>1.00E+00</td>
<td>99</td>
</tr>
<tr>
<td>32</td>
<td>1.00E+00</td>
<td>66</td>
<td>1.00E+00</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>1.00E+00</td>
<td>67</td>
<td>1.00E+00</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.00E+00</td>
<td>68</td>
<td>2.00E+00</td>
<td></td>
</tr>
</tbody>
</table>
Table A.29 – Sampled Values for Parameter WAS_AREA:PROBDEG (LHS Variable 40) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.00E+00</td>
<td>35</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.00E+00</td>
<td>36</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.00E+00</td>
<td>37</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.00E+00</td>
<td>38</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.00E+00</td>
<td>39</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.00E+00</td>
<td>40</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.00E+00</td>
<td>41</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.00E+00</td>
<td>42</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.00E+00</td>
<td>43</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.00E+00</td>
<td>44</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.00E+00</td>
<td>45</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.00E+00</td>
<td>46</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.00E+00</td>
<td>47</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.00E+00</td>
<td>48</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.00E+00</td>
<td>49</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.00E+00</td>
<td>50</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.00E+00</td>
<td>51</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.00E+00</td>
<td>52</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.00E+00</td>
<td>53</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.00E+00</td>
<td>54</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.00E+00</td>
<td>55</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.00E+00</td>
<td>56</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.00E+00</td>
<td>57</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.00E+00</td>
<td>58</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.00E+00</td>
<td>59</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.00E+00</td>
<td>60</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.00E+00</td>
<td>61</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.00E+00</td>
<td>62</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.00E+00</td>
<td>63</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.00E+00</td>
<td>64</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.00E+00</td>
<td>65</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.00E+00</td>
<td>66</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.00E+00</td>
<td>67</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.00E+00</td>
<td>68</td>
<td>1.00E+00</td>
</tr>
</tbody>
</table>

Information Only
Table A.29 – Sampled Values for Parameter WAS_AREA:PROBDEG (LHS Variable 40) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>1.00E+00</td>
<td>35</td>
<td>1.00E+00</td>
<td>69</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>36</td>
<td>2.00E+00</td>
<td>70</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>37</td>
<td>1.00E+00</td>
<td>71</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>38</td>
<td>1.00E+00</td>
<td>72</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>39</td>
<td>2.00E+00</td>
<td>73</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>40</td>
<td>2.00E+00</td>
<td>74</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>41</td>
<td>1.00E+00</td>
<td>75</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>2.00E+00</td>
<td>42</td>
<td>2.00E+00</td>
<td>76</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>2.00E+00</td>
<td>43</td>
<td>1.00E+00</td>
<td>77</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>2.00E+00</td>
<td>44</td>
<td>2.00E+00</td>
<td>78</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>45</td>
<td>1.00E+00</td>
<td>79</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>46</td>
<td>2.00E+00</td>
<td>80</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>47</td>
<td>1.00E+00</td>
<td>81</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>48</td>
<td>1.00E+00</td>
<td>82</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>49</td>
<td>2.00E+00</td>
<td>83</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>50</td>
<td>2.00E+00</td>
<td>84</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>51</td>
<td>1.00E+00</td>
<td>85</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>52</td>
<td>2.00E+00</td>
<td>86</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>2.00E+00</td>
<td>53</td>
<td>1.00E+00</td>
<td>87</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>54</td>
<td>1.00E+00</td>
<td>88</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>55</td>
<td>1.00E+00</td>
<td>89</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>56</td>
<td>1.00E+00</td>
<td>90</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>57</td>
<td>2.00E+00</td>
<td>91</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>58</td>
<td>2.00E+00</td>
<td>92</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>59</td>
<td>1.00E+00</td>
<td>93</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>2.00E+00</td>
<td>60</td>
<td>1.00E+00</td>
<td>94</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>61</td>
<td>1.00E+00</td>
<td>95</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>62</td>
<td>1.00E+00</td>
<td>96</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>63</td>
<td>1.00E+00</td>
<td>97</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>64</td>
<td>1.00E+00</td>
<td>98</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>65</td>
<td>1.00E+00</td>
<td>99</td>
<td>2.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>66</td>
<td>1.00E+00</td>
<td>100</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>67</td>
<td>1.00E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00E+00</td>
<td>68</td>
<td>1.00E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.30 – Sampled Values for Parameter WAS_AREA:GRATMICI (LHS Variable 41)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.39E-10</td>
<td>35</td>
<td>2.50E-10</td>
<td>69</td>
<td>3.94E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.82E-11</td>
<td>36</td>
<td>1.51E-10</td>
<td>70</td>
<td>1.64E-10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.28E-10</td>
<td>37</td>
<td>4.59E-10</td>
<td>71</td>
<td>5.50E-10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.93E-11</td>
<td>38</td>
<td>3.89E-10</td>
<td>72</td>
<td>2.42E-10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.27E-10</td>
<td>39</td>
<td>3.59E-10</td>
<td>73</td>
<td>4.76E-10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.09E-10</td>
<td>40</td>
<td>3.54E-10</td>
<td>74</td>
<td>3.44E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.09E-10</td>
<td>41</td>
<td>4.20E-10</td>
<td>75</td>
<td>2.97E-10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.04E-10</td>
<td>42</td>
<td>1.61E-10</td>
<td>76</td>
<td>5.55E-10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.45E-10</td>
<td>43</td>
<td>4.47E-10</td>
<td>77</td>
<td>1.76E-10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.32E-10</td>
<td>44</td>
<td>5.18E-10</td>
<td>78</td>
<td>1.44E-10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.35E-10</td>
<td>45</td>
<td>8.36E-11</td>
<td>79</td>
<td>1.33E-10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.21E-10</td>
<td>46</td>
<td>2.52E-10</td>
<td>80</td>
<td>7.02E-11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.19E-10</td>
<td>47</td>
<td>1.03E-10</td>
<td>81</td>
<td>3.68E-10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.31E-10</td>
<td>48</td>
<td>2.29E-10</td>
<td>82</td>
<td>1.18E-10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.83E-10</td>
<td>49</td>
<td>3.25E-10</td>
<td>83</td>
<td>2.04E-10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.72E-10</td>
<td>50</td>
<td>5.03E-10</td>
<td>84</td>
<td>5.26E-11</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.61E-10</td>
<td>51</td>
<td>2.72E-10</td>
<td>85</td>
<td>4.79E-10</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.26E-11</td>
<td>52</td>
<td>5.37E-10</td>
<td>86</td>
<td>5.76E-11</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.92E-10</td>
<td>53</td>
<td>3.49E-10</td>
<td>87</td>
<td>4.94E-10</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.85E-10</td>
<td>54</td>
<td>2.90E-10</td>
<td>88</td>
<td>2.74E-10</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.89E-10</td>
<td>55</td>
<td>4.84E-10</td>
<td>89</td>
<td>4.27E-10</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.25E-10</td>
<td>56</td>
<td>5.06E-11</td>
<td>90</td>
<td>1.87E-10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.08E-10</td>
<td>57</td>
<td>4.56E-10</td>
<td>91</td>
<td>3.11E-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.95E-11</td>
<td>58</td>
<td>3.09E-10</td>
<td>92</td>
<td>1.55E-10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.44E-10</td>
<td>59</td>
<td>4.22E-10</td>
<td>93</td>
<td>4.35E-10</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.14E-10</td>
<td>60</td>
<td>5.23E-10</td>
<td>94</td>
<td>4.63E-10</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.33E-10</td>
<td>61</td>
<td>1.07E-10</td>
<td>95</td>
<td>3.84E-10</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.36E-10</td>
<td>62</td>
<td>3.63E-10</td>
<td>96</td>
<td>3.76E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.32E-11</td>
<td>63</td>
<td>1.41E-10</td>
<td>97</td>
<td>3.40E-10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.81E-10</td>
<td>64</td>
<td>6.74E-11</td>
<td>98</td>
<td>4.12E-10</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>9.19E-11</td>
<td>65</td>
<td>5.12E-10</td>
<td>99</td>
<td>2.17E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.65E-10</td>
<td>66</td>
<td>9.68E-11</td>
<td>100</td>
<td>2.13E-10</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.72E-10</td>
<td>67</td>
<td>1.95E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.04E-10</td>
<td>68</td>
<td>2.83E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Value (moles/(kg*s))</td>
<td>Vector</td>
<td>Value (moles/(kg*s))</td>
<td>#</td>
<td>Value (moles/(kg*s))</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.46E-10</td>
<td>35</td>
<td>2.33E-10</td>
<td>69</td>
<td>3.06E-10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.66E-10</td>
<td>36</td>
<td>4.40E-10</td>
<td>70</td>
<td>2.87E-10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.94E-10</td>
<td>37</td>
<td>5.33E-10</td>
<td>71</td>
<td>2.79E-10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.21E-10</td>
<td>38</td>
<td>3.64E-10</td>
<td>72</td>
<td>4.06E-10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.45E-10</td>
<td>39</td>
<td>1.06E-10</td>
<td>73</td>
<td>3.83E-10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.54E-11</td>
<td>40</td>
<td>1.18E-10</td>
<td>74</td>
<td>1.79E-10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.68E-11</td>
<td>41</td>
<td>5.00E-10</td>
<td>75</td>
<td>2.69E-10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.08E-10</td>
<td>42</td>
<td>4.73E-10</td>
<td>76</td>
<td>4.88E-10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.40E-11</td>
<td>43</td>
<td>3.92E-10</td>
<td>77</td>
<td>3.40E-10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.86E-11</td>
<td>44</td>
<td>5.26E-10</td>
<td>78</td>
<td>3.10E-10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.76E-10</td>
<td>45</td>
<td>1.84E-10</td>
<td>79</td>
<td>4.24E-10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8.73E-11</td>
<td>46</td>
<td>4.17E-10</td>
<td>80</td>
<td>2.04E-10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.57E-10</td>
<td>47</td>
<td>5.50E-10</td>
<td>81</td>
<td>5.12E-10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.59E-10</td>
<td>48</td>
<td>4.79E-10</td>
<td>82</td>
<td>1.31E-10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>6.43E-11</td>
<td>49</td>
<td>8.03E-11</td>
<td>83</td>
<td>3.53E-10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.21E-10</td>
<td>50</td>
<td>3.31E-10</td>
<td>84</td>
<td>2.97E-10</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.52E-10</td>
<td>51</td>
<td>4.97E-10</td>
<td>85</td>
<td>5.41E-10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.69E-10</td>
<td>52</td>
<td>1.14E-10</td>
<td>86</td>
<td>2.08E-10</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.58E-10</td>
<td>53</td>
<td>2.75E-10</td>
<td>87</td>
<td>1.72E-10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9.68E-11</td>
<td>54</td>
<td>9.00E-11</td>
<td>88</td>
<td>3.01E-10</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.90E-10</td>
<td>55</td>
<td>1.90E-10</td>
<td>89</td>
<td>1.22E-10</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.19E-10</td>
<td>56</td>
<td>1.41E-10</td>
<td>90</td>
<td>3.60E-10</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.56E-10</td>
<td>57</td>
<td>4.04E-10</td>
<td>91</td>
<td>2.37E-10</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.63E-10</td>
<td>58</td>
<td>3.47E-10</td>
<td>92</td>
<td>5.53E-10</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.71E-10</td>
<td>59</td>
<td>2.14E-10</td>
<td>93</td>
<td>1.02E-10</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.26E-10</td>
<td>60</td>
<td>4.55E-10</td>
<td>94</td>
<td>3.19E-10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.73E-11</td>
<td>61</td>
<td>4.47E-11</td>
<td>95</td>
<td>6.78E-11</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.12E-10</td>
<td>62</td>
<td>2.29E-10</td>
<td>96</td>
<td>2.19E-10</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.49E-10</td>
<td>63</td>
<td>4.26E-10</td>
<td>97</td>
<td>1.46E-10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.14E-11</td>
<td>64</td>
<td>1.77E-10</td>
<td>98</td>
<td>3.85E-10</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2.42E-10</td>
<td>65</td>
<td>4.63E-10</td>
<td>99</td>
<td>2.47E-10</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3.27E-10</td>
<td>66</td>
<td>4.32E-10</td>
<td>100</td>
<td>4.48E-10</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.42E-10</td>
<td>67</td>
<td>1.95E-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.91E-10</td>
<td>68</td>
<td>3.25E-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.30 – Sampled Values for Parameter WAS_AREA:GRATMICI (LHS Variable 41) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.86E-10</td>
<td>35</td>
<td>1.73E-10</td>
<td>69</td>
<td>3.52E-10</td>
</tr>
<tr>
<td>2</td>
<td>2.28E-10</td>
<td>36</td>
<td>5.27E-10</td>
<td>70</td>
<td>4.69E-11</td>
</tr>
<tr>
<td>3</td>
<td>1.95E-10</td>
<td>37</td>
<td>3.89E-10</td>
<td>71</td>
<td>1.57E-10</td>
</tr>
<tr>
<td>4</td>
<td>1.64E-10</td>
<td>38</td>
<td>4.28E-10</td>
<td>72</td>
<td>8.11E-11</td>
</tr>
<tr>
<td>5</td>
<td>5.76E-11</td>
<td>39</td>
<td>1.36E-10</td>
<td>73</td>
<td>1.05E-10</td>
</tr>
<tr>
<td>6</td>
<td>3.35E-10</td>
<td>40</td>
<td>1.14E-10</td>
<td>74</td>
<td>3.08E-10</td>
</tr>
<tr>
<td>7</td>
<td>4.19E-10</td>
<td>41</td>
<td>2.56E-10</td>
<td>75</td>
<td>1.48E-10</td>
</tr>
<tr>
<td>8</td>
<td>2.40E-10</td>
<td>42</td>
<td>3.62E-10</td>
<td>76</td>
<td>9.57E-11</td>
</tr>
<tr>
<td>9</td>
<td>3.11E-10</td>
<td>43</td>
<td>3.48E-10</td>
<td>77</td>
<td>2.73E-10</td>
</tr>
<tr>
<td>10</td>
<td>1.37E-10</td>
<td>44</td>
<td>3.38E-10</td>
<td>78</td>
<td>2.88E-10</td>
</tr>
<tr>
<td>11</td>
<td>4.54E-10</td>
<td>45</td>
<td>1.89E-10</td>
<td>79</td>
<td>4.07E-10</td>
</tr>
<tr>
<td>12</td>
<td>5.20E-11</td>
<td>46</td>
<td>2.10E-10</td>
<td>80</td>
<td>3.45E-10</td>
</tr>
<tr>
<td>13</td>
<td>5.32E-10</td>
<td>47</td>
<td>1.24E-10</td>
<td>81</td>
<td>4.86E-10</td>
</tr>
<tr>
<td>14</td>
<td>5.52E-10</td>
<td>48</td>
<td>5.46E-10</td>
<td>82</td>
<td>2.94E-10</td>
</tr>
<tr>
<td>15</td>
<td>3.94E-10</td>
<td>49</td>
<td>4.33E-10</td>
<td>83</td>
<td>4.47E-10</td>
</tr>
<tr>
<td>16</td>
<td>4.46E-10</td>
<td>50</td>
<td>3.04E-10</td>
<td>84</td>
<td>7.45E-11</td>
</tr>
<tr>
<td>17</td>
<td>2.31E-10</td>
<td>51</td>
<td>1.27E-10</td>
<td>85</td>
<td>8.36E-11</td>
</tr>
<tr>
<td>18</td>
<td>2.75E-10</td>
<td>52</td>
<td>1.02E-10</td>
<td>86</td>
<td>3.30E-10</td>
</tr>
<tr>
<td>19</td>
<td>1.17E-10</td>
<td>53</td>
<td>4.61E-11</td>
<td>87</td>
<td>2.23E-10</td>
</tr>
<tr>
<td>20</td>
<td>1.56E-10</td>
<td>54</td>
<td>1.73E-10</td>
<td>88</td>
<td>2.61E-10</td>
</tr>
<tr>
<td>21</td>
<td>5.24E-10</td>
<td>55</td>
<td>5.14E-10</td>
<td>89</td>
<td>4.83E-10</td>
</tr>
<tr>
<td>22</td>
<td>3.82E-10</td>
<td>56</td>
<td>9.23E-11</td>
<td>90</td>
<td>2.67E-10</td>
</tr>
<tr>
<td>23</td>
<td>5.37E-10</td>
<td>57</td>
<td>2.92E-10</td>
<td>91</td>
<td>4.63E-10</td>
</tr>
<tr>
<td>24</td>
<td>3.70E-10</td>
<td>58</td>
<td>5.03E-10</td>
<td>92</td>
<td>2.81E-10</td>
</tr>
<tr>
<td>25</td>
<td>3.24E-10</td>
<td>59</td>
<td>4.58E-10</td>
<td>93</td>
<td>3.85E-10</td>
</tr>
<tr>
<td>26</td>
<td>4.13E-10</td>
<td>60</td>
<td>2.42E-10</td>
<td>94</td>
<td>4.40E-10</td>
</tr>
<tr>
<td>27</td>
<td>3.60E-10</td>
<td>61</td>
<td>4.99E-10</td>
<td>95</td>
<td>2.51E-10</td>
</tr>
<tr>
<td>28</td>
<td>5.17E-10</td>
<td>62</td>
<td>5.05E-10</td>
<td>96</td>
<td>4.93E-10</td>
</tr>
<tr>
<td>29</td>
<td>2.15E-10</td>
<td>63</td>
<td>2.03E-10</td>
<td>97</td>
<td>4.08E-11</td>
</tr>
<tr>
<td>30</td>
<td>4.72E-10</td>
<td>64</td>
<td>5.51E-10</td>
<td>98</td>
<td>4.21E-10</td>
</tr>
<tr>
<td>31</td>
<td>4.77E-10</td>
<td>65</td>
<td>3.74E-10</td>
<td>99</td>
<td>2.09E-10</td>
</tr>
<tr>
<td>32</td>
<td>6.85E-11</td>
<td>66</td>
<td>3.99E-10</td>
<td>100</td>
<td>1.80E-10</td>
</tr>
<tr>
<td>33</td>
<td>3.15E-11</td>
<td>67</td>
<td>6.58E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.19E-10</td>
<td>68</td>
<td>1.43E-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.31 – Sampled Values for Parameter WAS_AREA:GRATMICH (LHS Variable 42)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.39E-11</td>
<td>35</td>
<td>2.46E-10</td>
<td>69</td>
<td>3.39E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.51E-11</td>
<td>36</td>
<td>9.72E-11</td>
<td>70</td>
<td>2.97E-11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.92E-10</td>
<td>37</td>
<td>3.51E-10</td>
<td>71</td>
<td>4.94E-10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.01E-11</td>
<td>38</td>
<td>1.89E-10</td>
<td>72</td>
<td>2.18E-10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.04E-10</td>
<td>39</td>
<td>3.41E-10</td>
<td>73</td>
<td>3.45E-10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.84E-10</td>
<td>40</td>
<td>2.49E-10</td>
<td>74</td>
<td>2.01E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.60E-10</td>
<td>41</td>
<td>1.01E-10</td>
<td>75</td>
<td>1.56E-10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.83E-10</td>
<td>42</td>
<td>1.36E-10</td>
<td>76</td>
<td>5.54E-10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.21E-10</td>
<td>43</td>
<td>4.27E-10</td>
<td>77</td>
<td>4.57E-11</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.76E-10</td>
<td>44</td>
<td>5.00E-10</td>
<td>78</td>
<td>6.38E-11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.57E-12</td>
<td>45</td>
<td>2.53E-11</td>
<td>79</td>
<td>9.12E-11</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.80E-11</td>
<td>46</td>
<td>1.68E-10</td>
<td>80</td>
<td>5.21E-11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.40E-10</td>
<td>47</td>
<td>3.94E-11</td>
<td>81</td>
<td>1.83E-10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>7.99E-11</td>
<td>48</td>
<td>8.28E-11</td>
<td>82</td>
<td>1.03E-10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.35E-11</td>
<td>49</td>
<td>1.74E-10</td>
<td>83</td>
<td>7.85E-11</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.49E-10</td>
<td>50</td>
<td>3.63E-10</td>
<td>84</td>
<td>3.45E-11</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.03E-11</td>
<td>51</td>
<td>2.64E-10</td>
<td>85</td>
<td>2.43E-10</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.98E-11</td>
<td>52</td>
<td>1.38E-10</td>
<td>86</td>
<td>1.84E-11</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.60E-10</td>
<td>53</td>
<td>2.00E-10</td>
<td>87</td>
<td>3.45E-10</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.09E-10</td>
<td>54</td>
<td>1.55E-10</td>
<td>88</td>
<td>1.09E-10</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.13E-10</td>
<td>55</td>
<td>2.78E-10</td>
<td>89</td>
<td>1.82E-10</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.66E-11</td>
<td>56</td>
<td>4.13E-11</td>
<td>90</td>
<td>1.15E-10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.29E-10</td>
<td>57</td>
<td>3.45E-10</td>
<td>91</td>
<td>2.44E-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.28E-11</td>
<td>58</td>
<td>1.63E-10</td>
<td>92</td>
<td>1.25E-10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.51E-11</td>
<td>59</td>
<td>1.10E-10</td>
<td>93</td>
<td>2.29E-10</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.81E-11</td>
<td>60</td>
<td>3.77E-10</td>
<td>94</td>
<td>3.87E-10</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.48E-10</td>
<td>61</td>
<td>5.98E-11</td>
<td>95</td>
<td>2.10E-10</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.95E-10</td>
<td>62</td>
<td>2.17E-10</td>
<td>96</td>
<td>3.23E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>3.09E-11</td>
<td>63</td>
<td>1.12E-10</td>
<td>97</td>
<td>1.75E-10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.29E-10</td>
<td>64</td>
<td>2.73E-11</td>
<td>98</td>
<td>3.77E-10</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.80E-11</td>
<td>65</td>
<td>2.36E-11</td>
<td>99</td>
<td>1.44E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.98E-10</td>
<td>66</td>
<td>4.56E-11</td>
<td>100</td>
<td>9.65E-11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.65E-10</td>
<td>67</td>
<td>1.76E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.89E-10</td>
<td>68</td>
<td>6.04E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Vector</td>
<td>Value (moles/(kg*s))</td>
<td>#</td>
<td>Value (moles/(kg*s))</td>
<td>#</td>
<td>Value (moles/(kg*s))</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>----------------------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3.79E-10</td>
<td>35</td>
<td>1.30E-10</td>
<td>69</td>
<td>2.18E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.58E-11</td>
<td>36</td>
<td>2.75E-10</td>
<td>70</td>
<td>2.66E-10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.35E-10</td>
<td>37</td>
<td>4.21E-10</td>
<td>71</td>
<td>2.62E-10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.59E-10</td>
<td>38</td>
<td>2.12E-10</td>
<td>72</td>
<td>3.53E-10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.44E-10</td>
<td>39</td>
<td>1.04E-10</td>
<td>73</td>
<td>3.70E-10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.69E-11</td>
<td>40</td>
<td>3.59E-11</td>
<td>74</td>
<td>1.43E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.91E-11</td>
<td>41</td>
<td>1.14E-10</td>
<td>75</td>
<td>1.53E-10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.67E-10</td>
<td>42</td>
<td>3.66E-10</td>
<td>76</td>
<td>3.19E-10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.80E-11</td>
<td>43</td>
<td>1.93E-10</td>
<td>77</td>
<td>2.09E-10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.07E-11</td>
<td>44</td>
<td>3.33E-10</td>
<td>78</td>
<td>7.12E-11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.64E-10</td>
<td>45</td>
<td>5.45E-11</td>
<td>79</td>
<td>3.09E-10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.07E-11</td>
<td>46</td>
<td>2.82E-10</td>
<td>80</td>
<td>1.87E-10</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.99E-11</td>
<td>47</td>
<td>2.65E-12</td>
<td>81</td>
<td>3.77E-10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.04E-10</td>
<td>48</td>
<td>4.47E-11</td>
<td>82</td>
<td>3.21E-11</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.36E-11</td>
<td>49</td>
<td>1.43E-11</td>
<td>83</td>
<td>2.91E-10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.29E-11</td>
<td>50</td>
<td>3.29E-10</td>
<td>84</td>
<td>1.26E-10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.22E-10</td>
<td>51</td>
<td>3.12E-10</td>
<td>85</td>
<td>5.31E-10</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.67E-10</td>
<td>52</td>
<td>5.40E-11</td>
<td>86</td>
<td>1.38E-10</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.78E-10</td>
<td>53</td>
<td>1.79E-10</td>
<td>87</td>
<td>7.76E-11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.31E-11</td>
<td>54</td>
<td>4.21E-11</td>
<td>88</td>
<td>2.28E-10</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.64E-10</td>
<td>55</td>
<td>7.65E-11</td>
<td>89</td>
<td>1.17E-10</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.50E-11</td>
<td>56</td>
<td>2.14E-11</td>
<td>90</td>
<td>3.13E-10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.32E-10</td>
<td>57</td>
<td>3.81E-10</td>
<td>91</td>
<td>1.41E-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.95E-10</td>
<td>58</td>
<td>3.26E-10</td>
<td>92</td>
<td>4.82E-10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.46E-10</td>
<td>59</td>
<td>1.84E-10</td>
<td>93</td>
<td>2.90E-11</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.62E-11</td>
<td>60</td>
<td>3.37E-10</td>
<td>94</td>
<td>1.91E-10</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.64E-11</td>
<td>61</td>
<td>8.85E-12</td>
<td>95</td>
<td>2.59E-11</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.08E-10</td>
<td>62</td>
<td>2.09E-10</td>
<td>96</td>
<td>1.27E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>9.97E-11</td>
<td>63</td>
<td>3.77E-10</td>
<td>97</td>
<td>2.51E-11</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.45E-11</td>
<td>64</td>
<td>7.41E-11</td>
<td>98</td>
<td>3.25E-10</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.28E-11</td>
<td>65</td>
<td>2.52E-10</td>
<td>99</td>
<td>1.21E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.64E-10</td>
<td>66</td>
<td>1.91E-10</td>
<td>100</td>
<td>9.62E-11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.71E-10</td>
<td>67</td>
<td>1.75E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.77E-10</td>
<td>68</td>
<td>1.08E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (moles/(kg*s))</td>
<td>Vector #</td>
<td>Value (moles/(kg*s))</td>
<td>#</td>
<td>Value (moles/(kg*s))</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3.65E-11</td>
<td>35</td>
<td>1.17E-10</td>
<td>69</td>
<td>1.15E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.15E-10</td>
<td>36</td>
<td>5.11E-10</td>
<td>70</td>
<td>2.20E-11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.22E-10</td>
<td>37</td>
<td>1.55E-10</td>
<td>71</td>
<td>7.72E-11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.16E-10</td>
<td>38</td>
<td>3.57E-10</td>
<td>72</td>
<td>1.36E-11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.19E-11</td>
<td>39</td>
<td>9.27E-11</td>
<td>73</td>
<td>1.37E-11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.40E-10</td>
<td>40</td>
<td>1.08E-10</td>
<td>74</td>
<td>1.74E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.15E-10</td>
<td>41</td>
<td>2.46E-10</td>
<td>75</td>
<td>6.00E-11</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.92E-10</td>
<td>42</td>
<td>2.60E-10</td>
<td>76</td>
<td>3.07E-11</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.45E-10</td>
<td>43</td>
<td>1.92E-10</td>
<td>77</td>
<td>1.05E-10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.35E-11</td>
<td>44</td>
<td>2.13E-10</td>
<td>78</td>
<td>2.59E-10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.07E-11</td>
<td>45</td>
<td>1.62E-10</td>
<td>79</td>
<td>3.52E-10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.75E-11</td>
<td>46</td>
<td>1.95E-10</td>
<td>80</td>
<td>3.41E-10</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.68E-10</td>
<td>47</td>
<td>7.84E-11</td>
<td>81</td>
<td>3.69E-10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.02E-10</td>
<td>48</td>
<td>2.16E-10</td>
<td>82</td>
<td>1.61E-10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.88E-10</td>
<td>49</td>
<td>2.00E-10</td>
<td>83</td>
<td>8.49E-11</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.61E-10</td>
<td>50</td>
<td>2.66E-10</td>
<td>84</td>
<td>6.17E-11</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.13E-10</td>
<td>51</td>
<td>6.28E-11</td>
<td>85</td>
<td>6.32E-11</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.83E-10</td>
<td>52</td>
<td>6.34E-11</td>
<td>86</td>
<td>2.30E-10</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.14E-11</td>
<td>53</td>
<td>1.37E-11</td>
<td>87</td>
<td>4.96E-11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.00E-10</td>
<td>54</td>
<td>1.68E-10</td>
<td>88</td>
<td>1.38E-10</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.83E-10</td>
<td>55</td>
<td>3.02E-10</td>
<td>89</td>
<td>4.28E-10</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.70E-10</td>
<td>56</td>
<td>4.32E-11</td>
<td>90</td>
<td>1.09E-10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.47E-10</td>
<td>57</td>
<td>1.05E-10</td>
<td>91</td>
<td>3.55E-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.26E-10</td>
<td>58</td>
<td>4.83E-10</td>
<td>92</td>
<td>2.27E-10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.50E-10</td>
<td>59</td>
<td>3.71E-10</td>
<td>93</td>
<td>3.16E-10</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.35E-10</td>
<td>60</td>
<td>1.88E-10</td>
<td>94</td>
<td>3.28E-10</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.04E-10</td>
<td>61</td>
<td>3.28E-10</td>
<td>95</td>
<td>1.81E-10</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.16E-10</td>
<td>62</td>
<td>4.01E-10</td>
<td>96</td>
<td>2.93E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.15E-10</td>
<td>63</td>
<td>7.60E-11</td>
<td>97</td>
<td>3.82E-11</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.97E-10</td>
<td>64</td>
<td>6.73E-13</td>
<td>98</td>
<td>5.77E-11</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.21E-10</td>
<td>65</td>
<td>1.78E-10</td>
<td>99</td>
<td>1.27E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.48E-11</td>
<td>66</td>
<td>1.67E-10</td>
<td>100</td>
<td>1.31E-10</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>8.49E-12</td>
<td>67</td>
<td>2.27E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.36E-10</td>
<td>68</td>
<td>6.04E-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.32 – Sampled Values for Parameter WAS_AREA:HYMAGCON (LHS Variable 43)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
<th>#</th>
<th>Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.24E-10</td>
<td>35</td>
<td>4.74E-11</td>
<td>69</td>
<td>7.73E-11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.32E-10</td>
<td>36</td>
<td>1.11E-10</td>
<td>70</td>
<td>2.70E-10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.27E-10</td>
<td>37</td>
<td>3.17E-11</td>
<td>71</td>
<td>1.18E-10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.32E-11</td>
<td>38</td>
<td>1.08E-11</td>
<td>72</td>
<td>1.24E-10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.57E-10</td>
<td>39</td>
<td>3.04E-10</td>
<td>73</td>
<td>1.02E-10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.10E-11</td>
<td>40</td>
<td>9.00E-12</td>
<td>74</td>
<td>3.16E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8.65E-11</td>
<td>41</td>
<td>1.41E-10</td>
<td>75</td>
<td>6.53E-11</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.54E-10</td>
<td>42</td>
<td>1.80E-10</td>
<td>76</td>
<td>3.27E-10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.37E-10</td>
<td>43</td>
<td>2.26E-10</td>
<td>77</td>
<td>1.06E-10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.86E-10</td>
<td>44</td>
<td>2.47E-10</td>
<td>78</td>
<td>2.03E-10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.81E-10</td>
<td>45</td>
<td>8.13E-11</td>
<td>79</td>
<td>1.83E-10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.49E-13</td>
<td>46</td>
<td>2.05E-10</td>
<td>80</td>
<td>1.51E-10</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.63E-10</td>
<td>47</td>
<td>1.67E-10</td>
<td>81</td>
<td>2.18E-10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.75E-10</td>
<td>48</td>
<td>2.01E-11</td>
<td>82</td>
<td>2.12E-10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.00E-10</td>
<td>49</td>
<td>2.94E-10</td>
<td>83</td>
<td>2.09E-10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.16E-10</td>
<td>50</td>
<td>2.86E-10</td>
<td>84</td>
<td>3.19E-10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.55E-10</td>
<td>51</td>
<td>7.36E-11</td>
<td>85</td>
<td>5.62E-11</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.75E-10</td>
<td>52</td>
<td>3.49E-11</td>
<td>86</td>
<td>3.02E-10</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.68E-12</td>
<td>53</td>
<td>3.30E-10</td>
<td>87</td>
<td>6.33E-11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.85E-10</td>
<td>54</td>
<td>1.15E-10</td>
<td>88</td>
<td>2.28E-10</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>9.37E-11</td>
<td>55</td>
<td>3.36E-10</td>
<td>89</td>
<td>1.57E-11</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.14E-11</td>
<td>56</td>
<td>3.08E-10</td>
<td>90</td>
<td>9.77E-11</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.93E-10</td>
<td>57</td>
<td>2.65E-10</td>
<td>91</td>
<td>1.22E-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.43E-10</td>
<td>58</td>
<td>3.40E-10</td>
<td>92</td>
<td>5.38E-11</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.50E-10</td>
<td>59</td>
<td>2.90E-10</td>
<td>93</td>
<td>3.78E-11</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.20E-10</td>
<td>60</td>
<td>1.88E-10</td>
<td>94</td>
<td>2.58E-10</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.40E-10</td>
<td>61</td>
<td>3.04E-11</td>
<td>95</td>
<td>4.09E-11</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.72E-11</td>
<td>62</td>
<td>2.31E-10</td>
<td>96</td>
<td>2.57E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.49E-10</td>
<td>63</td>
<td>1.96E-10</td>
<td>97</td>
<td>2.76E-10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.12E-10</td>
<td>64</td>
<td>2.97E-10</td>
<td>98</td>
<td>1.73E-10</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.23E-10</td>
<td>65</td>
<td>6.00E-11</td>
<td>99</td>
<td>1.66E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.36E-10</td>
<td>66</td>
<td>5.08E-11</td>
<td>100</td>
<td>9.10E-11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.65E-10</td>
<td>67</td>
<td>2.44E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.01E-10</td>
<td>68</td>
<td>2.38E-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.32 – Sampled Values for Parameter WAS_AREA:HYMAGCON (LHS Variable 43) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
<th>Value (moles/(kg*s))</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2.55E-10</td>
<td>35</td>
<td>2.33E-10</td>
<td>69</td>
<td>2.05E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.21E-10</td>
<td>36</td>
<td>9.11E-11</td>
<td>70</td>
<td>3.24E-10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.22E-11</td>
<td>37</td>
<td>2.42E-10</td>
<td>71</td>
<td>2.01E-11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.61E-10</td>
<td>38</td>
<td>2.35E-10</td>
<td>72</td>
<td>5.78E-11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.79E-10</td>
<td>39</td>
<td>3.09E-10</td>
<td>73</td>
<td>2.33E-11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.48E-10</td>
<td>40</td>
<td>1.08E-10</td>
<td>74</td>
<td>1.74E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.49E-11</td>
<td>41</td>
<td>3.37E-10</td>
<td>75</td>
<td>1.17E-10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.09E-11</td>
<td>42</td>
<td>5.83E-11</td>
<td>76</td>
<td>1.56E-11</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.97E-10</td>
<td>43</td>
<td>8.46E-11</td>
<td>77</td>
<td>3.29E-10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.25E-10</td>
<td>44</td>
<td>1.09E-10</td>
<td>78</td>
<td>2.40E-10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.72E-10</td>
<td>45</td>
<td>2.14E-10</td>
<td>79</td>
<td>9.63E-12</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.81E-11</td>
<td>46</td>
<td>7.72E-11</td>
<td>80</td>
<td>2.90E-10</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.54E-10</td>
<td>47</td>
<td>2.73E-11</td>
<td>81</td>
<td>8.02E-11</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.95E-11</td>
<td>48</td>
<td>1.39E-10</td>
<td>82</td>
<td>3.27E-11</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.72E-11</td>
<td>49</td>
<td>2.21E-10</td>
<td>83</td>
<td>2.23E-10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.23E-11</td>
<td>50</td>
<td>2.66E-10</td>
<td>84</td>
<td>1.88E-10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.60E-10</td>
<td>51</td>
<td>1.04E-10</td>
<td>85</td>
<td>1.49E-10</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.49E-11</td>
<td>52</td>
<td>2.70E-10</td>
<td>86</td>
<td>8.62E-11</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.11E-10</td>
<td>53</td>
<td>2.48E-10</td>
<td>87</td>
<td>2.93E-10</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.35E-10</td>
<td>54</td>
<td>2.11E-10</td>
<td>88</td>
<td>3.33E-10</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.94E-10</td>
<td>55</td>
<td>1.93E-10</td>
<td>89</td>
<td>1.41E-10</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.23E-10</td>
<td>56</td>
<td>1.59E-10</td>
<td>90</td>
<td>1.43E-10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.84E-10</td>
<td>57</td>
<td>1.26E-10</td>
<td>91</td>
<td>2.97E-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.82E-10</td>
<td>58</td>
<td>2.76E-10</td>
<td>92</td>
<td>2.55E-10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.87E-10</td>
<td>59</td>
<td>1.68E-10</td>
<td>93</td>
<td>1.14E-10</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.16E-10</td>
<td>60</td>
<td>3.10E-12</td>
<td>94</td>
<td>3.05E-10</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.09E-10</td>
<td>61</td>
<td>1.01E-10</td>
<td>95</td>
<td>2.25E-10</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.02E-10</td>
<td>62</td>
<td>4.12E-11</td>
<td>96</td>
<td>1.30E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.63E-10</td>
<td>63</td>
<td>1.52E-10</td>
<td>97</td>
<td>3.35E-10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.19E-12</td>
<td>64</td>
<td>3.01E-10</td>
<td>98</td>
<td>1.79E-10</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.65E-10</td>
<td>65</td>
<td>6.83E-11</td>
<td>99</td>
<td>1.85E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.20E-11</td>
<td>66</td>
<td>3.15E-10</td>
<td>100</td>
<td>2.31E-10</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.46E-11</td>
<td>67</td>
<td>6.14E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.65E-11</td>
<td>68</td>
<td>9.25E-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.32 – Sampled Values for Parameter WAS_AREA:HYMAGCON (LHS Variable 43) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th># Value (moles/(kg*s))</th>
<th># Value (moles/(kg*s))</th>
<th># Value (moles/(kg*s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.83E-10</td>
<td>35</td>
<td>7.58E-11</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.50E-10</td>
<td>36</td>
<td>2.53E-10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.05E-10</td>
<td>37</td>
<td>1.44E-10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.35E-10</td>
<td>38</td>
<td>3.78E-11</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2.38E-11</td>
<td>39</td>
<td>2.85E-10</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.47E-11</td>
<td>40</td>
<td>6.18E-11</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2.92E-10</td>
<td>41</td>
<td>7.40E-11</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2.35E-10</td>
<td>42</td>
<td>2.29E-10</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3.16E-10</td>
<td>43</td>
<td>2.60E-10</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>3.20E-10</td>
<td>44</td>
<td>1.12E-10</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2.87E-11</td>
<td>45</td>
<td>7.06E-11</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.65E-10</td>
<td>46</td>
<td>1.94E-10</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2.74E-10</td>
<td>47</td>
<td>2.95E-10</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>7.88E-11</td>
<td>48</td>
<td>3.08E-10</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.55E-10</td>
<td>49</td>
<td>2.80E-10</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1.49E-10</td>
<td>50</td>
<td>4.82E-11</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>5.60E-13</td>
<td>51</td>
<td>1.08E-10</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1.41E-10</td>
<td>52</td>
<td>1.25E-10</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2.01E-10</td>
<td>53</td>
<td>1.05E-11</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>8.16E-11</td>
<td>54</td>
<td>3.27E-10</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>8.96E-11</td>
<td>55</td>
<td>2.97E-10</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>2.67E-10</td>
<td>56</td>
<td>3.64E-11</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1.04E-10</td>
<td>57</td>
<td>2.26E-11</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2.24E-10</td>
<td>58</td>
<td>1.68E-10</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>3.39E-10</td>
<td>59</td>
<td>1.60E-10</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>6.51E-11</td>
<td>60</td>
<td>2.42E-10</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>6.02E-11</td>
<td>61</td>
<td>2.25E-10</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1.86E-10</td>
<td>62</td>
<td>2.05E-10</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>3.26E-10</td>
<td>63</td>
<td>4.24E-11</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>2.45E-10</td>
<td>64</td>
<td>1.99E-11</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1.92E-10</td>
<td>65</td>
<td>1.00E-10</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1.32E-10</td>
<td>66</td>
<td>3.35E-10</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>2.65E-10</td>
<td>67</td>
<td>1.88E-10</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>3.25E-11</td>
<td>68</td>
<td>1.26E-10</td>
</tr>
</tbody>
</table>
Table A.33 – Sampled Values for Parameter WAS_AREA:SAT_RGAS (LHS Variable 44)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.65E-02</td>
<td>35</td>
<td>8.95E-02</td>
<td>69</td>
<td>1.44E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8.10E-02</td>
<td>36</td>
<td>1.41E-01</td>
<td>70</td>
<td>4.27E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.67E-02</td>
<td>37</td>
<td>1.15E-01</td>
<td>71</td>
<td>1.04E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.26E-01</td>
<td>38</td>
<td>6.82E-02</td>
<td>72</td>
<td>6.91E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.17E-02</td>
<td>39</td>
<td>1.44E-01</td>
<td>73</td>
<td>2.66E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.02E-03</td>
<td>40</td>
<td>8.23E-02</td>
<td>74</td>
<td>1.11E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.11E-02</td>
<td>41</td>
<td>1.37E-01</td>
<td>75</td>
<td>1.21E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.86E-02</td>
<td>42</td>
<td>2.92E-03</td>
<td>76</td>
<td>9.27E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.14E-02</td>
<td>43</td>
<td>1.49E-02</td>
<td>77</td>
<td>1.64E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.09E-02</td>
<td>44</td>
<td>7.52E-02</td>
<td>78</td>
<td>4.59E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.57E-02</td>
<td>45</td>
<td>1.16E-01</td>
<td>79</td>
<td>8.69E-03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.80E-02</td>
<td>46</td>
<td>5.90E-02</td>
<td>80</td>
<td>7.71E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.72E-04</td>
<td>47</td>
<td>4.15E-02</td>
<td>81</td>
<td>1.31E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.35E-01</td>
<td>48</td>
<td>1.22E-01</td>
<td>82</td>
<td>1.05E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.52E-02</td>
<td>49</td>
<td>6.33E-02</td>
<td>83</td>
<td>1.12E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.05E-02</td>
<td>50</td>
<td>1.34E-01</td>
<td>84</td>
<td>1.48E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.75E-02</td>
<td>51</td>
<td>3.61E-02</td>
<td>85</td>
<td>1.39E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7.40E-02</td>
<td>52</td>
<td>5.34E-02</td>
<td>86</td>
<td>5.68E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.28E-01</td>
<td>53</td>
<td>1.49E-01</td>
<td>87</td>
<td>8.31E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.00E-02</td>
<td>54</td>
<td>1.41E-01</td>
<td>88</td>
<td>4.36E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.06E-01</td>
<td>55</td>
<td>7.31E-02</td>
<td>89</td>
<td>6.60E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8.46E-02</td>
<td>56</td>
<td>3.33E-02</td>
<td>90</td>
<td>3.17E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.13E-01</td>
<td>57</td>
<td>8.81E-02</td>
<td>91</td>
<td>1.08E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>9.40E-02</td>
<td>58</td>
<td>1.85E-02</td>
<td>92</td>
<td>1.23E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.20E-01</td>
<td>59</td>
<td>6.73E-02</td>
<td>93</td>
<td>2.43E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.46E-01</td>
<td>60</td>
<td>1.32E-01</td>
<td>94</td>
<td>1.00E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.36E-02</td>
<td>61</td>
<td>9.57E-02</td>
<td>95</td>
<td>7.94E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.98E-02</td>
<td>62</td>
<td>1.25E-01</td>
<td>96</td>
<td>4.86E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.02E-01</td>
<td>63</td>
<td>4.68E-02</td>
<td>97</td>
<td>2.05E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.82E-02</td>
<td>64</td>
<td>1.33E-01</td>
<td>98</td>
<td>2.77E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.09E-01</td>
<td>65</td>
<td>2.21E-02</td>
<td>99</td>
<td>9.62E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>7.10E-02</td>
<td>66</td>
<td>1.17E-01</td>
<td>100</td>
<td>3.24E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.29E-01</td>
<td>67</td>
<td>4.66E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.02E-02</td>
<td>68</td>
<td>1.03E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.33 – Sampled Values for Parameter WAS_AREA:SAT_RGAS (LHS Variable 44) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>7.43E-03</td>
<td>35</td>
<td>1.01E-01</td>
<td>69</td>
<td>2.03E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.73E-02</td>
<td>36</td>
<td>4.98E-02</td>
<td>70</td>
<td>1.09E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.34E-01</td>
<td>37</td>
<td>7.95E-02</td>
<td>71</td>
<td>5.54E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.85E-02</td>
<td>38</td>
<td>1.14E-01</td>
<td>72</td>
<td>1.25E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.11E-02</td>
<td>39</td>
<td>8.63E-02</td>
<td>73</td>
<td>9.52E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9.70E-02</td>
<td>40</td>
<td>3.57E-02</td>
<td>74</td>
<td>4.70E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.57E-02</td>
<td>41</td>
<td>1.28E-01</td>
<td>75</td>
<td>5.95E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.46E-02</td>
<td>42</td>
<td>9.23E-02</td>
<td>76</td>
<td>2.13E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.68E-03</td>
<td>43</td>
<td>3.82E-02</td>
<td>77</td>
<td>8.75E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.84E-02</td>
<td>44</td>
<td>1.30E-01</td>
<td>78</td>
<td>7.70E-03</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.34E-04</td>
<td>45</td>
<td>7.61E-02</td>
<td>79</td>
<td>2.28E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.26E-02</td>
<td>46</td>
<td>1.31E-01</td>
<td>80</td>
<td>3.62E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.72E-02</td>
<td>47</td>
<td>1.05E-01</td>
<td>81</td>
<td>7.20E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3.39E-02</td>
<td>48</td>
<td>1.18E-01</td>
<td>82</td>
<td>1.04E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.14E-02</td>
<td>49</td>
<td>1.39E-01</td>
<td>83</td>
<td>4.06E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8.40E-02</td>
<td>50</td>
<td>6.93E-02</td>
<td>84</td>
<td>6.51E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.90E-03</td>
<td>51</td>
<td>2.96E-02</td>
<td>85</td>
<td>9.98E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.01E-02</td>
<td>52</td>
<td>9.32E-02</td>
<td>86</td>
<td>1.48E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.28E-02</td>
<td>53</td>
<td>3.12E-02</td>
<td>87</td>
<td>1.13E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.40E-01</td>
<td>54</td>
<td>1.26E-01</td>
<td>88</td>
<td>1.37E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.19E-02</td>
<td>55</td>
<td>1.50E-01</td>
<td>89</td>
<td>1.45E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.09E-02</td>
<td>56</td>
<td>1.60E-02</td>
<td>90</td>
<td>1.11E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.37E-02</td>
<td>57</td>
<td>4.83E-02</td>
<td>91</td>
<td>6.61E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8.49E-02</td>
<td>58</td>
<td>1.02E-01</td>
<td>92</td>
<td>7.45E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.22E-01</td>
<td>59</td>
<td>7.75E-02</td>
<td>93</td>
<td>7.33E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.12E-01</td>
<td>60</td>
<td>9.85E-02</td>
<td>94</td>
<td>1.21E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.02E-02</td>
<td>61</td>
<td>1.16E-01</td>
<td>95</td>
<td>4.54E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.47E-01</td>
<td>62</td>
<td>1.43E-01</td>
<td>96</td>
<td>1.33E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.45E-02</td>
<td>63</td>
<td>6.21E-02</td>
<td>97</td>
<td>8.92E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.80E-02</td>
<td>64</td>
<td>1.36E-01</td>
<td>98</td>
<td>2.50E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.79E-02</td>
<td>65</td>
<td>1.41E-01</td>
<td>99</td>
<td>4.22E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.25E-02</td>
<td>66</td>
<td>2.56E-02</td>
<td>100</td>
<td>4.67E-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.07E-01</td>
<td>67</td>
<td>1.24E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.36E-03</td>
<td>68</td>
<td>1.20E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.33 – Sampled Values for Parameter WAS_AREA:SAT_RGAS (LHS Variable 44) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 5.32E-02</td>
<td>35</td>
<td>1.45E-01</td>
<td>69</td>
<td>8.96E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 1.46E-01</td>
<td>36</td>
<td>1.21E-01</td>
<td>70</td>
<td>7.76E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 9.75E-02</td>
<td>37</td>
<td>8.19E-02</td>
<td>71</td>
<td>9.30E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1.08E-01</td>
<td>38</td>
<td>4.72E-03</td>
<td>72</td>
<td>1.36E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 9.52E-02</td>
<td>39</td>
<td>8.37E-02</td>
<td>73</td>
<td>2.47E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 7.22E-02</td>
<td>40</td>
<td>4.45E-02</td>
<td>74</td>
<td>1.49E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 1.29E-01</td>
<td>41</td>
<td>1.03E-01</td>
<td>75</td>
<td>4.60E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 7.07E-04</td>
<td>42</td>
<td>1.18E-01</td>
<td>76</td>
<td>2.90E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 7.57E-02</td>
<td>43</td>
<td>6.78E-02</td>
<td>77</td>
<td>3.44E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 8.53E-02</td>
<td>44</td>
<td>4.81E-02</td>
<td>78</td>
<td>8.04E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 2.05E-02</td>
<td>45</td>
<td>1.33E-01</td>
<td>79</td>
<td>4.78E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 4.26E-02</td>
<td>46</td>
<td>1.62E-02</td>
<td>80</td>
<td>5.95E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 1.19E-01</td>
<td>47</td>
<td>1.40E-02</td>
<td>81</td>
<td>1.80E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 1.07E-01</td>
<td>48</td>
<td>1.16E-01</td>
<td>82</td>
<td>5.52E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 2.28E-03</td>
<td>49</td>
<td>3.94E-02</td>
<td>83</td>
<td>1.82E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 9.97E-02</td>
<td>50</td>
<td>1.27E-01</td>
<td>84</td>
<td>1.04E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 1.42E-01</td>
<td>51</td>
<td>6.03E-02</td>
<td>85</td>
<td>1.39E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 1.30E-01</td>
<td>52</td>
<td>1.22E-01</td>
<td>86</td>
<td>1.12E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 9.15E-02</td>
<td>53</td>
<td>9.31E-02</td>
<td>87</td>
<td>1.37E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 2.81E-02</td>
<td>54</td>
<td>6.68E-02</td>
<td>88</td>
<td>3.55E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 3.62E-02</td>
<td>55</td>
<td>3.17E-02</td>
<td>89</td>
<td>5.70E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 6.28E-02</td>
<td>56</td>
<td>5.03E-02</td>
<td>90</td>
<td>6.59E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 1.34E-01</td>
<td>57</td>
<td>6.25E-03</td>
<td>91</td>
<td>1.14E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 5.81E-02</td>
<td>58</td>
<td>7.41E-02</td>
<td>92</td>
<td>1.18E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 2.22E-02</td>
<td>59</td>
<td>1.40E-01</td>
<td>93</td>
<td>7.74E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 1.11E-01</td>
<td>60</td>
<td>4.47E-03</td>
<td>94</td>
<td>2.36E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 1.02E-01</td>
<td>61</td>
<td>9.83E-03</td>
<td>95</td>
<td>9.87E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 6.40E-02</td>
<td>62</td>
<td>1.43E-01</td>
<td>96</td>
<td>8.66E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 5.16E-02</td>
<td>63</td>
<td>7.09E-02</td>
<td>97</td>
<td>4.14E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 1.48E-01</td>
<td>64</td>
<td>3.00E-02</td>
<td>98</td>
<td>2.56E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 1.25E-01</td>
<td>65</td>
<td>6.91E-02</td>
<td>99</td>
<td>3.81E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 1.24E-01</td>
<td>66</td>
<td>8.84E-02</td>
<td>100</td>
<td>1.32E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 7.87E-02</td>
<td>67</td>
<td>1.15E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 1.06E-01</td>
<td>68</td>
<td>1.34E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.34 – Sampled Values for Parameter WAS_AREA:SAT_RBRN (LHS Variable 45)

<table>
<thead>
<tr>
<th>Replicate</th>
<th># Value (dimensionless)</th>
<th># Value (dimensionless)</th>
<th># Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1.78E-01</td>
<td>4.11E-01</td>
<td>1.47E-01</td>
</tr>
<tr>
<td>1 2</td>
<td>3.29E-02</td>
<td>3.33E-02</td>
<td>4.81E-01</td>
</tr>
<tr>
<td>1 3</td>
<td>5.42E-01</td>
<td>2.56E-01</td>
<td>3.30E-01</td>
</tr>
<tr>
<td>1 4</td>
<td>2.35E-01</td>
<td>7.22E-02</td>
<td>9.35E-02</td>
</tr>
<tr>
<td>1 5</td>
<td>4.00E-01</td>
<td>3.84E-01</td>
<td>4.45E-01</td>
</tr>
<tr>
<td>1 6</td>
<td>1.87E-01</td>
<td>1.09E-01</td>
<td>1.13E-01</td>
</tr>
<tr>
<td>1 7</td>
<td>2.60E-01</td>
<td>9.95E-02</td>
<td>1.77E-01</td>
</tr>
<tr>
<td>1 8</td>
<td>4.18E-01</td>
<td>8.00E-02</td>
<td>1.42E-01</td>
</tr>
<tr>
<td>1 9</td>
<td>4.07E-01</td>
<td>5.04E-01</td>
<td>5.37E-01</td>
</tr>
<tr>
<td>1 10</td>
<td>4.70E-02</td>
<td>6.71E-02</td>
<td>2.97E-01</td>
</tr>
<tr>
<td>1 11</td>
<td>4.37E-01</td>
<td>3.05E-01</td>
<td>2.24E-01</td>
</tr>
<tr>
<td>1 12</td>
<td>8.64E-02</td>
<td>2.29E-01</td>
<td>2.74E-01</td>
</tr>
<tr>
<td>1 13</td>
<td>3.34E-01</td>
<td>2.54E-01</td>
<td>2.71E-03</td>
</tr>
<tr>
<td>1 14</td>
<td>5.14E-01</td>
<td>4.93E-01</td>
<td>2.19E-01</td>
</tr>
<tr>
<td>1 15</td>
<td>1.55E-01</td>
<td>9.71E-03</td>
<td>1.65E-02</td>
</tr>
<tr>
<td>1 16</td>
<td>4.73E-01</td>
<td>2.04E-01</td>
<td>5.51E-01</td>
</tr>
<tr>
<td>1 17</td>
<td>2.46E-01</td>
<td>1.37E-01</td>
<td>9.76E-02</td>
</tr>
<tr>
<td>1 18</td>
<td>5.30E-01</td>
<td>3.42E-01</td>
<td>3.11E-01</td>
</tr>
<tr>
<td>1 19</td>
<td>1.95E-01</td>
<td>3.73E-01</td>
<td>1.24E-01</td>
</tr>
<tr>
<td>1 20</td>
<td>6.61E-02</td>
<td>2.13E-01</td>
<td>2.09E-01</td>
</tr>
<tr>
<td>1 21</td>
<td>3.48E-01</td>
<td>3.20E-01</td>
<td>5.33E-01</td>
</tr>
<tr>
<td>1 22</td>
<td>3.69E-01</td>
<td>2.65E-01</td>
<td>2.81E-01</td>
</tr>
<tr>
<td>1 23</td>
<td>4.90E-01</td>
<td>5.52E-02</td>
<td>4.24E-01</td>
</tr>
<tr>
<td>1 24</td>
<td>5.85E-02</td>
<td>1.90E-01</td>
<td>2.67E-02</td>
</tr>
<tr>
<td>1 25</td>
<td>2.91E-01</td>
<td>4.63E-01</td>
<td>3.64E-01</td>
</tr>
<tr>
<td>1 26</td>
<td>2.84E-01</td>
<td>4.64E-01</td>
<td>1.19E-01</td>
</tr>
<tr>
<td>1 27</td>
<td>3.91E-01</td>
<td>3.78E-01</td>
<td>4.26E-01</td>
</tr>
<tr>
<td>1 28</td>
<td>1.60E-01</td>
<td>3.54E-01</td>
<td>5.00E-01</td>
</tr>
<tr>
<td>1 29</td>
<td>5.23E-01</td>
<td>1.81E-02</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>1 30</td>
<td>3.01E-01</td>
<td>4.32E-02</td>
<td>2.39E-01</td>
</tr>
<tr>
<td>1 31</td>
<td>3.43E-01</td>
<td>3.15E-01</td>
<td>4.52E-01</td>
</tr>
<tr>
<td>1 32</td>
<td>4.77E-01</td>
<td>3.94E-01</td>
<td>4.32E-01</td>
</tr>
<tr>
<td>1 33</td>
<td>4.53E-01</td>
<td>5.09E-01</td>
<td>4.32E-01</td>
</tr>
<tr>
<td>1 34</td>
<td>1.30E-01</td>
<td>1.69E-01</td>
<td>4.32E-01</td>
</tr>
</tbody>
</table>

Information Only
Table A.34 – Sampled Values for Parameter WAS_AREA:SAT_RBRN (LHS Variable 45) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>3.63E-01</td>
<td>35</td>
<td>5.71E-02</td>
<td>69</td>
<td>5.22E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.42E-01</td>
<td>36</td>
<td>3.51E-01</td>
<td>70</td>
<td>4.95E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.08E-01</td>
<td>37</td>
<td>1.52E-01</td>
<td>71</td>
<td>3.83E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.59E-01</td>
<td>38</td>
<td>4.98E-01</td>
<td>72</td>
<td>3.73E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.18E-01</td>
<td>39</td>
<td>3.80E-01</td>
<td>73</td>
<td>6.63E-04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.45E-01</td>
<td>40</td>
<td>3.00E-01</td>
<td>74</td>
<td>4.69E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.57E-01</td>
<td>41</td>
<td>2.32E-01</td>
<td>75</td>
<td>1.77E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.22E-01</td>
<td>42</td>
<td>5.12E-01</td>
<td>76</td>
<td>9.31E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.33E-01</td>
<td>43</td>
<td>3.57E-01</td>
<td>77</td>
<td>2.21E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.66E-02</td>
<td>44</td>
<td>2.79E-01</td>
<td>78</td>
<td>5.47E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.63E-02</td>
<td>45</td>
<td>4.22E-01</td>
<td>79</td>
<td>2.85E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.25E-01</td>
<td>46</td>
<td>4.37E-01</td>
<td>80</td>
<td>1.19E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.84E-01</td>
<td>47</td>
<td>5.04E-01</td>
<td>81</td>
<td>7.83E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.16E-01</td>
<td>48</td>
<td>2.97E-01</td>
<td>82</td>
<td>1.61E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.31E-01</td>
<td>49</td>
<td>1.87E-01</td>
<td>83</td>
<td>5.26E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.41E-01</td>
<td>50</td>
<td>3.12E-01</td>
<td>84</td>
<td>1.45E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.11E-01</td>
<td>51</td>
<td>9.97E-02</td>
<td>85</td>
<td>4.77E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.14E-01</td>
<td>52</td>
<td>5.47E-01</td>
<td>86</td>
<td>2.00E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.73E-01</td>
<td>53</td>
<td>3.16E-01</td>
<td>87</td>
<td>2.90E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.09E-01</td>
<td>54</td>
<td>2.12E-01</td>
<td>88</td>
<td>1.90E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.57E-01</td>
<td>55</td>
<td>1.59E-01</td>
<td>89</td>
<td>1.95E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.59E-02</td>
<td>56</td>
<td>5.39E-01</td>
<td>90</td>
<td>2.48E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.37E-01</td>
<td>57</td>
<td>4.69E-01</td>
<td>91</td>
<td>4.49E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.44E-01</td>
<td>58</td>
<td>2.16E-01</td>
<td>92</td>
<td>3.94E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.66E-01</td>
<td>59</td>
<td>4.38E-02</td>
<td>93</td>
<td>1.67E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.65E-02</td>
<td>60</td>
<td>4.02E-01</td>
<td>94</td>
<td>7.18E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.38E-01</td>
<td>61</td>
<td>2.72E-01</td>
<td>95</td>
<td>3.31E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>8.59E-02</td>
<td>62</td>
<td>2.06E-01</td>
<td>96</td>
<td>4.28E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>2.66E-01</td>
<td>63</td>
<td>3.79E-02</td>
<td>97</td>
<td>2.53E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8.77E-03</td>
<td>64</td>
<td>2.62E-01</td>
<td>98</td>
<td>2.74E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.29E-01</td>
<td>65</td>
<td>1.31E-01</td>
<td>99</td>
<td>9.45E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.88E-01</td>
<td>66</td>
<td>3.36E-01</td>
<td>100</td>
<td>2.84E-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.07E-01</td>
<td>67</td>
<td>4.89E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.89E-01</td>
<td>68</td>
<td>5.34E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.34 – Sampled Values for Parameter WAS_AREA:SAT_RBRN (LHS Variable 45) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>3.01E-02</td>
</tr>
<tr>
<td></td>
<td>1.06E-01</td>
<td>36</td>
<td>2.68E-01</td>
<td>70</td>
<td>3.79E-01</td>
</tr>
<tr>
<td></td>
<td>5.19E-01</td>
<td>37</td>
<td>3.49E-01</td>
<td>71</td>
<td>7.01E-02</td>
</tr>
<tr>
<td></td>
<td>4.58E-01</td>
<td>38</td>
<td>3.29E-01</td>
<td>72</td>
<td>5.44E-01</td>
</tr>
<tr>
<td></td>
<td>2.21E-01</td>
<td>39</td>
<td>1.01E-01</td>
<td>73</td>
<td>4.64E-01</td>
</tr>
<tr>
<td></td>
<td>4.18E-01</td>
<td>40</td>
<td>1.86E-01</td>
<td>74</td>
<td>4.23E-02</td>
</tr>
<tr>
<td></td>
<td>3.61E-01</td>
<td>41</td>
<td>4.44E-01</td>
<td>75</td>
<td>2.69E-02</td>
</tr>
<tr>
<td></td>
<td>5.20E-01</td>
<td>42</td>
<td>4.59E-01</td>
<td>76</td>
<td>2.43E-01</td>
</tr>
<tr>
<td></td>
<td>7.54E-02</td>
<td>43</td>
<td>1.61E-02</td>
<td>77</td>
<td>2.51E-01</td>
</tr>
<tr>
<td></td>
<td>2.80E-01</td>
<td>44</td>
<td>3.14E-01</td>
<td>78</td>
<td>4.37E-01</td>
</tr>
<tr>
<td></td>
<td>1.67E-01</td>
<td>45</td>
<td>6.49E-02</td>
<td>79</td>
<td>2.56E-01</td>
</tr>
<tr>
<td></td>
<td>5.48E-01</td>
<td>46</td>
<td>2.09E-01</td>
<td>80</td>
<td>4.26E-01</td>
</tr>
<tr>
<td></td>
<td>5.40E-01</td>
<td>47</td>
<td>9.78E-02</td>
<td>81</td>
<td>1.63E-01</td>
</tr>
<tr>
<td></td>
<td>4.86E-01</td>
<td>48</td>
<td>3.84E-01</td>
<td>82</td>
<td>2.45E-01</td>
</tr>
<tr>
<td></td>
<td>8.21E-02</td>
<td>49</td>
<td>9.25E-03</td>
<td>83</td>
<td>2.72E-01</td>
</tr>
<tr>
<td></td>
<td>5.27E-01</td>
<td>50</td>
<td>4.94E-01</td>
<td>84</td>
<td>3.48E-02</td>
</tr>
<tr>
<td></td>
<td>5.28E-02</td>
<td>51</td>
<td>4.08E-01</td>
<td>85</td>
<td>1.19E-01</td>
</tr>
<tr>
<td></td>
<td>3.20E-01</td>
<td>52</td>
<td>3.02E-01</td>
<td>86</td>
<td>3.64E-01</td>
</tr>
<tr>
<td></td>
<td>9.20E-02</td>
<td>53</td>
<td>3.98E-01</td>
<td>87</td>
<td>2.92E-01</td>
</tr>
<tr>
<td></td>
<td>1.47E-01</td>
<td>54</td>
<td>1.33E-01</td>
<td>88</td>
<td>3.35E-01</td>
</tr>
<tr>
<td></td>
<td>3.87E-01</td>
<td>55</td>
<td>5.81E-02</td>
<td>89</td>
<td>2.24E-01</td>
</tr>
<tr>
<td></td>
<td>5.34E-01</td>
<td>56</td>
<td>4.86E-02</td>
<td>90</td>
<td>3.70E-01</td>
</tr>
<tr>
<td></td>
<td>2.04E-02</td>
<td>57</td>
<td>2.61E-01</td>
<td>91</td>
<td>3.07E-01</td>
</tr>
<tr>
<td></td>
<td>2.86E-01</td>
<td>58</td>
<td>3.23E-01</td>
<td>92</td>
<td>3.41E-01</td>
</tr>
<tr>
<td></td>
<td>4.51E-01</td>
<td>59</td>
<td>1.42E-01</td>
<td>93</td>
<td>1.76E-01</td>
</tr>
<tr>
<td></td>
<td>5.13E-01</td>
<td>60</td>
<td>2.34E-01</td>
<td>94</td>
<td>1.27E-01</td>
</tr>
<tr>
<td></td>
<td>1.54E-01</td>
<td>61</td>
<td>2.98E-01</td>
<td>95</td>
<td>8.80E-02</td>
</tr>
<tr>
<td></td>
<td>1.93E-01</td>
<td>62</td>
<td>4.10E-01</td>
<td>96</td>
<td>1.99E-01</td>
</tr>
<tr>
<td></td>
<td>4.98E-01</td>
<td>63</td>
<td>4.25E-01</td>
<td>97</td>
<td>4.83E-01</td>
</tr>
<tr>
<td></td>
<td>5.07E-01</td>
<td>64</td>
<td>3.94E-01</td>
<td>98</td>
<td>2.14E-01</td>
</tr>
<tr>
<td></td>
<td>3.97E-03</td>
<td>65</td>
<td>1.25E-01</td>
<td>99</td>
<td>4.35E-01</td>
</tr>
<tr>
<td></td>
<td>1.91E-01</td>
<td>66</td>
<td>2.26E-01</td>
<td>100</td>
<td>4.71E-01</td>
</tr>
<tr>
<td></td>
<td>1.79E-01</td>
<td>67</td>
<td>1.13E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.58E-01</td>
<td>68</td>
<td>4.75E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.35 – Sampled Values for Parameter WAS_AREA:SAT_WICK (LHS Variable 46)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.22E-01</td>
<td>35</td>
<td>3.52E-01</td>
<td>69</td>
<td>7.78E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.37E-01</td>
<td>36</td>
<td>2.32E-01</td>
<td>70</td>
<td>2.22E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.08E-01</td>
<td>37</td>
<td>5.57E-01</td>
<td>71</td>
<td>1.23E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.46E-01</td>
<td>38</td>
<td>6.81E-01</td>
<td>72</td>
<td>8.84E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.93E-01</td>
<td>39</td>
<td>6.54E-01</td>
<td>73</td>
<td>3.06E-03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.55E-01</td>
<td>40</td>
<td>6.44E-01</td>
<td>74</td>
<td>3.61E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.89E-01</td>
<td>41</td>
<td>1.41E-01</td>
<td>75</td>
<td>7.06E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.93E-01</td>
<td>42</td>
<td>1.66E-01</td>
<td>76</td>
<td>2.44E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.79E-01</td>
<td>43</td>
<td>1.14E-01</td>
<td>77</td>
<td>3.77E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8.68E-01</td>
<td>44</td>
<td>9.36E-01</td>
<td>78</td>
<td>8.37E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.83E-01</td>
<td>45</td>
<td>9.60E-01</td>
<td>79</td>
<td>5.91E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.86E-01</td>
<td>46</td>
<td>2.78E-01</td>
<td>80</td>
<td>8.00E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>9.88E-01</td>
<td>47</td>
<td>6.60E-01</td>
<td>81</td>
<td>5.04E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.65E-01</td>
<td>48</td>
<td>2.66E-01</td>
<td>82</td>
<td>1.56E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8.28E-01</td>
<td>49</td>
<td>8.47E-01</td>
<td>83</td>
<td>4.93E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.46E-02</td>
<td>50</td>
<td>6.08E-01</td>
<td>84</td>
<td>1.75E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.08E-01</td>
<td>51</td>
<td>5.11E-01</td>
<td>85</td>
<td>7.58E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.48E-01</td>
<td>52</td>
<td>5.40E-01</td>
<td>86</td>
<td>3.05E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4.14E-01</td>
<td>53</td>
<td>4.08E-01</td>
<td>87</td>
<td>8.19E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.29E-01</td>
<td>54</td>
<td>4.45E-01</td>
<td>88</td>
<td>1.83E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.45E-01</td>
<td>55</td>
<td>7.15E-01</td>
<td>89</td>
<td>3.43E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.41E-01</td>
<td>56</td>
<td>3.19E-01</td>
<td>90</td>
<td>9.92E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>7.39E-01</td>
<td>57</td>
<td>2.92E-01</td>
<td>91</td>
<td>2.60E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.68E-01</td>
<td>58</td>
<td>1.96E-01</td>
<td>92</td>
<td>8.54E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.82E-01</td>
<td>59</td>
<td>5.63E-01</td>
<td>93</td>
<td>8.74E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.93E-01</td>
<td>60</td>
<td>4.21E-01</td>
<td>94</td>
<td>9.27E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.55E-01</td>
<td>61</td>
<td>2.30E-01</td>
<td>95</td>
<td>6.07E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.12E-01</td>
<td>62</td>
<td>6.21E-01</td>
<td>96</td>
<td>9.71E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>9.92E-01</td>
<td>63</td>
<td>4.74E-01</td>
<td>97</td>
<td>7.66E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>9.18E-01</td>
<td>64</td>
<td>1.87E-01</td>
<td>98</td>
<td>8.02E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>7.26E-01</td>
<td>65</td>
<td>6.36E-01</td>
<td>99</td>
<td>7.88E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.90E-01</td>
<td>66</td>
<td>2.15E-01</td>
<td>100</td>
<td>8.52E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.75E-01</td>
<td>67</td>
<td>4.36E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.34E-01</td>
<td>68</td>
<td>2.07E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.35 – Sampled Values for Parameter WAS_AREA:SAT_WICK (LHS Variable 46) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.17E-01</td>
<td>44</td>
<td>5.84E-02</td>
<td>78</td>
<td>9.79E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.47E-01</td>
<td>45</td>
<td>3.49E-01</td>
<td>79</td>
<td>6.29E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.28E-01</td>
<td>46</td>
<td>9.10E-01</td>
<td>80</td>
<td>6.93E-02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6.05E-01</td>
<td>47</td>
<td>4.57E-01</td>
<td>81</td>
<td>5.67E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.39E-01</td>
<td>48</td>
<td>8.06E-01</td>
<td>82</td>
<td>3.30E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.01E-01</td>
<td>49</td>
<td>1.77E-01</td>
<td>83</td>
<td>4.75E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7.72E-01</td>
<td>50</td>
<td>1.63E-01</td>
<td>84</td>
<td>6.93E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6.74E-01</td>
<td>51</td>
<td>1.99E-01</td>
<td>85</td>
<td>7.57E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.41E-01</td>
<td>52</td>
<td>6.59E-01</td>
<td>86</td>
<td>7.30E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.44E-01</td>
<td>53</td>
<td>1.52E-01</td>
<td>87</td>
<td>1.86E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.41E-01</td>
<td>54</td>
<td>9.56E-01</td>
<td>88</td>
<td>9.22E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8.22E-01</td>
<td>55</td>
<td>3.96E-01</td>
<td>89</td>
<td>3.95E-02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.52E-01</td>
<td>56</td>
<td>5.25E-01</td>
<td>90</td>
<td>6.31E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.32E-03</td>
<td>57</td>
<td>1.11E-01</td>
<td>91</td>
<td>2.89E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>9.66E-01</td>
<td>58</td>
<td>6.19E-01</td>
<td>92</td>
<td>5.82E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>6.42E-01</td>
<td>59</td>
<td>7.26E-01</td>
<td>93</td>
<td>5.20E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.08E-01</td>
<td>60</td>
<td>1.25E-01</td>
<td>94</td>
<td>7.46E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.68E-01</td>
<td>61</td>
<td>8.56E-01</td>
<td>95</td>
<td>7.07E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.97E-01</td>
<td>62</td>
<td>9.88E-01</td>
<td>96</td>
<td>3.20E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.27E-01</td>
<td>63</td>
<td>8.86E-01</td>
<td>97</td>
<td>3.57E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.15E-01</td>
<td>64</td>
<td>8.01E-02</td>
<td>98</td>
<td>2.61E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4.12E-01</td>
<td>65</td>
<td>9.39E-01</td>
<td>99</td>
<td>8.97E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8.80E-01</td>
<td>66</td>
<td>3.07E-01</td>
<td>100</td>
<td>6.68E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>5.49E-01</td>
<td>67</td>
<td>4.02E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.84E-01</td>
<td>68</td>
<td>3.67E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.35 – Sampled Values for Parameter WAS_AREA:SAT_WICK (LHS Variable 46) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3.41E-01</td>
<td>35</td>
<td>8.02E-01</td>
<td>69</td>
<td>5.93E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.01E-01</td>
<td>36</td>
<td>4.41E-01</td>
<td>70</td>
<td>7.10E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.78E-02</td>
<td>37</td>
<td>5.29E-01</td>
<td>71</td>
<td>8.53E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.13E-01</td>
<td>38</td>
<td>1.54E-01</td>
<td>72</td>
<td>9.58E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.01E-01</td>
<td>39</td>
<td>6.77E-01</td>
<td>73</td>
<td>1.27E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.05E-01</td>
<td>40</td>
<td>3.10E-01</td>
<td>74</td>
<td>3.80E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.48E-01</td>
<td>41</td>
<td>2.18E-01</td>
<td>75</td>
<td>6.95E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.41E-01</td>
<td>42</td>
<td>8.41E-01</td>
<td>76</td>
<td>3.89E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9.73E-01</td>
<td>43</td>
<td>2.62E-01</td>
<td>77</td>
<td>5.10E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.52E-01</td>
<td>44</td>
<td>9.37E-01</td>
<td>78</td>
<td>2.32E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.36E-02</td>
<td>45</td>
<td>3.37E-01</td>
<td>79</td>
<td>7.26E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.69E-01</td>
<td>46</td>
<td>3.30E-01</td>
<td>80</td>
<td>9.85E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.18E-01</td>
<td>47</td>
<td>5.57E-01</td>
<td>81</td>
<td>7.94E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.43E-01</td>
<td>48</td>
<td>9.28E-01</td>
<td>82</td>
<td>2.93E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.66E-01</td>
<td>49</td>
<td>7.83E-01</td>
<td>83</td>
<td>8.66E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.89E-01</td>
<td>50</td>
<td>2.96E-01</td>
<td>84</td>
<td>4.64E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.16E-01</td>
<td>51</td>
<td>7.53E-01</td>
<td>85</td>
<td>1.88E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.74E-01</td>
<td>52</td>
<td>1.44E-01</td>
<td>86</td>
<td>6.56E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.72E-01</td>
<td>53</td>
<td>5.62E-01</td>
<td>87</td>
<td>4.00E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.84E-01</td>
<td>54</td>
<td>4.06E-01</td>
<td>88</td>
<td>4.58E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8.81E-01</td>
<td>55</td>
<td>5.67E-02</td>
<td>89</td>
<td>8.64E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.35E-01</td>
<td>56</td>
<td>4.17E-01</td>
<td>90</td>
<td>4.35E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.87E-01</td>
<td>57</td>
<td>5.37E-01</td>
<td>91</td>
<td>5.71E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.40E-03</td>
<td>58</td>
<td>2.78E-01</td>
<td>92</td>
<td>5.06E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.26E-01</td>
<td>59</td>
<td>3.09E-01</td>
<td>93</td>
<td>7.64E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.75E-01</td>
<td>60</td>
<td>1.99E-01</td>
<td>94</td>
<td>9.09E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.52E-01</td>
<td>61</td>
<td>4.24E-01</td>
<td>95</td>
<td>8.21E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.95E-01</td>
<td>62</td>
<td>8.11E-01</td>
<td>96</td>
<td>9.14E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.97E-01</td>
<td>63</td>
<td>6.07E-02</td>
<td>97</td>
<td>7.41E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.42E-01</td>
<td>64</td>
<td>2.28E-01</td>
<td>98</td>
<td>1.04E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.31E-01</td>
<td>65</td>
<td>1.17E-01</td>
<td>99</td>
<td>1.37E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>8.31E-01</td>
<td>66</td>
<td>1.75E-01</td>
<td>100</td>
<td>1.38E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>9.93E-01</td>
<td>67</td>
<td>3.62E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>5.87E-01</td>
<td>68</td>
<td>6.69E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Input parameter report for the 2019 compliance recertification application performance assessment
Rev. 1, ERMS 571660

Table A.36 – Sampled Values for Parameter DRZ_PCS:PRMX_LOG (LHS Variable 47), DRZ_PCS:PRMY_LOG ¹, and DRZ_PCS:PRMZ_LOG ¹

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>-1.98E+01</td>
<td>35</td>
<td>-1.72E+01</td>
<td>69</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>-1.92E+01</td>
<td>36</td>
<td>-1.99E+01</td>
<td>70</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>-1.89E+01</td>
<td>37</td>
<td>-1.79E+01</td>
<td>71</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>-1.95E+01</td>
<td>38</td>
<td>-1.84E+01</td>
<td>72</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>-1.84E+01</td>
<td>39</td>
<td>-1.89E+01</td>
<td>73</td>
<td>-2.02E+01</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>-1.79E+01</td>
<td>40</td>
<td>-1.97E+01</td>
<td>74</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>-1.92E+01</td>
<td>41</td>
<td>-1.87E+01</td>
<td>75</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>-1.81E+01</td>
<td>42</td>
<td>-1.84E+01</td>
<td>76</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>-1.84E+01</td>
<td>43</td>
<td>-1.84E+01</td>
<td>77</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>10</td>
<td>-1.87E+01</td>
<td>44</td>
<td>-2.00E+01</td>
<td>78</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>11</td>
<td>-1.86E+01</td>
<td>45</td>
<td>-2.00E+01</td>
<td>79</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>12</td>
<td>-1.79E+01</td>
<td>46</td>
<td>-1.93E+01</td>
<td>80</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>13</td>
<td>-1.74E+01</td>
<td>47</td>
<td>-1.83E+01</td>
<td>81</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>14</td>
<td>-1.92E+01</td>
<td>48</td>
<td>-1.76E+01</td>
<td>82</td>
<td>-1.98E+01</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>15</td>
<td>-1.94E+01</td>
<td>49</td>
<td>-1.75E+01</td>
<td>83</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td>-1.91E+01</td>
<td>50</td>
<td>-1.88E+01</td>
<td>84</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>17</td>
<td>-1.88E+01</td>
<td>51</td>
<td>-1.96E+01</td>
<td>85</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>18</td>
<td>-1.89E+01</td>
<td>52</td>
<td>-1.91E+01</td>
<td>86</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>-2.05E+01</td>
<td>53</td>
<td>-2.00E+01</td>
<td>87</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>-1.87E+01</td>
<td>54</td>
<td>-1.80E+01</td>
<td>88</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>21</td>
<td>-1.98E+01</td>
<td>55</td>
<td>-1.97E+01</td>
<td>89</td>
<td>-2.04E+01</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>22</td>
<td>-1.77E+01</td>
<td>56</td>
<td>-1.97E+01</td>
<td>90</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>23</td>
<td>-1.87E+01</td>
<td>57</td>
<td>-1.78E+01</td>
<td>91</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>24</td>
<td>-1.82E+01</td>
<td>58</td>
<td>-1.82E+01</td>
<td>92</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>25</td>
<td>-1.80E+01</td>
<td>59</td>
<td>-1.75E+01</td>
<td>93</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>26</td>
<td>-1.82E+01</td>
<td>60</td>
<td>-1.77E+01</td>
<td>94</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>27</td>
<td>-1.99E+01</td>
<td>61</td>
<td>-1.88E+01</td>
<td>95</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>28</td>
<td>-2.02E+01</td>
<td>62</td>
<td>-1.87E+01</td>
<td>96</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>29</td>
<td>-1.83E+01</td>
<td>63</td>
<td>-1.94E+01</td>
<td>97</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>30</td>
<td>-1.90E+01</td>
<td>64</td>
<td>-1.81E+01</td>
<td>98</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>31</td>
<td>-1.93E+01</td>
<td>65</td>
<td>-1.96E+01</td>
<td>99</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>32</td>
<td>-1.90E+01</td>
<td>66</td>
<td>-1.73E+01</td>
<td>100</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>33</td>
<td>-1.80E+01</td>
<td>67</td>
<td>-1.88E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>34</td>
<td>-1.89E+01</td>
<td>68</td>
<td>-1.90E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.36 – Sampled Values for Parameter DRZ_PCS:PRMX_LOG (LHS Variable 47), DRZ_PCS:PRMY_LOG \(^1\), and DRZ_PCS:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1.82E+01</td>
<td>35</td>
<td>-1.87E+01</td>
<td>69</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.82E+01</td>
<td>36</td>
<td>-1.91E+01</td>
<td>70</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.96E+01</td>
<td>37</td>
<td>-1.83E+01</td>
<td>71</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.93E+01</td>
<td>38</td>
<td>-1.93E+01</td>
<td>72</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.93E+01</td>
<td>39</td>
<td>-1.84E+01</td>
<td>73</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.90E+01</td>
<td>40</td>
<td>-2.02E+01</td>
<td>74</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.88E+01</td>
<td>41</td>
<td>-1.97E+01</td>
<td>75</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.81E+01</td>
<td>42</td>
<td>-2.00E+01</td>
<td>76</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.90E+01</td>
<td>43</td>
<td>-1.98E+01</td>
<td>77</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.99E+01</td>
<td>44</td>
<td>-1.79E+01</td>
<td>78</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.79E+01</td>
<td>45</td>
<td>-1.85E+01</td>
<td>79</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.86E+01</td>
<td>46</td>
<td>-1.88E+01</td>
<td>80</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.85E+01</td>
<td>47</td>
<td>-1.85E+01</td>
<td>81</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.72E+01</td>
<td>48</td>
<td>-1.83E+01</td>
<td>82</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.95E+01</td>
<td>49</td>
<td>-1.84E+01</td>
<td>83</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.95E+01</td>
<td>50</td>
<td>-1.76E+01</td>
<td>84</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.89E+01</td>
<td>51</td>
<td>-1.85E+01</td>
<td>85</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.85E+01</td>
<td>52</td>
<td>-1.87E+01</td>
<td>86</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-2.04E+01</td>
<td>53</td>
<td>-1.81E+01</td>
<td>87</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.82E+01</td>
<td>54</td>
<td>-1.92E+01</td>
<td>88</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.86E+01</td>
<td>55</td>
<td>-1.87E+01</td>
<td>89</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-2.06E+01</td>
<td>56</td>
<td>-1.77E+01</td>
<td>90</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.81E+01</td>
<td>57</td>
<td>-1.97E+01</td>
<td>91</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.99E+01</td>
<td>58</td>
<td>-1.87E+01</td>
<td>92</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.75E+01</td>
<td>59</td>
<td>-1.79E+01</td>
<td>93</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.95E+01</td>
<td>60</td>
<td>-1.97E+01</td>
<td>94</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.96E+01</td>
<td>61</td>
<td>-1.94E+01</td>
<td>95</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.92E+01</td>
<td>62</td>
<td>-1.88E+01</td>
<td>96</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.78E+01</td>
<td>63</td>
<td>-1.94E+01</td>
<td>97</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.94E+01</td>
<td>64</td>
<td>-2.02E+01</td>
<td>98</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.84E+01</td>
<td>65</td>
<td>-1.78E+01</td>
<td>99</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.86E+01</td>
<td>66</td>
<td>-1.98E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.74E+01</td>
<td>67</td>
<td>-1.76E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.92E+01</td>
<td>68</td>
<td>-2.00E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
</tbody>
</table>
Table A.36 – Sampled Values for Parameter DRZ_PCS:PRMX_LOG (LHS Variable 47), DRZ_PCS:PRMY_LOG ¹, and DRZ_PCS:PRMZ_LOG ¹ (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (log(m²))</th>
<th>Value (log(m²))</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1.91E+01</td>
<td>35</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.93E+01</td>
<td>36</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.81E+01</td>
<td>37</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.88E+01</td>
<td>38</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.87E+01</td>
<td>39</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.75E+01</td>
<td>40</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.94E+01</td>
<td>41</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.94E+01</td>
<td>42</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.88E+01</td>
<td>43</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.76E+01</td>
<td>44</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.91E+01</td>
<td>45</td>
<td>-2.06E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-2.00E+01</td>
<td>46</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.79E+01</td>
<td>47</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.83E+01</td>
<td>48</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.82E+01</td>
<td>49</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.94E+01</td>
<td>50</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.77E+01</td>
<td>51</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.83E+01</td>
<td>52</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.89E+01</td>
<td>53</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.93E+01</td>
<td>54</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.95E+01</td>
<td>55</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.85E+01</td>
<td>56</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.85E+01</td>
<td>57</td>
<td>-2.04E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.83E+01</td>
<td>58</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.90E+01</td>
<td>59</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.77E+01</td>
<td>60</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.95E+01</td>
<td>61</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.92E+01</td>
<td>62</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.84E+01</td>
<td>63</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.90E+01</td>
<td>64</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.85E+01</td>
<td>65</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-2.01E+01</td>
<td>66</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.81E+01</td>
<td>67</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.88E+01</td>
<td>68</td>
<td>-1.83E+01</td>
</tr>
</tbody>
</table>

NOTE: ¹Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values
Table A.37 – Sampled Values for Parameter PCS_T1:PRMX_LOG (LHS Variable 48), PCS_T1:PRMY_LOG \(^1\), and PCS_T1:PRMZ_LOG \(^1\)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (log(m(^2)))</th>
<th></th>
<th>Value (log(m(^2)))</th>
<th></th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.73E+01</td>
<td>35</td>
<td>-1.56E+01</td>
<td>69</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.92E+01</td>
<td>36</td>
<td>-1.82E+01</td>
<td>70</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.36E+01</td>
<td>37</td>
<td>-1.50E+01</td>
<td>71</td>
<td>-1.55E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.23E+01</td>
<td>38</td>
<td>-1.77E+01</td>
<td>72</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.26E+01</td>
<td>39</td>
<td>-1.88E+01</td>
<td>73</td>
<td>-2.07E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.49E+01</td>
<td>40</td>
<td>-1.31E+01</td>
<td>74</td>
<td>-1.46E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.43E+01</td>
<td>41</td>
<td>-1.38E+01</td>
<td>75</td>
<td>-1.52E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.26E+01</td>
<td>42</td>
<td>-1.76E+01</td>
<td>76</td>
<td>-1.98E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.87E+01</td>
<td>43</td>
<td>-1.24E+01</td>
<td>77</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.66E+01</td>
<td>44</td>
<td>-2.00E+01</td>
<td>78</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.59E+01</td>
<td>45</td>
<td>-2.01E+01</td>
<td>79</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.40E+01</td>
<td>46</td>
<td>-1.99E+01</td>
<td>80</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.89E+01</td>
<td>47</td>
<td>-1.48E+01</td>
<td>81</td>
<td>-1.51E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.93E+01</td>
<td>48</td>
<td>-1.54E+01</td>
<td>82</td>
<td>-1.28E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.72E+01</td>
<td>49</td>
<td>-1.80E+01</td>
<td>83</td>
<td>-1.35E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.59E+01</td>
<td>50</td>
<td>-1.67E+01</td>
<td>84</td>
<td>-1.21E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.32E+01</td>
<td>51</td>
<td>-1.28E+01</td>
<td>85</td>
<td>-1.62E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-2.08E+01</td>
<td>52</td>
<td>-1.68E+01</td>
<td>86</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.75E+01</td>
<td>53</td>
<td>-1.83E+01</td>
<td>87</td>
<td>-1.33E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.69E+01</td>
<td>54</td>
<td>-2.02E+01</td>
<td>88</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.51E+01</td>
<td>55</td>
<td>-1.70E+01</td>
<td>89</td>
<td>-1.29E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.61E+01</td>
<td>56</td>
<td>-1.34E+01</td>
<td>90</td>
<td>-1.56E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.22E+01</td>
<td>57</td>
<td>-1.79E+01</td>
<td>91</td>
<td>-1.38E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.05E+01</td>
<td>58</td>
<td>-1.39E+01</td>
<td>92</td>
<td>-1.41E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.66E+01</td>
<td>59</td>
<td>-1.47E+01</td>
<td>93</td>
<td>-1.22E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.41E+01</td>
<td>60</td>
<td>-1.82E+01</td>
<td>94</td>
<td>-1.45E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.54E+01</td>
<td>61</td>
<td>-1.85E+01</td>
<td>95</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-2.05E+01</td>
<td>62</td>
<td>-2.06E+01</td>
<td>96</td>
<td>-1.63E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.91E+01</td>
<td>63</td>
<td>-1.64E+01</td>
<td>97</td>
<td>-1.61E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.78E+01</td>
<td>64</td>
<td>-1.30E+01</td>
<td>98</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.71E+01</td>
<td>65</td>
<td>-1.98E+01</td>
<td>99</td>
<td>-1.36E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-2.04E+01</td>
<td>66</td>
<td>-2.03E+01</td>
<td>100</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.64E+01</td>
<td>67</td>
<td>-1.95E+01</td>
<td>100</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.84E+01</td>
<td>68</td>
<td>-1.25E+01</td>
<td>100</td>
<td>-1.74E+01</td>
</tr>
</tbody>
</table>
Table A.37 – Sampled Values for Parameter PCS_T1:PRMX_LOG (LHS Variable 48), PCS_T1:PRMY_LOG \(^1\), and PCS_T1:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

Information Only
Table A.37 – Sampled Values for Parameter PCS_T1:PRMX_LOG (LHS Variable 48), PCS_T1:PRMY_LOG \(^1\), and PCS_T1:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>-1.50E+01</td>
<td>35</td>
<td>-1.48E+01</td>
<td>69</td>
<td>-2.04E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-1.41E+01</td>
<td>36</td>
<td>-1.73E+01</td>
<td>70</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-2.06E+01</td>
<td>37</td>
<td>-1.68E+01</td>
<td>71</td>
<td>-1.36E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-1.79E+01</td>
<td>38</td>
<td>-1.63E+01</td>
<td>72</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-1.79E+01</td>
<td>39</td>
<td>-1.87E+01</td>
<td>73</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-1.94E+01</td>
<td>40</td>
<td>-2.05E+01</td>
<td>74</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>-1.39E+01</td>
<td>41</td>
<td>-1.94E+01</td>
<td>75</td>
<td>-1.60E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>-1.86E+01</td>
<td>42</td>
<td>-1.78E+01</td>
<td>76</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>-1.61E+01</td>
<td>43</td>
<td>-1.66E+01</td>
<td>77</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-1.29E+01</td>
<td>44</td>
<td>-1.40E+01</td>
<td>78</td>
<td>-1.61E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>-1.26E+01</td>
<td>45</td>
<td>-1.33E+01</td>
<td>79</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>-1.82E+01</td>
<td>46</td>
<td>-1.54E+01</td>
<td>80</td>
<td>-1.39E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>-1.37E+01</td>
<td>47</td>
<td>-1.76E+01</td>
<td>81</td>
<td>-1.54E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>-1.97E+01</td>
<td>48</td>
<td>-1.55E+01</td>
<td>82</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-1.88E+01</td>
<td>49</td>
<td>-1.29E+01</td>
<td>83</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>-2.07E+01</td>
<td>50</td>
<td>-1.56E+01</td>
<td>84</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>-1.33E+01</td>
<td>51</td>
<td>-1.81E+01</td>
<td>85</td>
<td>-1.27E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>-1.42E+01</td>
<td>52</td>
<td>-1.89E+01</td>
<td>86</td>
<td>-1.45E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>-1.74E+01</td>
<td>53</td>
<td>-1.76E+01</td>
<td>87</td>
<td>-1.51E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>-1.67E+01</td>
<td>54</td>
<td>-1.35E+01</td>
<td>88</td>
<td>-1.64E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>-2.08E+01</td>
<td>55</td>
<td>-1.98E+01</td>
<td>89</td>
<td>-1.32E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>-1.89E+01</td>
<td>56</td>
<td>-1.56E+01</td>
<td>90</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>-1.47E+01</td>
<td>57</td>
<td>-1.35E+01</td>
<td>91</td>
<td>-1.62E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>-1.53E+01</td>
<td>58</td>
<td>-1.91E+01</td>
<td>92</td>
<td>-1.70E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>-1.21E+01</td>
<td>59</td>
<td>-2.00E+01</td>
<td>93</td>
<td>-1.67E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>-1.30E+01</td>
<td>60</td>
<td>-1.49E+01</td>
<td>94</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>-2.01E+01</td>
<td>61</td>
<td>-1.58E+01</td>
<td>95</td>
<td>-2.02E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>-1.69E+01</td>
<td>62</td>
<td>-1.21E+01</td>
<td>96</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>-1.22E+01</td>
<td>63</td>
<td>-1.44E+01</td>
<td>97</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>-1.70E+01</td>
<td>64</td>
<td>-1.95E+01</td>
<td>98</td>
<td>-1.48E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>-2.03E+01</td>
<td>65</td>
<td>-1.64E+01</td>
<td>99</td>
<td>-1.46E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>-1.23E+01</td>
<td>66</td>
<td>-1.43E+01</td>
<td>100</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>-2.03E+01</td>
<td>67</td>
<td>-1.81E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>-1.44E+01</td>
<td>68</td>
<td>-1.28E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(^1\)Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.38 – Sampled Values for Parameter PCS_T1:SAT_RGAS (LHS Variable 49), PCS_T2:SAT_RGAS \(^1\) and PCS_T3:SAT_RGAS \(^1\)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
<th></th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.23E-01</td>
<td>35</td>
<td>1.21E-01</td>
<td>69</td>
<td>8.33E-02</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.86E-01</td>
<td>36</td>
<td>3.40E-01</td>
<td>70</td>
<td>2.17E-01</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.98E-01</td>
<td>37</td>
<td>6.82E-02</td>
<td>71</td>
<td>2.39E-01</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2.41E-01</td>
<td>38</td>
<td>1.25E-01</td>
<td>72</td>
<td>3.95E-01</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.77E-01</td>
<td>39</td>
<td>3.79E-01</td>
<td>73</td>
<td>8.50E-02</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3.23E-01</td>
<td>40</td>
<td>1.62E-02</td>
<td>74</td>
<td>1.04E-01</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9.44E-02</td>
<td>41</td>
<td>2.74E-01</td>
<td>75</td>
<td>5.54E-02</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>2.33E-01</td>
<td>42</td>
<td>1.35E-02</td>
<td>76</td>
<td>3.09E-01</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1.70E-01</td>
<td>43</td>
<td>2.22E-02</td>
<td>77</td>
<td>3.33E-01</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>3.51E-01</td>
<td>44</td>
<td>3.72E-01</td>
<td>78</td>
<td>2.51E-01</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1.16E-01</td>
<td>45</td>
<td>3.75E-01</td>
<td>79</td>
<td>2.78E-01</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>2.70E-01</td>
<td>46</td>
<td>2.62E-01</td>
<td>80</td>
<td>2.90E-01</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1.52E-01</td>
<td>47</td>
<td>2.60E-01</td>
<td>81</td>
<td>1.46E-01</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>5.35E-03</td>
<td>48</td>
<td>2.96E-01</td>
<td>82</td>
<td>2.66E-01</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>2.82E-02</td>
<td>49</td>
<td>5.19E-02</td>
<td>83</td>
<td>2.03E-01</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>2.09E-01</td>
<td>50</td>
<td>3.42E-02</td>
<td>84</td>
<td>1.85E-01</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>1.61E-01</td>
<td>51</td>
<td>2.31E-01</td>
<td>85</td>
<td>1.17E-01</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>3.45E-01</td>
<td>52</td>
<td>2.87E-01</td>
<td>86</td>
<td>4.77E-02</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>4.23E-02</td>
<td>53</td>
<td>1.33E-01</td>
<td>87</td>
<td>3.65E-01</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>1.76E-01</td>
<td>54</td>
<td>2.47E-02</td>
<td>88</td>
<td>3.83E-01</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>2.94E-01</td>
<td>55</td>
<td>9.66E-02</td>
<td>89</td>
<td>3.89E-01</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>3.27E-01</td>
<td>56</td>
<td>3.14E-01</td>
<td>90</td>
<td>8.44E-03</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>6.21E-02</td>
<td>57</td>
<td>7.84E-02</td>
<td>91</td>
<td>2.81E-01</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>6.73E-02</td>
<td>58</td>
<td>7.42E-02</td>
<td>92</td>
<td>1.60E-01</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>3.56E-01</td>
<td>59</td>
<td>3.07E-01</td>
<td>93</td>
<td>1.91E-01</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>2.26E-01</td>
<td>60</td>
<td>2.55E-01</td>
<td>94</td>
<td>1.68E-01</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>9.61E-04</td>
<td>61</td>
<td>1.42E-01</td>
<td>95</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>3.91E-02</td>
<td>62</td>
<td>3.03E-01</td>
<td>96</td>
<td>1.11E-01</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>9.06E-02</td>
<td>63</td>
<td>1.97E-01</td>
<td>97</td>
<td>3.63E-01</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>1.03E-01</td>
<td>64</td>
<td>3.55E-01</td>
<td>98</td>
<td>3.17E-01</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>1.83E-01</td>
<td>65</td>
<td>2.07E-01</td>
<td>99</td>
<td>5.69E-02</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>1.95E-01</td>
<td>66</td>
<td>1.36E-01</td>
<td>100</td>
<td>3.31E-01</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>1.29E-01</td>
<td>67</td>
<td>2.15E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>2.47E-01</td>
<td>68</td>
<td>3.41E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.38 – Sampled Values for Parameter PCS_T1:SAT_RGAS (LHS Variable 49), PCS_T2:SAT_RGAS \(^1\), and PCS_T3:SAT_RGAS \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Value</td>
<td># Value</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4.39E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.44E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.87E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.46E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.21E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.35E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.08E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8.38E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.49E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.63E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8.76E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.40E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3.00E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.77E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.26E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.78E-03</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.71E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3.16E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.23E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.12E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.06E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.27E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.58E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.17E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.76E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.95E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.30E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.76E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.31E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.91E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.05E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.73E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.35E-02</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.58E-01</td>
</tr>
</tbody>
</table>
Table A.38 – Sampled Values for Parameter PCS_T1:SAT_RGAS (LHS Variable 49), PCS_T2:SAT_RGAS ¹, and PCS_T3:SAT_RGAS ¹ (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.81E-01</td>
<td>35</td>
<td>6.62E-02</td>
<td>69</td>
<td>7.14E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.47E-01</td>
<td>36</td>
<td>1.66E-01</td>
<td>70</td>
<td>3.94E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.78E-01</td>
<td>37</td>
<td>8.42E-02</td>
<td>71</td>
<td>2.12E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.89E-01</td>
<td>38</td>
<td>2.94E-01</td>
<td>72</td>
<td>2.60E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.61E-01</td>
<td>39</td>
<td>1.07E-01</td>
<td>73</td>
<td>1.92E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.51E-01</td>
<td>40</td>
<td>5.87E-02</td>
<td>74</td>
<td>2.17E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.86E-02</td>
<td>41</td>
<td>2.62E-01</td>
<td>75</td>
<td>2.50E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.42E-01</td>
<td>42</td>
<td>3.28E-02</td>
<td>76</td>
<td>2.22E-02</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.58E-01</td>
<td>43</td>
<td>2.40E-01</td>
<td>77</td>
<td>5.45E-02</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.06E-02</td>
<td>44</td>
<td>6.16E-02</td>
<td>78</td>
<td>1.29E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.22E-01</td>
<td>45</td>
<td>3.32E-01</td>
<td>79</td>
<td>1.13E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.63E-02</td>
<td>46</td>
<td>7.93E-02</td>
<td>80</td>
<td>3.27E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.72E-01</td>
<td>47</td>
<td>3.03E-01</td>
<td>81</td>
<td>1.97E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.26E-01</td>
<td>48</td>
<td>8.20E-03</td>
<td>82</td>
<td>3.70E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.24E-01</td>
<td>49</td>
<td>3.10E-01</td>
<td>83</td>
<td>2.88E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.95E-04</td>
<td>50</td>
<td>9.94E-02</td>
<td>84</td>
<td>1.69E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.24E-02</td>
<td>51</td>
<td>3.86E-02</td>
<td>85</td>
<td>2.69E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.47E-01</td>
<td>52</td>
<td>4.69E-02</td>
<td>86</td>
<td>3.64E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.39E-01</td>
<td>53</td>
<td>1.32E-01</td>
<td>87</td>
<td>2.75E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.99E-01</td>
<td>54</td>
<td>1.54E-01</td>
<td>88</td>
<td>1.10E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3.63E-01</td>
<td>55</td>
<td>1.94E-02</td>
<td>89</td>
<td>2.06E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2.10E-01</td>
<td>56</td>
<td>6.01E-03</td>
<td>90</td>
<td>3.80E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.28E-01</td>
<td>57</td>
<td>4.36E-02</td>
<td>91</td>
<td>3.18E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.23E-01</td>
<td>58</td>
<td>1.37E-01</td>
<td>92</td>
<td>1.01E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.08E-02</td>
<td>59</td>
<td>1.86E-01</td>
<td>93</td>
<td>3.56E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.72E-01</td>
<td>60</td>
<td>2.28E-01</td>
<td>94</td>
<td>1.43E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>9.32E-02</td>
<td>61</td>
<td>3.53E-01</td>
<td>95</td>
<td>3.79E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.17E-01</td>
<td>62</td>
<td>2.33E-01</td>
<td>96</td>
<td>2.54E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.77E-01</td>
<td>63</td>
<td>2.84E-01</td>
<td>97</td>
<td>3.04E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.03E-01</td>
<td>64</td>
<td>7.36E-02</td>
<td>98</td>
<td>2.85E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2.44E-01</td>
<td>65</td>
<td>8.02E-02</td>
<td>99</td>
<td>1.26E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.96E-01</td>
<td>66</td>
<td>1.47E-01</td>
<td></td>
<td>100</td>
<td>1.49E-01</td>
</tr>
<tr>
<td>33</td>
<td>2.67E-01</td>
<td>67</td>
<td>1.92E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.85E-01</td>
<td>68</td>
<td>3.16E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: ¹ Only one-time duration was sampled in LHS for this parameter. The corresponding parameters for a secondary or tertiary time duration (T2 or T3) were set equal to the previous time duration.
Table A.39 – Sampled Values for Parameter PCS_T1:SAT_RBRN (LHS Variable 50), PCS_T2:SAT_RBRN 1, and PCS_T3:SAT_RBRN 1

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless) #</th>
<th>Value (dimensionless) #</th>
<th>Value (dimensionless) #</th>
<th>Value (dimensionless) #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.66E-01</td>
<td>3.45E-01</td>
<td>1.81E-01</td>
<td>2.19E-01</td>
</tr>
<tr>
<td>2</td>
<td>1.81E-01</td>
<td>3.01E-01</td>
<td>3.01E-01</td>
<td>2.07E-01</td>
</tr>
<tr>
<td>3</td>
<td>1.36E-01</td>
<td>1.58E-01</td>
<td>3.73E-01</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>3.98E-01</td>
<td>72</td>
<td>2.07E-01</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>1.81E-02</td>
<td>73</td>
<td>7.68E-02</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>1.32E-01</td>
<td>74</td>
<td>1.59E-01</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>4.63E-01</td>
<td>75</td>
<td>3.40E-01</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>3.80E-01</td>
<td>76</td>
<td>5.71E-01</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>4.04E-01</td>
<td>77</td>
<td>2.15E-01</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>5.54E-01</td>
<td>78</td>
<td>2.26E-01</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>4.12E-01</td>
<td>79</td>
<td>2.44E-01</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>6.77E-02</td>
<td>80</td>
<td>1.91E-01</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>4.51E-01</td>
<td>81</td>
<td>3.59E-01</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>5.06E-01</td>
<td>82</td>
<td>5.87E-01</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>1.05E-02</td>
<td>83</td>
<td>1.24E-01</td>
<td>83</td>
</tr>
<tr>
<td>16</td>
<td>5.39E-01</td>
<td>84</td>
<td>4.42E-01</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>1.75E-01</td>
<td>85</td>
<td>3.85E-01</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>3.10E-01</td>
<td>86</td>
<td>1.69E-01</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>9.71E-02</td>
<td>87</td>
<td>3.70E-02</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>1.96E-03</td>
<td>88</td>
<td>2.33E-01</td>
<td>88</td>
</tr>
<tr>
<td>21</td>
<td>1.08E-01</td>
<td>89</td>
<td>9.54E-02</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>8.85E-02</td>
<td>90</td>
<td>7.44E-02</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>8.76E-02</td>
<td>91</td>
<td>5.51E-01</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>1.17E-01</td>
<td>92</td>
<td>5.03E-01</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>5.96E-02</td>
<td>93</td>
<td>1.86E-01</td>
<td>93</td>
</tr>
<tr>
<td>26</td>
<td>2.91E-01</td>
<td>94</td>
<td>1.54E-01</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>6.92E-02</td>
<td>95</td>
<td>1.15E-01</td>
<td>95</td>
</tr>
<tr>
<td>28</td>
<td>5.22E-01</td>
<td>96</td>
<td>3.62E-01</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>2.66E-02</td>
<td>97</td>
<td>1.42E-01</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>1.78E-01</td>
<td>98</td>
<td>4.93E-01</td>
<td>98</td>
</tr>
<tr>
<td>31</td>
<td>2.74E-01</td>
<td>99</td>
<td>5.60E-02</td>
<td>99</td>
</tr>
<tr>
<td>32</td>
<td>1.60E-01</td>
<td>100</td>
<td>4.72E-01</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>4.67E-01</td>
<td></td>
<td>1.97E-01</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.26E-01</td>
<td></td>
<td>5.13E-01</td>
<td></td>
</tr>
</tbody>
</table>
Table A.39 – Sampled Values for Parameter PCS_T1:SAT_RBRN (LHS Variable 50), PCS_T2:SAT_RBRN ¹, and PCS_T3:SAT_RBRN ¹ (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th># Value (dimensionless)</th>
<th># Vector</th>
<th># Value (dimensionless)</th>
<th># Vector</th>
<th># Value (dimensionless)</th>
<th># Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.37E-01</td>
<td>35</td>
<td>2.97E-01</td>
<td>69</td>
<td>2.44E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.50E-01</td>
<td>36</td>
<td>7.91E-02</td>
<td>70</td>
<td>1.51E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.52E-01</td>
<td>37</td>
<td>1.16E-01</td>
<td>71</td>
<td>2.97E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.44E-02</td>
<td>38</td>
<td>3.10E-01</td>
<td>72</td>
<td>1.91E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.87E-02</td>
<td>39</td>
<td>2.40E-01</td>
<td>73</td>
<td>1.44E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.05E-01</td>
<td>40</td>
<td>5.53E-01</td>
<td>74</td>
<td>1.15E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.21E-02</td>
<td>41</td>
<td>7.24E-02</td>
<td>75</td>
<td>1.26E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.80E-01</td>
<td>42</td>
<td>4.77E-01</td>
<td>76</td>
<td>8.71E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.46E-01</td>
<td>43</td>
<td>5.27E-01</td>
<td>77</td>
<td>5.08E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.93E-04</td>
<td>44</td>
<td>9.85E-02</td>
<td>78</td>
<td>2.27E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.12E-01</td>
<td>45</td>
<td>2.43E-02</td>
<td>79</td>
<td>3.45E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.90E-01</td>
<td>46</td>
<td>5.81E-01</td>
<td>80</td>
<td>1.40E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.86E-01</td>
<td>47</td>
<td>4.08E-01</td>
<td>81</td>
<td>3.98E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.73E-01</td>
<td>48</td>
<td>8.05E-02</td>
<td>82</td>
<td>1.62E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.95E-01</td>
<td>49</td>
<td>9.52E-02</td>
<td>83</td>
<td>4.49E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.01E-01</td>
<td>50</td>
<td>6.25E-02</td>
<td>84</td>
<td>4.87E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.67E-01</td>
<td>51</td>
<td>3.61E-01</td>
<td>85</td>
<td>2.93E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.41E-01</td>
<td>52</td>
<td>3.80E-01</td>
<td>86</td>
<td>4.96E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.14E-01</td>
<td>53</td>
<td>5.63E-01</td>
<td>87</td>
<td>1.06E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.22E-01</td>
<td>54</td>
<td>9.55E-03</td>
<td>88</td>
<td>5.89E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.32E-01</td>
<td>55</td>
<td>3.28E-01</td>
<td>89</td>
<td>1.78E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.69E-02</td>
<td>56</td>
<td>2.67E-01</td>
<td>90</td>
<td>5.39E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.07E-02</td>
<td>57</td>
<td>1.35E-02</td>
<td>91</td>
<td>6.58E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.24E-01</td>
<td>58</td>
<td>4.17E-01</td>
<td>92</td>
<td>2.63E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.35E-01</td>
<td>59</td>
<td>1.98E-01</td>
<td>93</td>
<td>1.70E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.69E-01</td>
<td>60</td>
<td>4.71E-01</td>
<td>94</td>
<td>3.54E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.95E-01</td>
<td>61</td>
<td>4.32E-01</td>
<td>95</td>
<td>4.20E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.03E-01</td>
<td>62</td>
<td>5.30E-02</td>
<td>96</td>
<td>5.69E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.09E-02</td>
<td>63</td>
<td>1.96E-01</td>
<td>97</td>
<td>2.78E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.62E-03</td>
<td>64</td>
<td>1.76E-01</td>
<td>98</td>
<td>5.32E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.56E-01</td>
<td>65</td>
<td>3.23E-01</td>
<td>99</td>
<td>4.26E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.83E-01</td>
<td>66</td>
<td>5.02E-01</td>
<td>100</td>
<td>4.42E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.10E-01</td>
<td>67</td>
<td>1.53E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.15E-01</td>
<td>68</td>
<td>4.58E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

255

Information Only
Table A.39 – Sampled Values for Parameter PCS_T1:SAT_RBRN (LHS Variable 50), PCS_T2:SAT_RBRN, and PCS_T3:SAT_RBRN (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.97E-01</td>
<td>35</td>
<td>3.40E-01</td>
<td>69</td>
<td>1.97E-01</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>3.10E-01</td>
<td>36</td>
<td>1.10E-01</td>
<td>70</td>
<td>1.63E-01</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>3.66E-01</td>
<td>37</td>
<td>8.03E-02</td>
<td>71</td>
<td>1.98E-02</td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td>4.62E-01</td>
<td>38</td>
<td>1.07E-01</td>
<td>72</td>
<td>3.85E-01</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>2.05E-01</td>
<td>39</td>
<td>5.94E-01</td>
<td>73</td>
<td>6.04E-02</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>5.47E-01</td>
<td>40</td>
<td>1.19E-01</td>
<td>74</td>
<td>1.27E-01</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>8.71E-02</td>
<td>41</td>
<td>2.96E-01</td>
<td>75</td>
<td>3.55E-02</td>
<td>72</td>
</tr>
<tr>
<td>8</td>
<td>1.82E-01</td>
<td>42</td>
<td>3.87E-02</td>
<td>76</td>
<td>5.85E-01</td>
<td>73</td>
</tr>
<tr>
<td>9</td>
<td>1.96E-01</td>
<td>43</td>
<td>1.91E-01</td>
<td>77</td>
<td>3.35E-01</td>
<td>74</td>
</tr>
<tr>
<td>10</td>
<td>2.21E-01</td>
<td>44</td>
<td>2.53E-01</td>
<td>78</td>
<td>3.75E-01</td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>3.98E-01</td>
<td>45</td>
<td>1.51E-01</td>
<td>79</td>
<td>9.62E-02</td>
<td>76</td>
</tr>
<tr>
<td>12</td>
<td>1.41E-01</td>
<td>46</td>
<td>4.63E-02</td>
<td>80</td>
<td>5.18E-01</td>
<td>77</td>
</tr>
<tr>
<td>13</td>
<td>2.30E-01</td>
<td>47</td>
<td>4.81E-01</td>
<td>81</td>
<td>1.53E-01</td>
<td>78</td>
</tr>
<tr>
<td>14</td>
<td>6.71E-02</td>
<td>48</td>
<td>2.70E-01</td>
<td>82</td>
<td>5.72E-02</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td>2.53E-02</td>
<td>49</td>
<td>2.16E-01</td>
<td>83</td>
<td>1.66E-01</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>3.77E-01</td>
<td>50</td>
<td>2.72E-01</td>
<td>84</td>
<td>2.90E-01</td>
<td>81</td>
</tr>
<tr>
<td>17</td>
<td>3.27E-01</td>
<td>51</td>
<td>5.74E-01</td>
<td>85</td>
<td>5.47E-02</td>
<td>82</td>
</tr>
<tr>
<td>18</td>
<td>2.39E-01</td>
<td>52</td>
<td>1.68E-01</td>
<td>86</td>
<td>4.08E-01</td>
<td>83</td>
</tr>
<tr>
<td>19</td>
<td>5.07E-01</td>
<td>53</td>
<td>1.51E-02</td>
<td>87</td>
<td>9.01E-03</td>
<td>84</td>
</tr>
<tr>
<td>20</td>
<td>3.47E-01</td>
<td>54</td>
<td>3.57E-01</td>
<td>88</td>
<td>1.87E-01</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>1.04E-01</td>
<td>55</td>
<td>1.33E-01</td>
<td>89</td>
<td>4.53E-01</td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td>2.93E-02</td>
<td>56</td>
<td>1.31E-01</td>
<td>90</td>
<td>4.17E-01</td>
<td>87</td>
</tr>
<tr>
<td>23</td>
<td>3.15E-01</td>
<td>57</td>
<td>2.91E-03</td>
<td>91</td>
<td>9.10E-02</td>
<td>88</td>
</tr>
<tr>
<td>24</td>
<td>4.37E-01</td>
<td>58</td>
<td>7.69E-02</td>
<td>92</td>
<td>2.46E-01</td>
<td>89</td>
</tr>
<tr>
<td>25</td>
<td>5.28E-01</td>
<td>59</td>
<td>4.48E-01</td>
<td>93</td>
<td>5.59E-01</td>
<td>90</td>
</tr>
<tr>
<td>26</td>
<td>5.39E-01</td>
<td>60</td>
<td>6.90E-02</td>
<td>94</td>
<td>4.01E-01</td>
<td>91</td>
</tr>
<tr>
<td>27</td>
<td>1.14E-01</td>
<td>61</td>
<td>1.73E-01</td>
<td>95</td>
<td>1.47E-01</td>
<td>92</td>
</tr>
<tr>
<td>28</td>
<td>5.68E-01</td>
<td>62</td>
<td>2.03E-02</td>
<td>96</td>
<td>4.80E-01</td>
<td>93</td>
</tr>
<tr>
<td>29</td>
<td>4.14E-02</td>
<td>63</td>
<td>9.49E-02</td>
<td>97</td>
<td>2.81E-01</td>
<td>94</td>
</tr>
<tr>
<td>30</td>
<td>1.58E-01</td>
<td>64</td>
<td>4.29E-01</td>
<td>98</td>
<td>1.21E-01</td>
<td>95</td>
</tr>
<tr>
<td>31</td>
<td>5.12E-02</td>
<td>65</td>
<td>4.89E-01</td>
<td>99</td>
<td>5.22E-01</td>
<td>96</td>
</tr>
<tr>
<td>32</td>
<td>7.55E-02</td>
<td>66</td>
<td>4.68E-01</td>
<td>100</td>
<td>1.39E-01</td>
<td>97</td>
</tr>
<tr>
<td>33</td>
<td>2.63E-01</td>
<td>67</td>
<td>1.76E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5.79E-01</td>
<td>68</td>
<td>7.67E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: 1 Only one-time duration was sampled in LHS for this parameter. The corresponding parameters for a secondary or tertiary time duration (T2 or T3) were set equal to the previous time duration.
Table A.40 – Sampled Values for Parameter PCS_T1:PORE_DIS (LHS Variable 51), PCS_T2:PORE_DIS, and PCS_T3:PORE_DIS

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>8.72E-01</td>
<td>35</td>
<td>1.83E+00</td>
<td>69</td>
<td>2.95E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.73E+00</td>
<td>36</td>
<td>4.70E+00</td>
<td>70</td>
<td>5.61E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.44E-01</td>
<td>37</td>
<td>2.88E-01</td>
<td>71</td>
<td>4.48E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.26E+00</td>
<td>38</td>
<td>9.19E-01</td>
<td>72</td>
<td>4.09E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.44E+00</td>
<td>39</td>
<td>8.06E+00</td>
<td>73</td>
<td>7.52E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.15E+00</td>
<td>40</td>
<td>3.22E+00</td>
<td>74</td>
<td>2.99E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.10E+00</td>
<td>41</td>
<td>5.85E+00</td>
<td>75</td>
<td>1.01E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.77E+00</td>
<td>42</td>
<td>3.23E+00</td>
<td>76</td>
<td>4.71E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9.38E-01</td>
<td>43</td>
<td>2.68E+00</td>
<td>77</td>
<td>4.19E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.04E+00</td>
<td>44</td>
<td>3.91E+00</td>
<td>78</td>
<td>8.53E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.86E-01</td>
<td>45</td>
<td>7.23E-01</td>
<td>79</td>
<td>4.38E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.34E+00</td>
<td>46</td>
<td>7.40E+00</td>
<td>80</td>
<td>6.84E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.52E+00</td>
<td>47</td>
<td>7.78E+00</td>
<td>81</td>
<td>5.40E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>8.40E-01</td>
<td>48</td>
<td>3.73E+00</td>
<td>82</td>
<td>2.02E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.44E+01</td>
<td>49</td>
<td>7.30E+00</td>
<td>83</td>
<td>6.92E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.55E+00</td>
<td>50</td>
<td>6.27E-01</td>
<td>84</td>
<td>7.69E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.90E+00</td>
<td>51</td>
<td>5.86E-01</td>
<td>85</td>
<td>8.22E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.49E+00</td>
<td>52</td>
<td>5.34E-01</td>
<td>86</td>
<td>1.39E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.03E+00</td>
<td>53</td>
<td>2.12E+00</td>
<td>87</td>
<td>2.74E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.88E-01</td>
<td>54</td>
<td>1.20E-01</td>
<td>88</td>
<td>2.32E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.31E-01</td>
<td>55</td>
<td>7.77E-01</td>
<td>89</td>
<td>6.48E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.63E+00</td>
<td>56</td>
<td>6.99E+00</td>
<td>90</td>
<td>5.61E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.46E+00</td>
<td>57</td>
<td>7.11E+00</td>
<td>91</td>
<td>6.51E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.04E-01</td>
<td>58</td>
<td>8.78E-01</td>
<td>92</td>
<td>3.38E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.92E+00</td>
<td>59</td>
<td>2.45E-01</td>
<td>93</td>
<td>6.68E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.19E+00</td>
<td>60</td>
<td>6.78E+00</td>
<td>94</td>
<td>5.32E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.65E+00</td>
<td>61</td>
<td>9.03E-01</td>
<td>95</td>
<td>1.52E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>8.06E-01</td>
<td>62</td>
<td>5.02E-01</td>
<td>96</td>
<td>2.82E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>6.12E+00</td>
<td>63</td>
<td>3.21E-01</td>
<td>97</td>
<td>6.32E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.23E+00</td>
<td>64</td>
<td>3.83E-01</td>
<td>98</td>
<td>1.62E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.16E-01</td>
<td>65</td>
<td>5.99E+00</td>
<td>99</td>
<td>5.56E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.68E-01</td>
<td>66</td>
<td>7.55E+00</td>
<td>100</td>
<td>2.01E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.20E-01</td>
<td>67</td>
<td>6.87E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.53E+00</td>
<td>68</td>
<td>2.31E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Value (dimensionless)</td>
<td>Vector</td>
<td>Value (dimensionless)</td>
<td>Value (dimensionless)</td>
<td>Value (dimensionless)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.56E-01</td>
<td>35</td>
<td>7.24E+00</td>
<td>69</td>
<td>3.07E+00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.68E+00</td>
<td>36</td>
<td>1.67E-01</td>
<td>70</td>
<td>2.10E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.90E-01</td>
<td>37</td>
<td>5.51E-01</td>
<td>71</td>
<td>3.24E+00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.95E-01</td>
<td>38</td>
<td>3.83E+00</td>
<td>72</td>
<td>2.00E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.39E+00</td>
<td>39</td>
<td>1.92E+00</td>
<td>73</td>
<td>6.11E+00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.03E+00</td>
<td>40</td>
<td>2.92E-01</td>
<td>74</td>
<td>6.29E+00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.24E-01</td>
<td>41</td>
<td>5.36E+00</td>
<td>75</td>
<td>3.39E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7.42E-01</td>
<td>42</td>
<td>1.33E-01</td>
<td>76</td>
<td>3.65E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.60E-01</td>
<td>43</td>
<td>4.73E+00</td>
<td>77</td>
<td>6.50E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.54E-01</td>
<td>44</td>
<td>1.07E+00</td>
<td>78</td>
<td>3.40E+00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.31E-01</td>
<td>45</td>
<td>7.14E-01</td>
<td>79</td>
<td>8.32E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6.85E+00</td>
<td>46</td>
<td>3.24E-01</td>
<td>80</td>
<td>2.61E+00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8.08E-01</td>
<td>47</td>
<td>2.70E-01</td>
<td>81</td>
<td>2.34E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.47E+00</td>
<td>48</td>
<td>6.58E+00</td>
<td>82</td>
<td>7.37E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.33E+00</td>
<td>49</td>
<td>4.91E-01</td>
<td>83</td>
<td>7.15E+00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7.90E+00</td>
<td>50</td>
<td>4.88E+00</td>
<td>84</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.85E+00</td>
<td>51</td>
<td>1.10E-01</td>
<td>85</td>
<td>7.64E+00</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.98E+00</td>
<td>52</td>
<td>8.78E-01</td>
<td>86</td>
<td>6.77E+00</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5.16E+00</td>
<td>53</td>
<td>9.38E-01</td>
<td>87</td>
<td>3.12E+00</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.83E+00</td>
<td>54</td>
<td>5.15E-01</td>
<td>88</td>
<td>1.77E+01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5.04E-01</td>
<td>55</td>
<td>6.79E-01</td>
<td>89</td>
<td>6.73E+00</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>7.01E+00</td>
<td>56</td>
<td>3.55E+00</td>
<td>90</td>
<td>5.91E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.77E-01</td>
<td>57</td>
<td>1.44E+00</td>
<td>91</td>
<td>1.50E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5.73E-01</td>
<td>58</td>
<td>4.11E+00</td>
<td>92</td>
<td>3.70E+00</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8.62E-01</td>
<td>59</td>
<td>4.09E+00</td>
<td>93</td>
<td>4.50E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.61E+00</td>
<td>60</td>
<td>8.57E-01</td>
<td>94</td>
<td>5.92E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>7.02E-01</td>
<td>61</td>
<td>4.25E+00</td>
<td>95</td>
<td>3.98E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5.67E+00</td>
<td>62</td>
<td>1.74E+00</td>
<td>96</td>
<td>6.41E+00</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5.54E+00</td>
<td>63</td>
<td>2.48E+00</td>
<td>97</td>
<td>9.02E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.61E+00</td>
<td>64</td>
<td>5.04E+00</td>
<td>98</td>
<td>6.26E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5.30E+00</td>
<td>65</td>
<td>4.59E-01</td>
<td>99</td>
<td>2.69E+00</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.36E+00</td>
<td>66</td>
<td>6.11E-01</td>
<td>100</td>
<td>2.15E+00</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>7.94E-01</td>
<td>67</td>
<td>5.43E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9.17E-01</td>
<td>68</td>
<td>1.12E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.40 – Sampled Values for Parameter PCS_T1:PORE_DIS (LHS Variable 51), PCS_T2:PORE_DIS 1, and PCS_T3:PORE_DIS 1 (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.32E+00</td>
<td>35</td>
<td>2.62E-01</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>1.26E-01</td>
<td>36</td>
<td>5.79E-01</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>3.74E-01</td>
<td>37</td>
<td>4.61E+00</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>5.78E+00</td>
<td>38</td>
<td>1.70E-01</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>1.05E+00</td>
<td>39</td>
<td>8.14E-01</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>5.65E-01</td>
<td>40</td>
<td>3.43E+00</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>5.37E-01</td>
<td>41</td>
<td>2.77E-01</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>2.01E+00</td>
<td>42</td>
<td>3.03E+00</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>3.60E+00</td>
<td>43</td>
<td>4.89E+00</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>5.11E+00</td>
<td>44</td>
<td>7.80E-01</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>4.74E-01</td>
<td>45</td>
<td>6.65E+00</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>8.72E-01</td>
<td>46</td>
<td>6.78E+00</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>7.44E+00</td>
<td>47</td>
<td>8.94E-01</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>7.91E+00</td>
<td>48</td>
<td>1.60E+00</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>3.77E-01</td>
<td>49</td>
<td>1.41E+00</td>
<td>83</td>
</tr>
<tr>
<td>16</td>
<td>5.50E+00</td>
<td>50</td>
<td>2.01E-01</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>5.18E-01</td>
<td>51</td>
<td>8.76E-01</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>4.10E+00</td>
<td>52</td>
<td>2.37E-01</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>1.86E-01</td>
<td>53</td>
<td>2.17E+00</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>6.49E-01</td>
<td>54</td>
<td>7.36E-01</td>
<td>88</td>
</tr>
<tr>
<td>21</td>
<td>3.13E-01</td>
<td>55</td>
<td>6.90E-01</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>7.58E-01</td>
<td>56</td>
<td>2.30E+00</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>1.49E-01</td>
<td>57</td>
<td>4.07E+00</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>4.35E+00</td>
<td>58</td>
<td>8.29E-01</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>3.56E-01</td>
<td>59</td>
<td>4.20E-01</td>
<td>93</td>
</tr>
<tr>
<td>26</td>
<td>2.85E+00</td>
<td>60</td>
<td>6.95E-01</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>1.76E+00</td>
<td>61</td>
<td>4.99E-01</td>
<td>95</td>
</tr>
<tr>
<td>28</td>
<td>4.39E+00</td>
<td>62</td>
<td>1.32E-01</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>7.70E+00</td>
<td>63</td>
<td>5.94E+00</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>6.02E-01</td>
<td>64</td>
<td>5.97E+00</td>
<td>98</td>
</tr>
<tr>
<td>31</td>
<td>4.71E+00</td>
<td>65</td>
<td>7.11E-01</td>
<td>99</td>
</tr>
<tr>
<td>32</td>
<td>9.34E-01</td>
<td>66</td>
<td>6.67E-01</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>1.28E+00</td>
<td>67</td>
<td>7.22E+00</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.49E+00</td>
<td>68</td>
<td>2.95E-01</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: 1Only one-time duration was sampled in LHS for this parameter. The corresponding parameters for a secondary or tertiary time duration (T2 or T3) were set equal to the previous time duration.
Table A.41 – Sampled Values for Parameter S_HALITE:POROSITY (LHS Variable 52)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.48E-03</td>
<td>35</td>
<td>9.46E-03</td>
<td>69</td>
<td>4.88E-02</td>
</tr>
<tr>
<td>2</td>
<td>3.96E-02</td>
<td>36</td>
<td>7.64E-03</td>
<td>70</td>
<td>2.16E-02</td>
</tr>
<tr>
<td>3</td>
<td>2.95E-02</td>
<td>37</td>
<td>3.36E-03</td>
<td>71</td>
<td>1.45E-03</td>
</tr>
<tr>
<td>4</td>
<td>1.91E-03</td>
<td>38</td>
<td>8.74E-03</td>
<td>72</td>
<td>8.18E-03</td>
</tr>
<tr>
<td>5</td>
<td>5.09E-02</td>
<td>39</td>
<td>9.90E-03</td>
<td>73</td>
<td>7.69E-03</td>
</tr>
<tr>
<td>6</td>
<td>4.71E-02</td>
<td>40</td>
<td>3.76E-03</td>
<td>74</td>
<td>5.60E-03</td>
</tr>
<tr>
<td>7</td>
<td>5.95E-03</td>
<td>41</td>
<td>3.48E-02</td>
<td>75</td>
<td>2.33E-02</td>
</tr>
<tr>
<td>8</td>
<td>4.43E-02</td>
<td>42</td>
<td>4.26E-03</td>
<td>76</td>
<td>2.58E-03</td>
</tr>
<tr>
<td>9</td>
<td>9.76E-03</td>
<td>43</td>
<td>4.14E-03</td>
<td>77</td>
<td>1.90E-03</td>
</tr>
<tr>
<td>10</td>
<td>9.30E-03</td>
<td>44</td>
<td>2.86E-02</td>
<td>78</td>
<td>3.68E-02</td>
</tr>
<tr>
<td>11</td>
<td>1.77E-02</td>
<td>45</td>
<td>8.53E-03</td>
<td>79</td>
<td>4.59E-02</td>
</tr>
<tr>
<td>12</td>
<td>2.20E-02</td>
<td>46</td>
<td>2.39E-02</td>
<td>80</td>
<td>3.05E-02</td>
</tr>
<tr>
<td>13</td>
<td>2.91E-03</td>
<td>47</td>
<td>3.05E-03</td>
<td>81</td>
<td>4.48E-02</td>
</tr>
<tr>
<td>14</td>
<td>3.57E-02</td>
<td>48</td>
<td>1.94E-02</td>
<td>82</td>
<td>4.65E-02</td>
</tr>
<tr>
<td>15</td>
<td>6.10E-03</td>
<td>49</td>
<td>3.62E-03</td>
<td>83</td>
<td>4.91E-03</td>
</tr>
<tr>
<td>16</td>
<td>2.70E-03</td>
<td>50</td>
<td>4.33E-02</td>
<td>84</td>
<td>5.05E-03</td>
</tr>
<tr>
<td>17</td>
<td>1.25E-02</td>
<td>51</td>
<td>3.11E-02</td>
<td>85</td>
<td>7.98E-03</td>
</tr>
<tr>
<td>18</td>
<td>3.36E-02</td>
<td>52</td>
<td>1.72E-02</td>
<td>86</td>
<td>2.84E-02</td>
</tr>
<tr>
<td>19</td>
<td>6.26E-03</td>
<td>53</td>
<td>3.91E-02</td>
<td>87</td>
<td>2.64E-02</td>
</tr>
<tr>
<td>20</td>
<td>6.44E-03</td>
<td>54</td>
<td>2.19E-03</td>
<td>88</td>
<td>1.01E-02</td>
</tr>
<tr>
<td>21</td>
<td>5.84E-03</td>
<td>55</td>
<td>7.22E-03</td>
<td>89</td>
<td>8.24E-03</td>
</tr>
<tr>
<td>22</td>
<td>1.20E-03</td>
<td>56</td>
<td>3.30E-03</td>
<td>90</td>
<td>7.32E-03</td>
</tr>
<tr>
<td>23</td>
<td>4.04E-02</td>
<td>57</td>
<td>2.57E-02</td>
<td>91</td>
<td>3.26E-02</td>
</tr>
<tr>
<td>24</td>
<td>3.27E-02</td>
<td>58</td>
<td>4.82E-02</td>
<td>92</td>
<td>3.82E-02</td>
</tr>
<tr>
<td>25</td>
<td>1.48E-02</td>
<td>59</td>
<td>5.32E-03</td>
<td>93</td>
<td>1.35E-02</td>
</tr>
<tr>
<td>26</td>
<td>6.62E-03</td>
<td>60</td>
<td>4.72E-03</td>
<td>94</td>
<td>7.01E-03</td>
</tr>
<tr>
<td>27</td>
<td>4.16E-02</td>
<td>61</td>
<td>1.63E-02</td>
<td>95</td>
<td>3.91E-03</td>
</tr>
<tr>
<td>28</td>
<td>4.25E-02</td>
<td>62</td>
<td>1.86E-02</td>
<td>96</td>
<td>9.12E-03</td>
</tr>
<tr>
<td>29</td>
<td>6.82E-03</td>
<td>63</td>
<td>1.13E-03</td>
<td>97</td>
<td>2.34E-03</td>
</tr>
<tr>
<td>30</td>
<td>1.61E-03</td>
<td>64</td>
<td>2.51E-02</td>
<td>98</td>
<td>3.75E-02</td>
</tr>
<tr>
<td>31</td>
<td>5.00E-02</td>
<td>65</td>
<td>5.11E-02</td>
<td>99</td>
<td>2.76E-02</td>
</tr>
<tr>
<td>32</td>
<td>1.13E-02</td>
<td>66</td>
<td>1.58E-02</td>
<td>100</td>
<td>9.00E-03</td>
</tr>
<tr>
<td>33</td>
<td>5.29E-03</td>
<td>67</td>
<td>1.18E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>8.64E-03</td>
<td>68</td>
<td>2.01E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.41 – Sampled Values for Parameter S_HALITE:POROSITY (LHS Variable 52) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (dimensionless)</th>
<th>Vector #</th>
<th>Value (dimensionless)</th>
<th>Vector #</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.65E-02</td>
<td>35</td>
<td>4.65E-02</td>
<td>69</td>
<td>8.73E-03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.23E-03</td>
<td>36</td>
<td>3.75E-03</td>
<td>70</td>
<td>1.48E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.26E-02</td>
<td>37</td>
<td>2.41E-02</td>
<td>71</td>
<td>9.24E-03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.09E-02</td>
<td>38</td>
<td>2.94E-02</td>
<td>72</td>
<td>1.05E-03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.02E-03</td>
<td>39</td>
<td>7.67E-03</td>
<td>73</td>
<td>8.16E-03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.89E-03</td>
<td>40</td>
<td>3.95E-02</td>
<td>74</td>
<td>7.41E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.82E-03</td>
<td>41</td>
<td>1.38E-02</td>
<td>75</td>
<td>3.36E-03</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.77E-03</td>
<td>42</td>
<td>2.74E-02</td>
<td>76</td>
<td>1.98E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.17E-03</td>
<td>43</td>
<td>3.78E-02</td>
<td>77</td>
<td>4.11E-03</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.83E-02</td>
<td>44</td>
<td>6.87E-03</td>
<td>78</td>
<td>4.60E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.26E-02</td>
<td>45</td>
<td>4.81E-02</td>
<td>79</td>
<td>1.54E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.10E-03</td>
<td>46</td>
<td>6.67E-03</td>
<td>80</td>
<td>4.70E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.49E-02</td>
<td>47</td>
<td>1.80E-02</td>
<td>81</td>
<td>9.51E-03</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.02E-02</td>
<td>48</td>
<td>6.33E-03</td>
<td>82</td>
<td>3.55E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.30E-02</td>
<td>49</td>
<td>2.58E-02</td>
<td>83</td>
<td>1.73E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.34E-02</td>
<td>50</td>
<td>5.12E-03</td>
<td>84</td>
<td>2.87E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.55E-03</td>
<td>51</td>
<td>2.94E-03</td>
<td>85</td>
<td>8.88E-03</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.48E-03</td>
<td>52</td>
<td>7.65E-03</td>
<td>86</td>
<td>1.02E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.15E-03</td>
<td>53</td>
<td>1.79E-03</td>
<td>87</td>
<td>2.57E-03</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.58E-03</td>
<td>54</td>
<td>5.33E-03</td>
<td>88</td>
<td>4.19E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.10E-02</td>
<td>55</td>
<td>2.20E-02</td>
<td>89</td>
<td>4.15E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.97E-03</td>
<td>56</td>
<td>1.85E-02</td>
<td>90</td>
<td>6.03E-03</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.35E-03</td>
<td>57</td>
<td>1.18E-02</td>
<td>91</td>
<td>3.89E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.30E-03</td>
<td>58</td>
<td>9.66E-03</td>
<td>92</td>
<td>3.71E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.37E-03</td>
<td>59</td>
<td>1.41E-03</td>
<td>93</td>
<td>4.79E-03</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.10E-03</td>
<td>60</td>
<td>8.22E-03</td>
<td>94</td>
<td>1.70E-03</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.91E-02</td>
<td>61</td>
<td>4.28E-03</td>
<td>95</td>
<td>5.23E-03</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.18E-02</td>
<td>62</td>
<td>3.46E-02</td>
<td>96</td>
<td>3.32E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.12E-02</td>
<td>63</td>
<td>5.02E-02</td>
<td>97</td>
<td>4.99E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.90E-03</td>
<td>64</td>
<td>5.76E-03</td>
<td>98</td>
<td>8.45E-03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>4.42E-02</td>
<td>65</td>
<td>3.62E-02</td>
<td>99</td>
<td>5.61E-03</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.75E-03</td>
<td>66</td>
<td>2.46E-02</td>
<td>100</td>
<td>9.06E-03</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.61E-02</td>
<td>67</td>
<td>3.39E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.14E-02</td>
<td>68</td>
<td>4.08E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.41 – Sampled Values for Parameter S_HALITE:POROSITY (LHS Variable 52) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.412E-03</td>
<td>35</td>
<td>1.68E-03</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2.59E-02</td>
<td>36</td>
<td>8.03E-03</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>2.31E-03</td>
<td>37</td>
<td>1.97E-03</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>7.13E-03</td>
<td>38</td>
<td>6.18E-03</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5.52E-03</td>
<td>39</td>
<td>2.68E-02</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>3.19E-03</td>
<td>40</td>
<td>2.07E-02</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>4.38E-02</td>
<td>41</td>
<td>5.16E-02</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1.11E-03</td>
<td>42</td>
<td>3.64E-02</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>7.76E-03</td>
<td>43</td>
<td>3.96E-03</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>9.40E-03</td>
<td>44</td>
<td>3.44E-03</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>6.29E-03</td>
<td>45</td>
<td>1.42E-02</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>1.72E-02</td>
<td>46</td>
<td>8.01E-03</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>4.92E-02</td>
<td>47</td>
<td>3.57E-02</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>3.11E-03</td>
<td>48</td>
<td>3.72E-03</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>3.82E-02</td>
<td>49</td>
<td>3.01E-02</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>4.85E-02</td>
<td>50</td>
<td>6.61E-03</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>4.11E-02</td>
<td>51</td>
<td>1.32E-02</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>1.45E-03</td>
<td>52</td>
<td>1.80E-02</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>2.16E-03</td>
<td>53</td>
<td>4.70E-03</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>6.49E-03</td>
<td>54</td>
<td>7.34E-03</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>1.78E-03</td>
<td>55</td>
<td>2.56E-03</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>5.02E-02</td>
<td>56</td>
<td>2.23E-02</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>3.02E-02</td>
<td>57</td>
<td>4.69E-02</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>4.35E-02</td>
<td>58</td>
<td>8.78E-03</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>5.74E-03</td>
<td>59</td>
<td>2.33E-02</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>8.28E-03</td>
<td>60</td>
<td>4.86E-03</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>1.08E-02</td>
<td>61</td>
<td>2.67E-03</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>1.64E-02</td>
<td>62</td>
<td>2.63E-02</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>9.85E-03</td>
<td>63</td>
<td>6.95E-03</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>3.68E-03</td>
<td>64</td>
<td>5.28E-03</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>9.62E-03</td>
<td>65</td>
<td>3.94E-02</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>4.50E-03</td>
<td>66</td>
<td>2.91E-02</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>9.06E-03</td>
<td>67</td>
<td>4.20E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.06E-02</td>
<td>68</td>
<td>2.46E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table A.42 – Sampled Values for Parameter S_HALITE:PRMX_LOG (LHS Variable 53), S_HALITE:PRMY_LOG \(^1\), and S_HALITE:PRMZ_LOG \(^1\)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (log(m(^2)))</th>
<th>Vector #</th>
<th>Value (log(m(^2)))</th>
<th>Vector #</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-2.27E+01</td>
<td>35</td>
<td>-2.10E+01</td>
<td>69</td>
<td>-2.30E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.29E+01</td>
<td>36</td>
<td>-2.16E+01</td>
<td>70</td>
<td>-2.25E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.21E+01</td>
<td>37</td>
<td>-2.39E+01</td>
<td>71</td>
<td>-2.38E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.19E+01</td>
<td>38</td>
<td>-2.21E+01</td>
<td>72</td>
<td>-2.33E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.12E+01</td>
<td>39</td>
<td>-2.31E+01</td>
<td>73</td>
<td>-2.38E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.34E+01</td>
<td>40</td>
<td>-2.13E+01</td>
<td>74</td>
<td>-2.29E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.28E+01</td>
<td>41</td>
<td>-2.22E+01</td>
<td>75</td>
<td>-2.34E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.39E+01</td>
<td>42</td>
<td>-2.38E+01</td>
<td>76</td>
<td>-2.13E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.14E+01</td>
<td>43</td>
<td>-2.26E+01</td>
<td>77</td>
<td>-2.15E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.17E+01</td>
<td>44</td>
<td>-2.34E+01</td>
<td>78</td>
<td>-2.18E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.37E+01</td>
<td>45</td>
<td>-2.26E+01</td>
<td>79</td>
<td>-2.37E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.39E+01</td>
<td>46</td>
<td>-2.35E+01</td>
<td>80</td>
<td>-2.38E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.21E+01</td>
<td>47</td>
<td>-2.36E+01</td>
<td>81</td>
<td>-2.10E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.30E+01</td>
<td>48</td>
<td>-2.31E+01</td>
<td>82</td>
<td>-2.24E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.36E+01</td>
<td>49</td>
<td>-2.27E+01</td>
<td>83</td>
<td>-2.25E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.15E+01</td>
<td>50</td>
<td>-2.28E+01</td>
<td>84</td>
<td>-2.30E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.14E+01</td>
<td>51</td>
<td>-2.18E+01</td>
<td>85</td>
<td>-2.16E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.11E+01</td>
<td>52</td>
<td>-2.32E+01</td>
<td>86</td>
<td>-2.24E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.21E+01</td>
<td>53</td>
<td>-2.25E+01</td>
<td>87</td>
<td>-2.23E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.24E+01</td>
<td>54</td>
<td>-2.20E+01</td>
<td>88</td>
<td>-2.15E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.40E+01</td>
<td>55</td>
<td>-2.22E+01</td>
<td>89</td>
<td>-2.32E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.33E+01</td>
<td>56</td>
<td>-2.31E+01</td>
<td>90</td>
<td>-2.12E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.37E+01</td>
<td>57</td>
<td>-2.40E+01</td>
<td>91</td>
<td>-2.17E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.20E+01</td>
<td>58</td>
<td>-2.16E+01</td>
<td>92</td>
<td>-2.23E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.26E+01</td>
<td>59</td>
<td>-2.23E+01</td>
<td>93</td>
<td>-2.29E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.35E+01</td>
<td>60</td>
<td>-2.20E+01</td>
<td>94</td>
<td>-2.19E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.33E+01</td>
<td>61</td>
<td>-2.26E+01</td>
<td>95</td>
<td>-2.28E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.23E+01</td>
<td>62</td>
<td>-2.35E+01</td>
<td>96</td>
<td>-2.19E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.11E+01</td>
<td>63</td>
<td>-2.19E+01</td>
<td>97</td>
<td>-2.17E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.34E+01</td>
<td>64</td>
<td>-2.32E+01</td>
<td>98</td>
<td>-2.11E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.36E+01</td>
<td>65</td>
<td>-2.12E+01</td>
<td>99</td>
<td>-2.14E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.27E+01</td>
<td>66</td>
<td>-2.27E+01</td>
<td>100</td>
<td>-2.18E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.13E+01</td>
<td>67</td>
<td>-2.31E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.14E+01</td>
<td>68</td>
<td>-2.16E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.42 – Sampled Values for Parameter S_HALITE:PRMX_LOG (LHS Variable 53), S_HALITE:PRMY_LOG \(^1\), and S_HALITE:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Replicate</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>Value (log(m(^2)))</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-2.11E+01</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.23E+01</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.16E+01</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.27E+01</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-2.14E+01</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-2.25E+01</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-2.13E+01</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-2.11E+01</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-2.33E+01</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-2.12E+01</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-2.13E+01</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-2.22E+01</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-2.35E+01</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-2.36E+01</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-2.37E+01</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-2.21E+01</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-2.39E+01</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-2.34E+01</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-2.24E+01</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-2.33E+01</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-2.25E+01</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-2.31E+01</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-2.38E+01</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.27E+01</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-2.17E+01</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-2.37E+01</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-2.23E+01</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-2.33E+01</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-2.17E+01</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-2.37E+01</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-2.22E+01</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-2.21E+01</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-2.40E+01</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-2.18E+01</td>
<td>68</td>
</tr>
</tbody>
</table>
Table A.42 – Sampled Values for Parameter S_HALITE:PRMX_LOG (LHS Variable 53), S_HALITE:PRMY_LOG \(^1\), and S_HALITE:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>-2.12E+01</td>
<td>35</td>
<td>-2.33E+01</td>
<td>69</td>
<td>-2.27E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-2.14E+01</td>
<td>36</td>
<td>-2.34E+01</td>
<td>70</td>
<td>-2.36E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-2.33E+01</td>
<td>37</td>
<td>-2.21E+01</td>
<td>71</td>
<td>-2.26E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-2.22E+01</td>
<td>38</td>
<td>-2.15E+01</td>
<td>72</td>
<td>-2.32E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-2.27E+01</td>
<td>39</td>
<td>-2.29E+01</td>
<td>73</td>
<td>-2.17E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-2.19E+01</td>
<td>40</td>
<td>-2.20E+01</td>
<td>74</td>
<td>-2.22E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>-2.15E+01</td>
<td>41</td>
<td>-2.26E+01</td>
<td>75</td>
<td>-2.18E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>-2.24E+01</td>
<td>42</td>
<td>-2.39E+01</td>
<td>76</td>
<td>-2.24E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>-2.15E+01</td>
<td>43</td>
<td>-2.35E+01</td>
<td>77</td>
<td>-2.25E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-2.25E+01</td>
<td>44</td>
<td>-2.13E+01</td>
<td>78</td>
<td>-2.22E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>-2.39E+01</td>
<td>45</td>
<td>-2.26E+01</td>
<td>79</td>
<td>-2.40E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>-2.11E+01</td>
<td>46</td>
<td>-2.29E+01</td>
<td>80</td>
<td>-2.33E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>-2.29E+01</td>
<td>47</td>
<td>-2.24E+01</td>
<td>81</td>
<td>-2.31E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>-2.30E+01</td>
<td>48</td>
<td>-2.23E+01</td>
<td>82</td>
<td>-2.32E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-2.18E+01</td>
<td>49</td>
<td>-2.29E+01</td>
<td>83</td>
<td>-2.23E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>-2.21E+01</td>
<td>50</td>
<td>-2.10E+01</td>
<td>84</td>
<td>-2.36E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>-2.20E+01</td>
<td>51</td>
<td>-2.30E+01</td>
<td>85</td>
<td>-2.37E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>-2.39E+01</td>
<td>52</td>
<td>-2.34E+01</td>
<td>86</td>
<td>-2.12E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>-2.27E+01</td>
<td>53</td>
<td>-2.16E+01</td>
<td>87</td>
<td>-2.15E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>-2.12E+01</td>
<td>54</td>
<td>-2.37E+01</td>
<td>88</td>
<td>-2.11E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>-2.37E+01</td>
<td>55</td>
<td>-2.19E+01</td>
<td>89</td>
<td>-2.13E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>-2.17E+01</td>
<td>56</td>
<td>-2.38E+01</td>
<td>90</td>
<td>-2.33E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>-2.14E+01</td>
<td>57</td>
<td>-2.16E+01</td>
<td>91</td>
<td>-2.19E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>-2.36E+01</td>
<td>58</td>
<td>-2.31E+01</td>
<td>92</td>
<td>-2.38E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>-2.31E+01</td>
<td>59</td>
<td>-2.25E+01</td>
<td>93</td>
<td>-2.14E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>-2.22E+01</td>
<td>60</td>
<td>-2.17E+01</td>
<td>94</td>
<td>-2.21E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>-2.28E+01</td>
<td>61</td>
<td>-2.13E+01</td>
<td>95</td>
<td>-2.26E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>-2.30E+01</td>
<td>62</td>
<td>-2.27E+01</td>
<td>96</td>
<td>-2.34E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>-2.20E+01</td>
<td>63</td>
<td>-2.16E+01</td>
<td>97</td>
<td>-2.18E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>-2.37E+01</td>
<td>64</td>
<td>-2.30E+01</td>
<td>98</td>
<td>-2.28E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>-2.11E+01</td>
<td>65</td>
<td>-2.35E+01</td>
<td>99</td>
<td>-2.32E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>-2.35E+01</td>
<td>66</td>
<td>-2.10E+01</td>
<td>100</td>
<td>-2.20E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>-2.23E+01</td>
<td>67</td>
<td>-2.13E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>-2.38E+01</td>
<td>68</td>
<td>-2.40E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(^1\)Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.43 – Sampled Values for Parameter S_HALITE:COMP_RCK (LHS Variable 54)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (Pa$^{-1}$)</th>
<th>Vector #</th>
<th>Value (Pa$^{-1}$)</th>
<th>Vector #</th>
<th>Value (Pa$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.15E-10</td>
<td>35</td>
<td>3.77E-12</td>
<td>69</td>
<td>1.36E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.99E-11</td>
<td>36</td>
<td>5.71E-11</td>
<td>70</td>
<td>1.06E-10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.86E-11</td>
<td>37</td>
<td>1.74E-10</td>
<td>71</td>
<td>1.81E-10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.35E-11</td>
<td>38</td>
<td>7.22E-11</td>
<td>72</td>
<td>1.46E-10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.88E-11</td>
<td>39</td>
<td>1.30E-10</td>
<td>73</td>
<td>1.71E-10</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.55E-10</td>
<td>40</td>
<td>2.17E-11</td>
<td>74</td>
<td>1.18E-10</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.26E-10</td>
<td>41</td>
<td>9.85E-11</td>
<td>75</td>
<td>1.60E-10</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.87E-10</td>
<td>42</td>
<td>1.83E-10</td>
<td>76</td>
<td>1.63E-11</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.67E-11</td>
<td>43</td>
<td>1.22E-10</td>
<td>77</td>
<td>4.14E-11</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.02E-11</td>
<td>44</td>
<td>1.62E-10</td>
<td>78</td>
<td>6.32E-11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.69E-10</td>
<td>45</td>
<td>1.19E-10</td>
<td>79</td>
<td>1.78E-10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.86E-10</td>
<td>46</td>
<td>1.58E-10</td>
<td>80</td>
<td>1.76E-10</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8.44E-11</td>
<td>47</td>
<td>1.51E-10</td>
<td>81</td>
<td>5.06E-12</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.20E-10</td>
<td>48</td>
<td>1.28E-10</td>
<td>82</td>
<td>9.29E-11</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.80E-10</td>
<td>49</td>
<td>1.08E-10</td>
<td>83</td>
<td>1.05E-10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.17E-11</td>
<td>50</td>
<td>8.83E-11</td>
<td>84</td>
<td>1.32E-10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2.79E-11</td>
<td>51</td>
<td>4.99E-11</td>
<td>85</td>
<td>3.91E-11</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.50E-11</td>
<td>52</td>
<td>1.49E-10</td>
<td>86</td>
<td>9.47E-11</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.52E-11</td>
<td>53</td>
<td>1.03E-10</td>
<td>87</td>
<td>8.72E-11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.44E-11</td>
<td>54</td>
<td>5.90E-11</td>
<td>88</td>
<td>3.31E-11</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.92E-10</td>
<td>55</td>
<td>7.07E-11</td>
<td>89</td>
<td>1.44E-10</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.40E-10</td>
<td>56</td>
<td>1.38E-10</td>
<td>90</td>
<td>1.29E-11</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.72E-10</td>
<td>57</td>
<td>1.89E-10</td>
<td>91</td>
<td>2.23E-11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.64E-11</td>
<td>58</td>
<td>4.41E-11</td>
<td>92</td>
<td>7.50E-11</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.14E-10</td>
<td>59</td>
<td>8.12E-11</td>
<td>93</td>
<td>1.27E-10</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.58E-10</td>
<td>60</td>
<td>7.76E-11</td>
<td>94</td>
<td>4.70E-11</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.47E-10</td>
<td>61</td>
<td>1.09E-10</td>
<td>95</td>
<td>9.68E-11</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>9.10E-11</td>
<td>62</td>
<td>1.64E-10</td>
<td>96</td>
<td>5.50E-11</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.16E-11</td>
<td>63</td>
<td>6.80E-11</td>
<td>97</td>
<td>3.87E-11</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.53E-10</td>
<td>64</td>
<td>1.41E-10</td>
<td>98</td>
<td>9.12E-12</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.67E-10</td>
<td>65</td>
<td>7.42E-12</td>
<td>99</td>
<td>3.12E-11</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.12E-10</td>
<td>66</td>
<td>8.27E-11</td>
<td>100</td>
<td>4.46E-11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>2.47E-11</td>
<td>67</td>
<td>1.35E-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.55E-11</td>
<td>68</td>
<td>3.46E-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.43 – Sampled Values for Parameter S_HALITE:COMP_RCK (LHS Variable 54) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1.10E-11</td>
<td>35</td>
<td>1.42E-10</td>
<td>69</td>
<td>1.37E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.00E-11</td>
<td>36</td>
<td>4.98E-11</td>
<td>70</td>
<td>1.23E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3.52E-11</td>
<td>37</td>
<td>1.90E-10</td>
<td>71</td>
<td>1.26E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.20E-10</td>
<td>38</td>
<td>1.14E-10</td>
<td>72</td>
<td>4.82E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.26E-11</td>
<td>39</td>
<td>3.01E-11</td>
<td>73</td>
<td>1.56E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>9.56E-11</td>
<td>40</td>
<td>7.39E-11</td>
<td>74</td>
<td>1.65E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>2.52E-11</td>
<td>41</td>
<td>1.50E-11</td>
<td>75</td>
<td>6.19E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>7.30E-12</td>
<td>42</td>
<td>1.29E-10</td>
<td>76</td>
<td>8.68E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.54E-10</td>
<td>43</td>
<td>4.00E-11</td>
<td>77</td>
<td>1.50E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.25E-11</td>
<td>44</td>
<td>6.86E-11</td>
<td>78</td>
<td>1.86E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1.88E-11</td>
<td>45</td>
<td>1.67E-10</td>
<td>79</td>
<td>4.24E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>8.40E-11</td>
<td>46</td>
<td>4.32E-11</td>
<td>80</td>
<td>5.48E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1.61E-10</td>
<td>47</td>
<td>1.70E-10</td>
<td>81</td>
<td>1.18E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.51E-10</td>
<td>48</td>
<td>1.00E-10</td>
<td>82</td>
<td>1.47E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.59E-10</td>
<td>49</td>
<td>5.60E-12</td>
<td>83</td>
<td>7.93E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>7.21E-11</td>
<td>50</td>
<td>4.52E-11</td>
<td>84</td>
<td>2.12E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.87E-10</td>
<td>51</td>
<td>1.81E-10</td>
<td>85</td>
<td>1.57E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1.36E-10</td>
<td>52</td>
<td>5.86E-11</td>
<td>86</td>
<td>1.21E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>8.21E-11</td>
<td>53</td>
<td>8.98E-11</td>
<td>87</td>
<td>5.06E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.72E-10</td>
<td>54</td>
<td>1.68E-10</td>
<td>88</td>
<td>1.31E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>9.87E-11</td>
<td>55</td>
<td>1.47E-10</td>
<td>89</td>
<td>1.77E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.32E-10</td>
<td>56</td>
<td>2.67E-11</td>
<td>90</td>
<td>2.24E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.84E-10</td>
<td>57</td>
<td>2.87E-11</td>
<td>91</td>
<td>1.35E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1.04E-10</td>
<td>58</td>
<td>3.78E-11</td>
<td>92</td>
<td>9.34E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>6.08E-11</td>
<td>59</td>
<td>9.25E-12</td>
<td>93</td>
<td>1.13E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>1.64E-10</td>
<td>60</td>
<td>3.35E-11</td>
<td>94</td>
<td>7.80E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>9.39E-11</td>
<td>61</td>
<td>1.06E-10</td>
<td>95</td>
<td>1.39E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>1.44E-10</td>
<td>62</td>
<td>6.41E-11</td>
<td>96</td>
<td>1.74E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>5.69E-11</td>
<td>63</td>
<td>1.09E-10</td>
<td>97</td>
<td>3.20E-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1.76E-10</td>
<td>64</td>
<td>1.80E-10</td>
<td>98</td>
<td>1.09E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>8.59E-11</td>
<td>65</td>
<td>7.58E-11</td>
<td>99</td>
<td>1.25E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>7.02E-11</td>
<td>66</td>
<td>1.78E-10</td>
<td>100</td>
<td>1.15E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>1.90E-10</td>
<td>67</td>
<td>6.66E-11</td>
<td>84</td>
<td>1.21E-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>5.25E-11</td>
<td>68</td>
<td>1.02E-10</td>
<td>88</td>
<td>1.31E-10</td>
</tr>
</tbody>
</table>

Information Only
Table A.43 – Sampled Values for Parameter S_HALITE:COMP_RCK (LHS Variable 54) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1.50E-11</td>
<td>35</td>
<td>1.31E-10</td>
<td>69</td>
<td>1.43E-10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3.30E-11</td>
<td>36</td>
<td>1.53E-10</td>
<td>70</td>
<td>1.75E-10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>1.52E-10</td>
<td>37</td>
<td>5.80E-11</td>
<td>71</td>
<td>1.09E-10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>9.70E-11</td>
<td>38</td>
<td>3.85E-11</td>
<td>72</td>
<td>1.33E-10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>1.17E-10</td>
<td>39</td>
<td>1.30E-10</td>
<td>73</td>
<td>4.56E-11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>8.96E-11</td>
<td>40</td>
<td>7.05E-11</td>
<td>74</td>
<td>8.45E-11</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>2.99E-11</td>
<td>41</td>
<td>8.70E-11</td>
<td>75</td>
<td>5.67E-11</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>7.26E-11</td>
<td>42</td>
<td>1.85E-10</td>
<td>76</td>
<td>7.78E-11</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>3.50E-11</td>
<td>43</td>
<td>1.64E-10</td>
<td>77</td>
<td>1.01E-10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>9.29E-11</td>
<td>44</td>
<td>2.29E-11</td>
<td>78</td>
<td>7.33E-11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>1.82E-10</td>
<td>45</td>
<td>1.09E-10</td>
<td>79</td>
<td>1.89E-10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>8.97E-12</td>
<td>46</td>
<td>1.05E-10</td>
<td>80</td>
<td>1.38E-10</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>13</td>
<td>1.13E-10</td>
<td>47</td>
<td>1.04E-10</td>
<td>81</td>
<td>1.55E-10</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>1.23E-10</td>
<td>48</td>
<td>9.78E-11</td>
<td>82</td>
<td>1.35E-10</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>6.75E-11</td>
<td>49</td>
<td>1.16E-10</td>
<td>83</td>
<td>8.28E-11</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>7.59E-11</td>
<td>50</td>
<td>3.46E-12</td>
<td>84</td>
<td>1.66E-10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>5.44E-11</td>
<td>51</td>
<td>1.21E-10</td>
<td>85</td>
<td>1.68E-10</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td>1.87E-10</td>
<td>52</td>
<td>1.49E-10</td>
<td>86</td>
<td>1.88E-10</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>19</td>
<td>1.27E-10</td>
<td>53</td>
<td>3.94E-11</td>
<td>87</td>
<td>3.62E-11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>1.34E-11</td>
<td>54</td>
<td>1.70E-10</td>
<td>88</td>
<td>1.19E-11</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21</td>
<td>1.74E-10</td>
<td>55</td>
<td>5.09E-11</td>
<td>89</td>
<td>1.74E-11</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22</td>
<td>4.24E-11</td>
<td>56</td>
<td>1.77E-10</td>
<td>90</td>
<td>1.60E-10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>23</td>
<td>2.90E-11</td>
<td>57</td>
<td>4.66E-11</td>
<td>91</td>
<td>6.58E-11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24</td>
<td>1.63E-10</td>
<td>58</td>
<td>1.25E-10</td>
<td>92</td>
<td>1.80E-10</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>1.41E-10</td>
<td>59</td>
<td>8.12E-11</td>
<td>93</td>
<td>2.50E-11</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>26</td>
<td>9.03E-11</td>
<td>60</td>
<td>4.29E-11</td>
<td>94</td>
<td>6.14E-11</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>27</td>
<td>1.19E-10</td>
<td>61</td>
<td>2.18E-11</td>
<td>95</td>
<td>9.43E-11</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>28</td>
<td>1.45E-10</td>
<td>62</td>
<td>1.01E-10</td>
<td>96</td>
<td>1.47E-10</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>29</td>
<td>7.89E-11</td>
<td>63</td>
<td>6.39E-11</td>
<td>97</td>
<td>4.94E-11</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>1.56E-10</td>
<td>64</td>
<td>1.41E-10</td>
<td>98</td>
<td>1.12E-10</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>31</td>
<td>8.55E-12</td>
<td>65</td>
<td>1.72E-10</td>
<td>99</td>
<td>1.36E-10</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>32</td>
<td>1.60E-10</td>
<td>66</td>
<td>5.29E-12</td>
<td>100</td>
<td>6.33E-11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>33</td>
<td>5.25E-11</td>
<td>67</td>
<td>2.66E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>34</td>
<td>1.84E-10</td>
<td>68</td>
<td>1.91E-10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.44 – Sampled Values for Parameter S_MB139:PRMX_LOG (LHS Variable 55), S_MB139:PRMY_LOG 1, and S_MB139:PRMZ_LOG 1

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Value (log(m^2))</td>
<td># Value (log(m^2))</td>
<td># Value (log(m^2))</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 -1.90E+01</td>
<td>35 -1.86E+01</td>
<td>69 -1.84E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 -1.78E+01</td>
<td>36 -1.84E+01</td>
<td>70 -1.90E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 -1.88E+01</td>
<td>37 -1.85E+01</td>
<td>71 -1.96E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 -1.98E+01</td>
<td>38 -1.91E+01</td>
<td>72 -1.86E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 -1.90E+01</td>
<td>39 -1.90E+01</td>
<td>73 -1.87E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 -1.93E+01</td>
<td>40 -1.89E+01</td>
<td>74 -2.00E+01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7 -1.87E+01</td>
<td>41 -2.04E+01</td>
<td>75 -1.82E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 -1.83E+01</td>
<td>42 -1.87E+01</td>
<td>76 -1.81E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 -1.91E+01</td>
<td>43 -1.92E+01</td>
<td>77 -1.88E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 -1.97E+01</td>
<td>44 -1.84E+01</td>
<td>78 -1.88E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 -1.90E+01</td>
<td>45 -1.94E+01</td>
<td>79 -1.80E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 -1.86E+01</td>
<td>46 -1.94E+01</td>
<td>80 -1.86E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 -1.82E+01</td>
<td>47 -1.85E+01</td>
<td>81 -1.83E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 -1.91E+01</td>
<td>48 -1.88E+01</td>
<td>82 -1.94E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 -1.98E+01</td>
<td>49 -2.02E+01</td>
<td>83 -1.79E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 -1.76E+01</td>
<td>50 -1.95E+01</td>
<td>84 -1.96E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 -1.93E+01</td>
<td>51 -1.92E+01</td>
<td>85 -1.85E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18 -1.89E+01</td>
<td>52 -1.86E+01</td>
<td>86 -2.01E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 -1.82E+01</td>
<td>53 -1.71E+01</td>
<td>87 -1.88E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 -1.89E+01</td>
<td>54 -1.90E+01</td>
<td>88 -1.93E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 -1.89E+01</td>
<td>55 -1.99E+01</td>
<td>89 -1.95E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22 -1.94E+01</td>
<td>56 -1.88E+01</td>
<td>90 -1.86E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 -1.87E+01</td>
<td>57 -1.91E+01</td>
<td>91 -1.81E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 -1.92E+01</td>
<td>58 -1.85E+01</td>
<td>92 -1.89E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 -1.89E+01</td>
<td>59 -1.75E+01</td>
<td>93 -1.81E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 -1.85E+01</td>
<td>60 -1.97E+01</td>
<td>94 -1.80E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 -1.84E+01</td>
<td>61 -1.88E+01</td>
<td>95 -1.95E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 -1.91E+01</td>
<td>62 -1.86E+01</td>
<td>96 -1.87E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 -1.94E+01</td>
<td>63 -1.83E+01</td>
<td>97 -1.92E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 -1.83E+01</td>
<td>64 -1.92E+01</td>
<td>98 -1.99E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 -1.93E+01</td>
<td>65 -1.91E+01</td>
<td>99 -1.78E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 -1.96E+01</td>
<td>66 -1.88E+01</td>
<td>100 -1.90E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 -1.89E+01</td>
<td>67 -1.92E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 -1.87E+01</td>
<td>68 -1.92E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.44 – Sampled Values for Parameter S_MB139:PRMX_LOG (LHS Variable 55), S_MB139:PRMY_LOG 1, and S_MB139:PRMZ_LOG 1 (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1.87E+01</td>
<td>35</td>
<td>-1.96E+01</td>
<td>69</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.84E+01</td>
<td>36</td>
<td>-1.91E+01</td>
<td>70</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.91E+01</td>
<td>37</td>
<td>-1.90E+01</td>
<td>71</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.89E+01</td>
<td>38</td>
<td>-1.83E+01</td>
<td>72</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.92E+01</td>
<td>39</td>
<td>-1.87E+01</td>
<td>73</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.89E+01</td>
<td>40</td>
<td>-1.88E+01</td>
<td>74</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.90E+01</td>
<td>41</td>
<td>-1.90E+01</td>
<td>75</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.90E+01</td>
<td>42</td>
<td>-1.84E+01</td>
<td>76</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.89E+01</td>
<td>43</td>
<td>-1.77E+01</td>
<td>77</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.89E+01</td>
<td>44</td>
<td>-1.87E+01</td>
<td>78</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.94E+01</td>
<td>45</td>
<td>-1.86E+01</td>
<td>79</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.93E+01</td>
<td>46</td>
<td>-1.91E+01</td>
<td>80</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.86E+01</td>
<td>47</td>
<td>-1.83E+01</td>
<td>81</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.89E+01</td>
<td>48</td>
<td>-1.85E+01</td>
<td>82</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.86E+01</td>
<td>49</td>
<td>-1.81E+01</td>
<td>83</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.92E+01</td>
<td>50</td>
<td>-1.89E+01</td>
<td>84</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.87E+01</td>
<td>51</td>
<td>-1.85E+01</td>
<td>85</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.87E+01</td>
<td>52</td>
<td>-2.07E+01</td>
<td>86</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.82E+01</td>
<td>53</td>
<td>-1.72E+01</td>
<td>87</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.88E+01</td>
<td>54</td>
<td>-1.85E+01</td>
<td>88</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.87E+01</td>
<td>55</td>
<td>-1.80E+01</td>
<td>89</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.86E+01</td>
<td>56</td>
<td>-1.96E+01</td>
<td>90</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.94E+01</td>
<td>57</td>
<td>-1.84E+01</td>
<td>91</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.89E+01</td>
<td>58</td>
<td>-1.89E+01</td>
<td>92</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.88E+01</td>
<td>59</td>
<td>-1.77E+01</td>
<td>93</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.85E+01</td>
<td>60</td>
<td>-2.00E+01</td>
<td>94</td>
<td>-2.02E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.88E+01</td>
<td>61</td>
<td>-1.91E+01</td>
<td>95</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.94E+01</td>
<td>62</td>
<td>-1.81E+01</td>
<td>96</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.95E+01</td>
<td>63</td>
<td>-1.93E+01</td>
<td>97</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.85E+01</td>
<td>64</td>
<td>-1.95E+01</td>
<td>98</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.90E+01</td>
<td>65</td>
<td>-1.84E+01</td>
<td>99</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.88E+01</td>
<td>66</td>
<td>-1.88E+01</td>
<td>100</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.81E+01</td>
<td>67</td>
<td>-1.83E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.86E+01</td>
<td>68</td>
<td>-1.98E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.44 – Sampled Values for Parameter S_MBM139:PRMX_LOG (LHS Variable 55), S_MBM139:PRMY_LOG \(^1\), and S_MBM139:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>Vector #</th>
<th>Value (log(m(^2)))</th>
<th>Vector #</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1.83E+01</td>
<td>35</td>
<td>-1.73E+01</td>
<td>69</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.86E+01</td>
<td>36</td>
<td>-1.90E+01</td>
<td>70</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.93E+01</td>
<td>37</td>
<td>-2.01E+01</td>
<td>71</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.94E+01</td>
<td>38</td>
<td>-1.88E+01</td>
<td>72</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-2.00E+01</td>
<td>39</td>
<td>-1.87E+01</td>
<td>73</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.90E+01</td>
<td>40</td>
<td>-1.87E+01</td>
<td>74</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.95E+01</td>
<td>41</td>
<td>-1.83E+01</td>
<td>75</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.86E+01</td>
<td>42</td>
<td>-1.90E+01</td>
<td>76</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.77E+01</td>
<td>43</td>
<td>-1.97E+01</td>
<td>77</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.83E+01</td>
<td>44</td>
<td>-1.82E+01</td>
<td>78</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.89E+01</td>
<td>45</td>
<td>-1.92E+01</td>
<td>79</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.88E+01</td>
<td>46</td>
<td>-1.89E+01</td>
<td>80</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.89E+01</td>
<td>47</td>
<td>-1.82E+01</td>
<td>81</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.91E+01</td>
<td>48</td>
<td>-1.96E+01</td>
<td>82</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.89E+01</td>
<td>49</td>
<td>-1.93E+01</td>
<td>83</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.83E+01</td>
<td>50</td>
<td>-2.03E+01</td>
<td>84</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.85E+01</td>
<td>51</td>
<td>-1.87E+01</td>
<td>85</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.87E+01</td>
<td>52</td>
<td>-1.92E+01</td>
<td>86</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.92E+01</td>
<td>53</td>
<td>-1.91E+01</td>
<td>87</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.84E+01</td>
<td>54</td>
<td>-1.85E+01</td>
<td>88</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.86E+01</td>
<td>55</td>
<td>-1.97E+01</td>
<td>89</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.92E+01</td>
<td>56</td>
<td>-1.94E+01</td>
<td>90</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.84E+01</td>
<td>57</td>
<td>-1.90E+01</td>
<td>91</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.96E+01</td>
<td>58</td>
<td>-1.87E+01</td>
<td>92</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.92E+01</td>
<td>59</td>
<td>-1.87E+01</td>
<td>93</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.86E+01</td>
<td>60</td>
<td>-1.81E+01</td>
<td>94</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.86E+01</td>
<td>61</td>
<td>-1.88E+01</td>
<td>95</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.98E+01</td>
<td>62</td>
<td>-1.90E+01</td>
<td>96</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.88E+01</td>
<td>63</td>
<td>-1.79E+01</td>
<td>97</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.85E+01</td>
<td>64</td>
<td>-1.88E+01</td>
<td>98</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.90E+01</td>
<td>65</td>
<td>-1.81E+01</td>
<td>99</td>
<td>-1.98E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-2.00E+01</td>
<td>66</td>
<td>-1.89E+01</td>
<td>100</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.85E+01</td>
<td>67</td>
<td>-1.90E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.93E+01</td>
<td>68</td>
<td>-1.84E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(^1\)Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.45 – Sampled Values for Parameter S_MB139:RELP_MOD (LHS Variable 56)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.00E+00</td>
<td>35</td>
<td>1.00E+00</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>1.00E+00</td>
<td>36</td>
<td>4.00E+00</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>4.00E+00</td>
<td>37</td>
<td>4.00E+00</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>1.00E+00</td>
<td>38</td>
<td>1.00E+00</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4.00E+00</td>
<td>39</td>
<td>4.00E+00</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>1.00E+00</td>
<td>40</td>
<td>1.00E+00</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>1.00E+00</td>
<td>41</td>
<td>4.00E+00</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>1.00E+00</td>
<td>42</td>
<td>4.00E+00</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>4.00E+00</td>
<td>43</td>
<td>4.00E+00</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>4.00E+00</td>
<td>44</td>
<td>4.00E+00</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>1.00E+00</td>
<td>45</td>
<td>1.00E+00</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>1.00E+00</td>
<td>46</td>
<td>1.00E+00</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>1.00E+00</td>
<td>47</td>
<td>4.00E+00</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>1.00E+00</td>
<td>48</td>
<td>1.00E+00</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>4.00E+00</td>
<td>49</td>
<td>4.00E+00</td>
<td>83</td>
</tr>
<tr>
<td>16</td>
<td>1.00E+00</td>
<td>50</td>
<td>1.00E+00</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>4.00E+00</td>
<td>51</td>
<td>1.00E+00</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>4.00E+00</td>
<td>52</td>
<td>4.00E+00</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>4.00E+00</td>
<td>53</td>
<td>1.00E+00</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>4.00E+00</td>
<td>54</td>
<td>4.00E+00</td>
<td>88</td>
</tr>
<tr>
<td>21</td>
<td>1.00E+00</td>
<td>55</td>
<td>1.00E+00</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>1.00E+00</td>
<td>56</td>
<td>1.00E+00</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>4.00E+00</td>
<td>57</td>
<td>4.00E+00</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>1.00E+00</td>
<td>58</td>
<td>1.00E+00</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>1.00E+00</td>
<td>59</td>
<td>1.00E+00</td>
<td>93</td>
</tr>
<tr>
<td>26</td>
<td>1.00E+00</td>
<td>60</td>
<td>1.00E+00</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>1.00E+00</td>
<td>61</td>
<td>1.00E+00</td>
<td>95</td>
</tr>
<tr>
<td>28</td>
<td>1.00E+00</td>
<td>62</td>
<td>4.00E+00</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>1.00E+00</td>
<td>63</td>
<td>4.00E+00</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>1.00E+00</td>
<td>64</td>
<td>1.00E+00</td>
<td>98</td>
</tr>
<tr>
<td>31</td>
<td>1.00E+00</td>
<td>65</td>
<td>4.00E+00</td>
<td>99</td>
</tr>
<tr>
<td>32</td>
<td>1.00E+00</td>
<td>66</td>
<td>4.00E+00</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>4.00E+00</td>
<td>67</td>
<td>4.00E+00</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.00E+00</td>
<td>68</td>
<td>1.00E+00</td>
<td></td>
</tr>
</tbody>
</table>
Table A.45 – Sampled Values for Parameter S_MB139:RELP_MOD (LHS Variable 56) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4.00E+00</td>
<td>35</td>
<td>1.00E+00</td>
<td>69</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.00E+00</td>
<td>36</td>
<td>1.00E+00</td>
<td>70</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.00E+00</td>
<td>37</td>
<td>1.00E+00</td>
<td>71</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.00E+00</td>
<td>38</td>
<td>4.00E+00</td>
<td>72</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.00E+00</td>
<td>39</td>
<td>1.00E+00</td>
<td>73</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.00E+00</td>
<td>40</td>
<td>4.00E+00</td>
<td>74</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.00E+00</td>
<td>41</td>
<td>1.00E+00</td>
<td>75</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.00E+00</td>
<td>42</td>
<td>1.00E+00</td>
<td>76</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.00E+00</td>
<td>43</td>
<td>1.00E+00</td>
<td>77</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.00E+00</td>
<td>44</td>
<td>4.00E+00</td>
<td>78</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.00E+00</td>
<td>45</td>
<td>4.00E+00</td>
<td>79</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.00E+00</td>
<td>46</td>
<td>4.00E+00</td>
<td>80</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.00E+00</td>
<td>47</td>
<td>1.00E+00</td>
<td>81</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.00E+00</td>
<td>48</td>
<td>4.00E+00</td>
<td>82</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.00E+00</td>
<td>49</td>
<td>4.00E+00</td>
<td>83</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.00E+00</td>
<td>50</td>
<td>4.00E+00</td>
<td>84</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.00E+00</td>
<td>51</td>
<td>1.00E+00</td>
<td>85</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.00E+00</td>
<td>52</td>
<td>4.00E+00</td>
<td>86</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.00E+00</td>
<td>53</td>
<td>1.00E+00</td>
<td>87</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.00E+00</td>
<td>54</td>
<td>4.00E+00</td>
<td>88</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.00E+00</td>
<td>55</td>
<td>1.00E+00</td>
<td>89</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.00E+00</td>
<td>56</td>
<td>1.00E+00</td>
<td>90</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.00E+00</td>
<td>57</td>
<td>4.00E+00</td>
<td>91</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.00E+00</td>
<td>58</td>
<td>1.00E+00</td>
<td>92</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.00E+00</td>
<td>59</td>
<td>1.00E+00</td>
<td>93</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.00E+00</td>
<td>60</td>
<td>1.00E+00</td>
<td>94</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.00E+00</td>
<td>61</td>
<td>1.00E+00</td>
<td>95</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.00E+00</td>
<td>62</td>
<td>1.00E+00</td>
<td>96</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.00E+00</td>
<td>63</td>
<td>1.00E+00</td>
<td>97</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.00E+00</td>
<td>64</td>
<td>1.00E+00</td>
<td>98</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.00E+00</td>
<td>65</td>
<td>4.00E+00</td>
<td>99</td>
<td>1.00E+00</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.00E+00</td>
<td>66</td>
<td>4.00E+00</td>
<td>100</td>
<td>4.00E+00</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.00E+00</td>
<td>67</td>
<td>1.00E+00</td>
<td></td>
<td>Information Only</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.00E+00</td>
<td>68</td>
<td>1.00E+00</td>
<td></td>
<td>Information Only</td>
</tr>
</tbody>
</table>
Table A.45 – Sampled Values for Parameter S_MB139:RELP_MOD (LHS Variable 56) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.00E+00</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>4.00E+00</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>1.00E+00</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>4.00E+00</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>4.00E+00</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>1.00E+00</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>4.00E+00</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>4.00E+00</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>1.00E+00</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>4.00E+00</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>1.00E+00</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>1.00E+00</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>1.00E+00</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>1.00E+00</td>
<td>48</td>
</tr>
<tr>
<td>15</td>
<td>4.00E+00</td>
<td>49</td>
</tr>
<tr>
<td>16</td>
<td>1.00E+00</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>4.00E+00</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>4.00E+00</td>
<td>52</td>
</tr>
<tr>
<td>19</td>
<td>1.00E+00</td>
<td>53</td>
</tr>
<tr>
<td>20</td>
<td>4.00E+00</td>
<td>54</td>
</tr>
<tr>
<td>21</td>
<td>4.00E+00</td>
<td>55</td>
</tr>
<tr>
<td>22</td>
<td>4.00E+00</td>
<td>56</td>
</tr>
<tr>
<td>23</td>
<td>4.00E+00</td>
<td>57</td>
</tr>
<tr>
<td>24</td>
<td>1.00E+00</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>1.00E+00</td>
<td>59</td>
</tr>
<tr>
<td>26</td>
<td>4.00E+00</td>
<td>60</td>
</tr>
<tr>
<td>27</td>
<td>1.00E+00</td>
<td>61</td>
</tr>
<tr>
<td>28</td>
<td>4.00E+00</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>1.00E+00</td>
<td>63</td>
</tr>
<tr>
<td>30</td>
<td>4.00E+00</td>
<td>64</td>
</tr>
<tr>
<td>31</td>
<td>1.00E+00</td>
<td>65</td>
</tr>
<tr>
<td>32</td>
<td>1.00E+00</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>4.00E+00</td>
<td>67</td>
</tr>
<tr>
<td>34</td>
<td>4.00E+00</td>
<td>68</td>
</tr>
</tbody>
</table>

Information Only
Table A.46 – Sampled Values for Parameter S_MB139:SAT_RBRN (LHS Variable 57)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.30E-02</td>
<td>35</td>
<td>6.23E-02</td>
<td>69</td>
<td>8.94E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.95E-02</td>
<td>36</td>
<td>9.76E-02</td>
<td>70</td>
<td>1.10E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.04E-01</td>
<td>37</td>
<td>1.02E-01</td>
<td>71</td>
<td>8.84E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.52E-02</td>
<td>38</td>
<td>8.42E-02</td>
<td>72</td>
<td>8.04E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.99E-02</td>
<td>39</td>
<td>1.06E-01</td>
<td>73</td>
<td>9.71E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.57E-01</td>
<td>40</td>
<td>6.44E-02</td>
<td>74</td>
<td>4.03E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.10E-02</td>
<td>41</td>
<td>4.72E-02</td>
<td>75</td>
<td>1.08E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.50E-02</td>
<td>42</td>
<td>9.27E-02</td>
<td>76</td>
<td>7.81E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8.23E-02</td>
<td>43</td>
<td>6.86E-02</td>
<td>77</td>
<td>6.77E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.51E-02</td>
<td>44</td>
<td>7.64E-02</td>
<td>78</td>
<td>7.05E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.21E-01</td>
<td>45</td>
<td>1.03E-01</td>
<td>79</td>
<td>8.99E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.73E-02</td>
<td>46</td>
<td>7.86E-02</td>
<td>80</td>
<td>6.54E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.92E-02</td>
<td>47</td>
<td>7.35E-02</td>
<td>81</td>
<td>9.90E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.08E-02</td>
<td>48</td>
<td>9.61E-02</td>
<td>82</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7.50E-02</td>
<td>49</td>
<td>1.11E-01</td>
<td>83</td>
<td>9.25E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.21E-01</td>
<td>50</td>
<td>8.60E-02</td>
<td>84</td>
<td>8.66E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>8.58E-02</td>
<td>51</td>
<td>1.18E-01</td>
<td>85</td>
<td>1.07E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.77E-02</td>
<td>52</td>
<td>8.31E-02</td>
<td>86</td>
<td>6.34E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>9.53E-02</td>
<td>53</td>
<td>8.26E-02</td>
<td>87</td>
<td>1.00E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.45E-02</td>
<td>54</td>
<td>1.39E-01</td>
<td>88</td>
<td>2.50E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>9.45E-02</td>
<td>55</td>
<td>7.98E-02</td>
<td>89</td>
<td>1.10E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.91E-02</td>
<td>56</td>
<td>7.15E-02</td>
<td>90</td>
<td>8.74E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.06E-02</td>
<td>57</td>
<td>9.99E-02</td>
<td>91</td>
<td>7.41E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.38E-01</td>
<td>58</td>
<td>1.03E-01</td>
<td>92</td>
<td>5.43E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.69E-02</td>
<td>59</td>
<td>1.33E-01</td>
<td>93</td>
<td>5.21E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.71E-02</td>
<td>60</td>
<td>8.09E-02</td>
<td>94</td>
<td>1.05E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.19E-02</td>
<td>61</td>
<td>6.81E-02</td>
<td>95</td>
<td>7.22E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.97E-02</td>
<td>62</td>
<td>4.16E-02</td>
<td>96</td>
<td>5.52E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.14E-01</td>
<td>63</td>
<td>8.78E-02</td>
<td>97</td>
<td>8.14E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.13E-01</td>
<td>64</td>
<td>9.35E-02</td>
<td>98</td>
<td>9.84E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>7.76E-02</td>
<td>65</td>
<td>1.15E-01</td>
<td>99</td>
<td>7.54E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.88E-02</td>
<td>66</td>
<td>9.16E-02</td>
<td>100</td>
<td>8.38E-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.82E-02</td>
<td>67</td>
<td>1.28E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>7.11E-02</td>
<td>68</td>
<td>9.43E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Value (dimensionless)</td>
<td>Vector</td>
<td>Value (dimensionless)</td>
<td>Vector</td>
<td>Value (dimensionless)</td>
<td>Vector</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>8.99E-02</td>
<td>35</td>
<td>7.95E-02</td>
<td>69</td>
<td>1.04E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.03E-01</td>
<td>36</td>
<td>8.18E-02</td>
<td>70</td>
<td>1.15E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.42E-02</td>
<td>37</td>
<td>4.57E-02</td>
<td>71</td>
<td>7.87E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.20E-02</td>
<td>38</td>
<td>1.17E-01</td>
<td>72</td>
<td>9.28E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.35E-02</td>
<td>39</td>
<td>5.60E-02</td>
<td>73</td>
<td>5.29E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.36E-02</td>
<td>40</td>
<td>8.22E-02</td>
<td>74</td>
<td>8.51E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.95E-02</td>
<td>41</td>
<td>1.09E-01</td>
<td>75</td>
<td>6.16E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.72E-02</td>
<td>42</td>
<td>7.79E-02</td>
<td>76</td>
<td>6.74E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.20E-01</td>
<td>43</td>
<td>9.92E-02</td>
<td>77</td>
<td>7.55E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.01E-01</td>
<td>44</td>
<td>1.03E-01</td>
<td>78</td>
<td>7.97E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.00E-02</td>
<td>45</td>
<td>6.78E-02</td>
<td>79</td>
<td>8.27E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.93E-02</td>
<td>46</td>
<td>8.12E-02</td>
<td>80</td>
<td>5.06E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.54E-02</td>
<td>47</td>
<td>3.65E-02</td>
<td>81</td>
<td>9.49E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.18E-02</td>
<td>48</td>
<td>9.62E-02</td>
<td>82</td>
<td>1.11E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.28E-02</td>
<td>49</td>
<td>8.63E-02</td>
<td>83</td>
<td>9.98E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.71E-02</td>
<td>50</td>
<td>7.21E-02</td>
<td>84</td>
<td>5.47E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.09E-01</td>
<td>51</td>
<td>7.50E-02</td>
<td>85</td>
<td>8.45E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.57E-01</td>
<td>52</td>
<td>2.91E-02</td>
<td>86</td>
<td>8.53E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.81E-02</td>
<td>53</td>
<td>8.04E-02</td>
<td>87</td>
<td>5.91E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.44E-02</td>
<td>54</td>
<td>7.19E-02</td>
<td>88</td>
<td>6.91E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.13E-01</td>
<td>55</td>
<td>4.85E-02</td>
<td>89</td>
<td>1.06E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.70E-02</td>
<td>56</td>
<td>6.25E-02</td>
<td>90</td>
<td>9.33E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.05E-01</td>
<td>57</td>
<td>8.80E-02</td>
<td>91</td>
<td>8.71E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.68E-02</td>
<td>58</td>
<td>9.05E-02</td>
<td>92</td>
<td>7.75E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.33E-02</td>
<td>59</td>
<td>1.33E-01</td>
<td>93</td>
<td>6.48E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.11E-02</td>
<td>60</td>
<td>1.25E-01</td>
<td>94</td>
<td>9.82E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.39E-02</td>
<td>61</td>
<td>5.62E-02</td>
<td>95</td>
<td>1.23E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.07E-02</td>
<td>62</td>
<td>1.44E-01</td>
<td>96</td>
<td>6.04E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.76E-02</td>
<td>63</td>
<td>7.60E-02</td>
<td>97</td>
<td>1.01E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.13E-02</td>
<td>64</td>
<td>7.70E-02</td>
<td>98</td>
<td>1.35E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.11E-02</td>
<td>65</td>
<td>9.16E-02</td>
<td>99</td>
<td>8.88E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.56E-02</td>
<td>66</td>
<td>1.19E-01</td>
<td>100</td>
<td>1.07E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.10E-01</td>
<td>67</td>
<td>6.44E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.79E-02</td>
<td>68</td>
<td>1.27E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.46 – Sampled Values for Parameter S_MB139:SAT_RBRN (LHS Variable 57) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>8.81E-02</td>
<td>35</td>
<td>1.15E-01</td>
<td>69</td>
<td>6.57E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.02E-02</td>
<td>36</td>
<td>6.39E-02</td>
<td>70</td>
<td>3.28E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.87E-02</td>
<td>37</td>
<td>7.91E-02</td>
<td>71</td>
<td>8.97E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.96E-02</td>
<td>38</td>
<td>8.12E-02</td>
<td>72</td>
<td>7.44E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.17E-02</td>
<td>39</td>
<td>1.01E-01</td>
<td>73</td>
<td>6.17E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.53E-02</td>
<td>40</td>
<td>8.41E-02</td>
<td>74</td>
<td>7.08E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.19E-01</td>
<td>41</td>
<td>8.93E-02</td>
<td>75</td>
<td>7.20E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.62E-02</td>
<td>42</td>
<td>6.94E-02</td>
<td>76</td>
<td>8.59E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.03E-01</td>
<td>43</td>
<td>6.73E-02</td>
<td>77</td>
<td>1.12E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.06E-01</td>
<td>44</td>
<td>9.39E-02</td>
<td>78</td>
<td>9.29E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>9.98E-02</td>
<td>45</td>
<td>6.35E-02</td>
<td>79</td>
<td>7.52E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8.52E-02</td>
<td>46</td>
<td>6.18E-02</td>
<td>80</td>
<td>6.92E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.08E-01</td>
<td>47</td>
<td>4.37E-02</td>
<td>81</td>
<td>9.01E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.33E-02</td>
<td>48</td>
<td>7.37E-02</td>
<td>82</td>
<td>1.28E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>9.88E-02</td>
<td>49</td>
<td>9.48E-02</td>
<td>83</td>
<td>1.01E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.17E-02</td>
<td>50</td>
<td>7.97E-02</td>
<td>84</td>
<td>1.05E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.76E-02</td>
<td>51</td>
<td>6.49E-02</td>
<td>85</td>
<td>3.75E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.09E-01</td>
<td>52</td>
<td>1.13E-01</td>
<td>86</td>
<td>7.83E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7.73E-02</td>
<td>53</td>
<td>9.23E-02</td>
<td>87</td>
<td>6.85E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>7.71E-02</td>
<td>54</td>
<td>8.34E-02</td>
<td>88</td>
<td>1.21E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.32E-01</td>
<td>55</td>
<td>7.28E-02</td>
<td>89</td>
<td>2.14E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>9.54E-02</td>
<td>56</td>
<td>1.03E-01</td>
<td>90</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>8.22E-02</td>
<td>57</td>
<td>6.67E-02</td>
<td>91</td>
<td>4.85E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.24E-01</td>
<td>58</td>
<td>1.10E-01</td>
<td>92</td>
<td>7.86E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.44E-02</td>
<td>59</td>
<td>8.30E-02</td>
<td>93</td>
<td>4.58E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.77E-02</td>
<td>60</td>
<td>9.12E-02</td>
<td>94</td>
<td>8.60E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.31E-02</td>
<td>61</td>
<td>1.05E-01</td>
<td>95</td>
<td>8.67E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.37E-01</td>
<td>62</td>
<td>7.60E-02</td>
<td>96</td>
<td>7.06E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.75E-02</td>
<td>63</td>
<td>1.45E-01</td>
<td>97</td>
<td>1.07E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>8.07E-02</td>
<td>64</td>
<td>5.67E-02</td>
<td>98</td>
<td>4.04E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>9.15E-02</td>
<td>65</td>
<td>4.81E-02</td>
<td>99</td>
<td>1.17E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.17E-01</td>
<td>66</td>
<td>8.44E-02</td>
<td>100</td>
<td>9.84E-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>7.21E-02</td>
<td>67</td>
<td>7.55E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>9.70E-02</td>
<td>68</td>
<td>2.84E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.47 – Sampled Values for Parameter S_MB139:PORE_DIS (LHS Variable 58)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>6.88E-01</td>
<td>35</td>
<td>6.41E-01</td>
<td>69</td>
<td>6.80E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.61E-01</td>
<td>36</td>
<td>6.63E-01</td>
<td>70</td>
<td>6.41E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.22E-01</td>
<td>37</td>
<td>6.47E-01</td>
<td>71</td>
<td>6.05E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.07E-01</td>
<td>38</td>
<td>6.74E-01</td>
<td>72</td>
<td>6.99E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.31E-01</td>
<td>39</td>
<td>6.95E-01</td>
<td>73</td>
<td>5.92E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.02E-01</td>
<td>40</td>
<td>6.85E-01</td>
<td>74</td>
<td>5.82E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.25E-01</td>
<td>41</td>
<td>6.78E-01</td>
<td>75</td>
<td>6.71E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.02E-01</td>
<td>42</td>
<td>6.15E-01</td>
<td>76</td>
<td>6.92E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.68E-01</td>
<td>43</td>
<td>6.52E-01</td>
<td>77</td>
<td>6.24E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.11E-01</td>
<td>44</td>
<td>6.59E-01</td>
<td>78</td>
<td>5.32E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.97E-01</td>
<td>45</td>
<td>6.48E-01</td>
<td>79</td>
<td>6.83E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7.04E-01</td>
<td>46</td>
<td>6.67E-01</td>
<td>80</td>
<td>5.65E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.36E-01</td>
<td>47</td>
<td>6.27E-01</td>
<td>81</td>
<td>6.35E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.53E-01</td>
<td>48</td>
<td>6.30E-01</td>
<td>82</td>
<td>6.56E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.84E-01</td>
<td>49</td>
<td>5.95E-01</td>
<td>83</td>
<td>5.90E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.77E-01</td>
<td>50</td>
<td>7.58E-01</td>
<td>84</td>
<td>6.96E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.13E-01</td>
<td>51</td>
<td>7.25E-01</td>
<td>85</td>
<td>6.12E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.81E-01</td>
<td>52</td>
<td>5.71E-01</td>
<td>86</td>
<td>6.56E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.58E-01</td>
<td>53</td>
<td>6.21E-01</td>
<td>87</td>
<td>6.17E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.39E-01</td>
<td>54</td>
<td>6.45E-01</td>
<td>88</td>
<td>7.06E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.86E-01</td>
<td>55</td>
<td>6.51E-01</td>
<td>89</td>
<td>5.99E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.25E-01</td>
<td>56</td>
<td>6.64E-01</td>
<td>90</td>
<td>6.43E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.60E-01</td>
<td>57</td>
<td>6.13E-01</td>
<td>91</td>
<td>6.72E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.02E-01</td>
<td>58</td>
<td>4.99E-01</td>
<td>92</td>
<td>6.38E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.18E-01</td>
<td>59</td>
<td>7.37E-01</td>
<td>93</td>
<td>6.45E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.35E-01</td>
<td>60</td>
<td>5.40E-01</td>
<td>94</td>
<td>6.49E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.69E-01</td>
<td>61</td>
<td>8.02E-01</td>
<td>95</td>
<td>6.26E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.10E-01</td>
<td>62</td>
<td>5.49E-01</td>
<td>96</td>
<td>6.66E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.88E-01</td>
<td>63</td>
<td>7.22E-01</td>
<td>97</td>
<td>6.75E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.33E-01</td>
<td>64</td>
<td>5.74E-01</td>
<td>98</td>
<td>5.77E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>7.30E-01</td>
<td>65</td>
<td>6.54E-01</td>
<td>99</td>
<td>6.17E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.61E-01</td>
<td>66</td>
<td>7.69E-01</td>
<td>100</td>
<td>7.49E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.89E-01</td>
<td>67</td>
<td>6.08E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.29E-01</td>
<td>68</td>
<td>6.19E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.47 – Sampled Values for Parameter S_MB139:PORE_DIS (LHS Variable 58) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6.19E-01</td>
<td>35</td>
<td>5.18E-01</td>
<td>69</td>
<td>5.82E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5.44E-01</td>
<td>36</td>
<td>6.81E-01</td>
<td>70</td>
<td>5.78E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.32E-01</td>
<td>37</td>
<td>5.68E-01</td>
<td>71</td>
<td>6.40E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.66E-01</td>
<td>38</td>
<td>6.35E-01</td>
<td>72</td>
<td>5.59E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6.08E-01</td>
<td>39</td>
<td>6.43E-01</td>
<td>73</td>
<td>6.57E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.15E-01</td>
<td>40</td>
<td>6.32E-01</td>
<td>74</td>
<td>6.74E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.95E-01</td>
<td>41</td>
<td>6.28E-01</td>
<td>75</td>
<td>6.82E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.51E-01</td>
<td>42</td>
<td>7.02E-01</td>
<td>76</td>
<td>5.72E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.78E-01</td>
<td>43</td>
<td>7.14E-01</td>
<td>77</td>
<td>6.68E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.88E-01</td>
<td>44</td>
<td>7.99E-01</td>
<td>78</td>
<td>5.67E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.97E-01</td>
<td>45</td>
<td>7.10E-01</td>
<td>79</td>
<td>5.27E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.40E-01</td>
<td>46</td>
<td>7.40E-01</td>
<td>80</td>
<td>7.06E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7.74E-01</td>
<td>47</td>
<td>6.46E-01</td>
<td>81</td>
<td>5.85E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.25E-01</td>
<td>48</td>
<td>6.01E-01</td>
<td>82</td>
<td>6.89E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.75E-01</td>
<td>49</td>
<td>6.45E-01</td>
<td>83</td>
<td>6.87E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.38E-01</td>
<td>50</td>
<td>6.07E-01</td>
<td>84</td>
<td>6.61E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.29E-01</td>
<td>51</td>
<td>6.16E-01</td>
<td>85</td>
<td>6.47E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.78E-01</td>
<td>52</td>
<td>6.72E-01</td>
<td>86</td>
<td>5.97E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.55E-01</td>
<td>53</td>
<td>6.51E-01</td>
<td>87</td>
<td>6.22E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.58E-01</td>
<td>54</td>
<td>6.26E-01</td>
<td>88</td>
<td>6.37E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.04E-01</td>
<td>55</td>
<td>5.49E-01</td>
<td>89</td>
<td>5.99E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.21E-01</td>
<td>56</td>
<td>5.92E-01</td>
<td>90</td>
<td>6.64E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.91E-01</td>
<td>57</td>
<td>5.95E-01</td>
<td>91</td>
<td>6.65E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.55E-01</td>
<td>58</td>
<td>6.85E-01</td>
<td>92</td>
<td>6.49E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.20E-01</td>
<td>59</td>
<td>7.61E-01</td>
<td>93</td>
<td>6.72E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.18E-01</td>
<td>60</td>
<td>6.78E-01</td>
<td>94</td>
<td>7.28E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.11E-01</td>
<td>61</td>
<td>5.90E-01</td>
<td>95</td>
<td>6.69E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.53E-01</td>
<td>62</td>
<td>6.55E-01</td>
<td>96</td>
<td>7.00E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>7.42E-01</td>
<td>63</td>
<td>6.60E-01</td>
<td>97</td>
<td>5.00E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.42E-01</td>
<td>64</td>
<td>6.18E-01</td>
<td>98</td>
<td>6.13E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.23E-01</td>
<td>65</td>
<td>6.30E-01</td>
<td>99</td>
<td>7.04E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.88E-01</td>
<td>66</td>
<td>6.34E-01</td>
<td>100</td>
<td>6.49E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.10E-01</td>
<td>67</td>
<td>6.63E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.03E-01</td>
<td>68</td>
<td>7.31E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Information Only**
Table A.47 – Sampled Values for Parameter S_MB139:PORE_DIS (LHS Variable 58) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>5.83E-01</td>
<td>35</td>
<td>7.19E-01</td>
<td>69</td>
<td>5.95E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.74E-01</td>
<td>36</td>
<td>6.19E-01</td>
<td>70</td>
<td>7.36E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.22E-01</td>
<td>37</td>
<td>6.03E-01</td>
<td>71</td>
<td>6.41E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.12E-01</td>
<td>38</td>
<td>6.44E-01</td>
<td>72</td>
<td>6.59E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.61E-01</td>
<td>39</td>
<td>6.54E-01</td>
<td>73</td>
<td>6.49E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.16E-01</td>
<td>40</td>
<td>6.41E-01</td>
<td>74</td>
<td>6.52E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.10E-01</td>
<td>41</td>
<td>5.03E-01</td>
<td>75</td>
<td>6.37E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.98E-01</td>
<td>42</td>
<td>6.86E-01</td>
<td>76</td>
<td>7.62E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.52E-01</td>
<td>43</td>
<td>6.13E-01</td>
<td>77</td>
<td>5.75E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.82E-01</td>
<td>44</td>
<td>6.43E-01</td>
<td>78</td>
<td>6.09E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>5.38E-01</td>
<td>45</td>
<td>5.67E-01</td>
<td>79</td>
<td>6.45E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.33E-01</td>
<td>46</td>
<td>6.97E-01</td>
<td>80</td>
<td>6.17E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.07E-01</td>
<td>47</td>
<td>5.51E-01</td>
<td>81</td>
<td>6.70E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.99E-01</td>
<td>48</td>
<td>7.02E-01</td>
<td>82</td>
<td>6.72E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.28E-01</td>
<td>49</td>
<td>7.95E-01</td>
<td>83</td>
<td>6.76E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>6.22E-01</td>
<td>50</td>
<td>6.78E-01</td>
<td>84</td>
<td>6.61E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.34E-01</td>
<td>51</td>
<td>6.38E-01</td>
<td>85</td>
<td>5.72E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.89E-01</td>
<td>52</td>
<td>6.10E-01</td>
<td>86</td>
<td>6.14E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.85E-01</td>
<td>53</td>
<td>6.65E-01</td>
<td>87</td>
<td>7.61E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.56E-01</td>
<td>54</td>
<td>6.69E-01</td>
<td>88</td>
<td>7.25E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.25E-01</td>
<td>55</td>
<td>6.21E-01</td>
<td>89</td>
<td>6.32E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>6.48E-01</td>
<td>56</td>
<td>6.00E-01</td>
<td>90</td>
<td>5.89E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.31E-01</td>
<td>57</td>
<td>7.09E-01</td>
<td>91</td>
<td>6.85E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>6.57E-01</td>
<td>58</td>
<td>6.89E-01</td>
<td>92</td>
<td>6.05E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.66E-01</td>
<td>59</td>
<td>6.27E-01</td>
<td>93</td>
<td>6.81E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.54E-01</td>
<td>60</td>
<td>6.47E-01</td>
<td>94</td>
<td>5.97E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.91E-01</td>
<td>61</td>
<td>6.59E-01</td>
<td>95</td>
<td>6.28E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.63E-01</td>
<td>62</td>
<td>6.92E-01</td>
<td>96</td>
<td>6.69E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.36E-01</td>
<td>63</td>
<td>6.62E-01</td>
<td>97</td>
<td>6.40E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.34E-01</td>
<td>64</td>
<td>7.03E-01</td>
<td>98</td>
<td>6.50E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.76E-01</td>
<td>65</td>
<td>5.94E-01</td>
<td>99</td>
<td>6.16E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.94E-01</td>
<td>66</td>
<td>5.69E-01</td>
<td>100</td>
<td>5.79E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.24E-01</td>
<td>67</td>
<td>7.10E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>7.49E-01</td>
<td>68</td>
<td>6.36E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>Vector #</td>
<td>Value (Pa)</td>
<td>Vector #</td>
<td>Value (Pa)</td>
<td>Vector #</td>
<td>Value (Pa)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.22E+07</td>
<td></td>
<td>1.14E+07</td>
<td></td>
<td>1.12E+07</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.12E+07</td>
<td></td>
<td>1.28E+07</td>
<td></td>
<td>1.27E+07</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.16E+07</td>
<td></td>
<td>1.37E+07</td>
<td></td>
<td>1.13E+07</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.37E+07</td>
<td></td>
<td>1.28E+07</td>
<td></td>
<td>1.26E+07</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.15E+07</td>
<td></td>
<td>1.14E+07</td>
<td></td>
<td>1.28E+07</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.35E+07</td>
<td></td>
<td>1.18E+07</td>
<td></td>
<td>1.36E+07</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.11E+07</td>
<td></td>
<td>1.17E+07</td>
<td></td>
<td>1.26E+07</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.38E+07</td>
<td></td>
<td>1.24E+07</td>
<td></td>
<td>1.38E+07</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1.22E+07</td>
<td></td>
<td>1.25E+07</td>
<td></td>
<td>1.11E+07</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.27E+07</td>
<td></td>
<td>1.35E+07</td>
<td></td>
<td>1.28E+07</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.11E+07</td>
<td></td>
<td>1.37E+07</td>
<td></td>
<td>1.27E+07</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.22E+07</td>
<td></td>
<td>1.33E+07</td>
<td></td>
<td>1.26E+07</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1.30E+07</td>
<td></td>
<td>1.32E+07</td>
<td></td>
<td>1.12E+07</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1.30E+07</td>
<td></td>
<td>1.37E+07</td>
<td></td>
<td>1.39E+07</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.19E+07</td>
<td></td>
<td>1.23E+07</td>
<td></td>
<td>1.17E+07</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1.24E+07</td>
<td></td>
<td>1.23E+07</td>
<td></td>
<td>1.16E+07</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1.31E+07</td>
<td></td>
<td>1.13E+07</td>
<td></td>
<td>1.38E+07</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1.17E+07</td>
<td></td>
<td>1.34E+07</td>
<td></td>
<td>1.13E+07</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1.24E+07</td>
<td></td>
<td>1.21E+07</td>
<td></td>
<td>1.11E+07</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1.20E+07</td>
<td></td>
<td>1.30E+07</td>
<td></td>
<td>1.36E+07</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1.33E+07</td>
<td></td>
<td>1.23E+07</td>
<td></td>
<td>1.35E+07</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1.15E+07</td>
<td></td>
<td>1.20E+07</td>
<td></td>
<td>1.29E+07</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1.35E+07</td>
<td></td>
<td>1.13E+07</td>
<td></td>
<td>1.32E+07</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1.21E+07</td>
<td></td>
<td>1.36E+07</td>
<td></td>
<td>1.25E+07</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1.21E+07</td>
<td></td>
<td>1.15E+07</td>
<td></td>
<td>1.19E+07</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1.16E+07</td>
<td></td>
<td>1.22E+07</td>
<td></td>
<td>1.31E+07</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1.16E+07</td>
<td></td>
<td>1.29E+07</td>
<td></td>
<td>1.20E+07</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1.32E+07</td>
<td></td>
<td>1.25E+07</td>
<td></td>
<td>1.34E+07</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1.29E+07</td>
<td></td>
<td>1.19E+07</td>
<td></td>
<td>1.27E+07</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1.33E+07</td>
<td></td>
<td>1.34E+07</td>
<td></td>
<td>1.30E+07</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1.19E+07</td>
<td></td>
<td>1.31E+07</td>
<td></td>
<td>1.32E+07</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1.17E+07</td>
<td></td>
<td>1.14E+07</td>
<td></td>
<td>1.18E+07</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1.38E+07</td>
<td></td>
<td>1.21E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1.18E+07</td>
<td></td>
<td>1.25E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (Pa)</td>
<td>Vector</td>
<td>Replicate</td>
<td>#</td>
<td>Value (Pa)</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>----</td>
<td>------------</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.14E+07</td>
<td>35</td>
<td>2</td>
<td>1.11E+07</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.38E+07</td>
<td>36</td>
<td>3</td>
<td>1.26E+07</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.15E+07</td>
<td>37</td>
<td>4</td>
<td>1.12E+07</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.23E+07</td>
<td>38</td>
<td>5</td>
<td>1.19E+07</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.22E+07</td>
<td>39</td>
<td>6</td>
<td>1.13E+07</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.23E+07</td>
<td>40</td>
<td>7</td>
<td>1.14E+07</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.33E+07</td>
<td>41</td>
<td>8</td>
<td>1.15E+07</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.32E+07</td>
<td>42</td>
<td>9</td>
<td>1.26E+07</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.37E+07</td>
<td>43</td>
<td>10</td>
<td>1.25E+07</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.37E+07</td>
<td>44</td>
<td>11</td>
<td>1.28E+07</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.37E+07</td>
<td>45</td>
<td>12</td>
<td>1.29E+07</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.25E+07</td>
<td>46</td>
<td>13</td>
<td>1.26E+07</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.27E+07</td>
<td>47</td>
<td>14</td>
<td>1.25E+07</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.26E+07</td>
<td>48</td>
<td>15</td>
<td>1.26E+07</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.17E+07</td>
<td>49</td>
<td>16</td>
<td>1.24E+07</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.36E+07</td>
<td>50</td>
<td>17</td>
<td>1.23E+07</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.27E+07</td>
<td>51</td>
<td>18</td>
<td>1.25E+07</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.18E+07</td>
<td>52</td>
<td>19</td>
<td>1.26E+07</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.20E+07</td>
<td>53</td>
<td>20</td>
<td>1.29E+07</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.31E+07</td>
<td>54</td>
<td>21</td>
<td>1.35E+07</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.20E+07</td>
<td>55</td>
<td>22</td>
<td>1.35E+07</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.28E+07</td>
<td>56</td>
<td>23</td>
<td>1.35E+07</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.35E+07</td>
<td>57</td>
<td>24</td>
<td>1.35E+07</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.35E+07</td>
<td>58</td>
<td>25</td>
<td>1.35E+07</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.26E+07</td>
<td>59</td>
<td>26</td>
<td>1.33E+07</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.35E+07</td>
<td>60</td>
<td>27</td>
<td>1.35E+07</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.35E+07</td>
<td>61</td>
<td>28</td>
<td>1.35E+07</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.35E+07</td>
<td>62</td>
<td>29</td>
<td>1.35E+07</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.35E+07</td>
<td>63</td>
<td>30</td>
<td>1.35E+07</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.35E+07</td>
<td>64</td>
<td>31</td>
<td>1.35E+07</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.35E+07</td>
<td>65</td>
<td>32</td>
<td>1.35E+07</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.35E+07</td>
<td>66</td>
<td>33</td>
<td>1.35E+07</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.35E+07</td>
<td>67</td>
<td>34</td>
<td>1.35E+07</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.35E+07</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.48 – Sampled Values for Parameter S_HALITE:PRESSURE (LHS Variable 59) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1.10E+07</td>
<td>35</td>
<td>1.32E+07</td>
<td>69</td>
<td>1.30E+07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.13E+07</td>
<td>36</td>
<td>1.12E+07</td>
<td>70</td>
<td>1.28E+07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.27E+07</td>
<td>37</td>
<td>1.14E+07</td>
<td>71</td>
<td>1.32E+07</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.38E+07</td>
<td>38</td>
<td>1.16E+07</td>
<td>72</td>
<td>1.35E+07</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.16E+07</td>
<td>39</td>
<td>1.34E+07</td>
<td>73</td>
<td>1.22E+07</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.11E+07</td>
<td>40</td>
<td>1.29E+07</td>
<td>74</td>
<td>1.19E+07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.12E+07</td>
<td>41</td>
<td>1.12E+07</td>
<td>75</td>
<td>1.15E+07</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.14E+07</td>
<td>42</td>
<td>1.21E+07</td>
<td>76</td>
<td>1.23E+07</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.31E+07</td>
<td>43</td>
<td>1.30E+07</td>
<td>77</td>
<td>1.25E+07</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.35E+07</td>
<td>44</td>
<td>1.14E+07</td>
<td>78</td>
<td>1.33E+07</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.26E+07</td>
<td>45</td>
<td>1.38E+07</td>
<td>79</td>
<td>1.23E+07</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.36E+07</td>
<td>46</td>
<td>1.13E+07</td>
<td>80</td>
<td>1.31E+07</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.25E+07</td>
<td>47</td>
<td>1.29E+07</td>
<td>81</td>
<td>1.21E+07</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.20E+07</td>
<td>48</td>
<td>1.24E+07</td>
<td>82</td>
<td>1.17E+07</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.39E+07</td>
<td>49</td>
<td>1.20E+07</td>
<td>83</td>
<td>1.38E+07</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.16E+07</td>
<td>50</td>
<td>1.28E+07</td>
<td>84</td>
<td>1.23E+07</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.22E+07</td>
<td>51</td>
<td>1.18E+07</td>
<td>85</td>
<td>1.13E+07</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.27E+07</td>
<td>52</td>
<td>1.23E+07</td>
<td>86</td>
<td>1.13E+07</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.28E+07</td>
<td>53</td>
<td>1.36E+07</td>
<td>87</td>
<td>1.36E+07</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.34E+07</td>
<td>54</td>
<td>1.25E+07</td>
<td>88</td>
<td>1.35E+07</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.28E+07</td>
<td>55</td>
<td>1.20E+07</td>
<td>89</td>
<td>1.37E+07</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.32E+07</td>
<td>56</td>
<td>1.14E+07</td>
<td>90</td>
<td>1.20E+07</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.32E+07</td>
<td>57</td>
<td>1.19E+07</td>
<td>91</td>
<td>1.18E+07</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.31E+07</td>
<td>58</td>
<td>1.15E+07</td>
<td>92</td>
<td>1.34E+07</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.24E+07</td>
<td>59</td>
<td>1.19E+07</td>
<td>93</td>
<td>1.19E+07</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.39E+07</td>
<td>60</td>
<td>1.21E+07</td>
<td>94</td>
<td>1.30E+07</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.37E+07</td>
<td>61</td>
<td>1.30E+07</td>
<td>95</td>
<td>1.37E+07</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.26E+07</td>
<td>62</td>
<td>1.26E+07</td>
<td>96</td>
<td>1.17E+07</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.12E+07</td>
<td>63</td>
<td>1.27E+07</td>
<td>97</td>
<td>1.17E+07</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.33E+07</td>
<td>64</td>
<td>1.22E+07</td>
<td>98</td>
<td>1.25E+07</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.24E+07</td>
<td>65</td>
<td>1.34E+07</td>
<td>99</td>
<td>1.29E+07</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.16E+07</td>
<td>66</td>
<td>1.33E+07</td>
<td>100</td>
<td>1.36E+07</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.18E+07</td>
<td>67</td>
<td>1.17E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.11E+07</td>
<td>68</td>
<td>1.27E+07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.49 – Sampled Values for Parameter CASTILER:PRESSURE (LHS Variable 60)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (Pa)</th>
<th>Value (Pa)</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.33E+07</td>
<td>1.40E+07</td>
<td>1.29E+07</td>
</tr>
<tr>
<td>2</td>
<td>1.36E+07</td>
<td>1.41E+07</td>
<td>1.25E+07</td>
</tr>
<tr>
<td>3</td>
<td>1.12E+07</td>
<td>1.28E+07</td>
<td>1.20E+07</td>
</tr>
<tr>
<td>4</td>
<td>1.27E+07</td>
<td>1.34E+07</td>
<td>1.52E+07</td>
</tr>
<tr>
<td>5</td>
<td>1.24E+07</td>
<td>1.54E+07</td>
<td>1.47E+07</td>
</tr>
<tr>
<td>6</td>
<td>1.29E+07</td>
<td>1.18E+07</td>
<td>1.14E+07</td>
</tr>
<tr>
<td>7</td>
<td>1.51E+07</td>
<td>1.41E+07</td>
<td>1.19E+07</td>
</tr>
<tr>
<td>8</td>
<td>1.46E+07</td>
<td>1.31E+07</td>
<td>1.35E+07</td>
</tr>
<tr>
<td>9</td>
<td>1.35E+07</td>
<td>1.56E+07</td>
<td>1.23E+07</td>
</tr>
<tr>
<td>10</td>
<td>1.40E+07</td>
<td>1.44E+07</td>
<td>1.22E+07</td>
</tr>
<tr>
<td>11</td>
<td>1.27E+07</td>
<td>1.18E+07</td>
<td>1.21E+07</td>
</tr>
<tr>
<td>12</td>
<td>1.33E+07</td>
<td>1.48E+07</td>
<td>1.32E+07</td>
</tr>
<tr>
<td>13</td>
<td>1.30E+07</td>
<td>1.28E+07</td>
<td>1.17E+07</td>
</tr>
<tr>
<td>14</td>
<td>1.55E+07</td>
<td>1.30E+07</td>
<td>1.27E+07</td>
</tr>
<tr>
<td>15</td>
<td>1.26E+07</td>
<td>1.31E+07</td>
<td>1.36E+07</td>
</tr>
<tr>
<td>16</td>
<td>1.25E+07</td>
<td>1.49E+07</td>
<td>1.32E+07</td>
</tr>
<tr>
<td>17</td>
<td>1.58E+07</td>
<td>1.34E+07</td>
<td>1.30E+07</td>
</tr>
<tr>
<td>18</td>
<td>1.47E+07</td>
<td>1.45E+07</td>
<td>1.51E+07</td>
</tr>
<tr>
<td>19</td>
<td>1.38E+07</td>
<td>1.26E+07</td>
<td>1.38E+07</td>
</tr>
<tr>
<td>20</td>
<td>1.43E+07</td>
<td>1.27E+07</td>
<td>1.33E+07</td>
</tr>
<tr>
<td>21</td>
<td>1.39E+07</td>
<td>1.22E+07</td>
<td>1.36E+07</td>
</tr>
<tr>
<td>22</td>
<td>1.56E+07</td>
<td>1.53E+07</td>
<td>1.42E+07</td>
</tr>
<tr>
<td>23</td>
<td>1.50E+07</td>
<td>1.25E+07</td>
<td>1.21E+07</td>
</tr>
<tr>
<td>24</td>
<td>1.64E+07</td>
<td>1.44E+07</td>
<td>1.31E+07</td>
</tr>
<tr>
<td>25</td>
<td>1.48E+07</td>
<td>1.57E+07</td>
<td>1.65E+07</td>
</tr>
<tr>
<td>26</td>
<td>1.30E+07</td>
<td>1.37E+07</td>
<td>1.42E+07</td>
</tr>
<tr>
<td>27</td>
<td>1.21E+07</td>
<td>1.36E+07</td>
<td>1.49E+07</td>
</tr>
<tr>
<td>28</td>
<td>1.26E+07</td>
<td>1.24E+07</td>
<td>1.37E+07</td>
</tr>
<tr>
<td>29</td>
<td>1.34E+07</td>
<td>1.29E+07</td>
<td>1.28E+07</td>
</tr>
<tr>
<td>30</td>
<td>1.62E+07</td>
<td>1.43E+07</td>
<td>1.60E+07</td>
</tr>
<tr>
<td>31</td>
<td>1.32E+07</td>
<td>1.46E+07</td>
<td>1.45E+07</td>
</tr>
<tr>
<td>32</td>
<td>1.41E+07</td>
<td>1.23E+07</td>
<td>1.38E+07</td>
</tr>
<tr>
<td>33</td>
<td>1.15E+07</td>
<td>1.19E+07</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.61E+07</td>
<td>1.23E+07</td>
<td></td>
</tr>
</tbody>
</table>
Table A.49 – Sampled Values for Parameter CASTILER:PRESSURE (LHS Variable 60) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.41E+07</td>
<td>35</td>
<td>1.59E+07</td>
<td>69</td>
<td>1.39E+07</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.42E+07</td>
<td>36</td>
<td>1.44E+07</td>
<td>70</td>
<td>1.30E+07</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.48E+07</td>
<td>37</td>
<td>1.53E+07</td>
<td>71</td>
<td>1.46E+07</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.21E+07</td>
<td>38</td>
<td>1.26E+07</td>
<td>72</td>
<td>1.39E+07</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.25E+07</td>
<td>39</td>
<td>1.38E+07</td>
<td>73</td>
<td>1.15E+07</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.32E+07</td>
<td>40</td>
<td>1.35E+07</td>
<td>74</td>
<td>1.61E+07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.43E+07</td>
<td>41</td>
<td>1.30E+07</td>
<td>75</td>
<td>1.33E+07</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.25E+07</td>
<td>42</td>
<td>1.42E+07</td>
<td>76</td>
<td>1.34E+07</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.51E+07</td>
<td>43</td>
<td>1.62E+07</td>
<td>77</td>
<td>1.57E+07</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.28E+07</td>
<td>44</td>
<td>1.20E+07</td>
<td>78</td>
<td>1.19E+07</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.37E+07</td>
<td>45</td>
<td>1.48E+07</td>
<td>79</td>
<td>1.53E+07</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.52E+07</td>
<td>46</td>
<td>1.25E+07</td>
<td>80</td>
<td>1.33E+07</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.36E+07</td>
<td>47</td>
<td>1.27E+07</td>
<td>81</td>
<td>1.35E+07</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.19E+07</td>
<td>48</td>
<td>1.67E+07</td>
<td>82</td>
<td>1.16E+07</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.18E+07</td>
<td>49</td>
<td>1.38E+07</td>
<td>83</td>
<td>1.33E+07</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.37E+07</td>
<td>50</td>
<td>1.21E+07</td>
<td>84</td>
<td>1.27E+07</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.14E+07</td>
<td>51</td>
<td>1.28E+07</td>
<td>85</td>
<td>1.49E+07</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.34E+07</td>
<td>52</td>
<td>1.40E+07</td>
<td>86</td>
<td>1.26E+07</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.29E+07</td>
<td>53</td>
<td>1.55E+07</td>
<td>87</td>
<td>1.43E+07</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.41E+07</td>
<td>54</td>
<td>1.40E+07</td>
<td>88</td>
<td>1.46E+07</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.22E+07</td>
<td>55</td>
<td>1.31E+07</td>
<td>89</td>
<td>1.44E+07</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.36E+07</td>
<td>56</td>
<td>1.23E+07</td>
<td>90</td>
<td>1.27E+07</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.37E+07</td>
<td>57</td>
<td>1.23E+07</td>
<td>91</td>
<td>1.28E+07</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.35E+07</td>
<td>58</td>
<td>1.27E+07</td>
<td>92</td>
<td>1.52E+07</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.30E+07</td>
<td>59</td>
<td>1.31E+07</td>
<td>93</td>
<td>1.29E+07</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.32E+07</td>
<td>60</td>
<td>1.47E+07</td>
<td>94</td>
<td>1.22E+07</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.24E+07</td>
<td>61</td>
<td>1.49E+07</td>
<td>95</td>
<td>1.28E+07</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.34E+07</td>
<td>62</td>
<td>1.45E+07</td>
<td>96</td>
<td>1.37E+07</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.65E+07</td>
<td>63</td>
<td>1.18E+07</td>
<td>97</td>
<td>1.20E+07</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.50E+07</td>
<td>64</td>
<td>1.40E+07</td>
<td>98</td>
<td>1.46E+07</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.56E+07</td>
<td>65</td>
<td>1.59E+07</td>
<td>99</td>
<td>1.56E+07</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.17E+07</td>
<td>66</td>
<td>1.45E+07</td>
<td>100</td>
<td>1.24E+07</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.25E+07</td>
<td>67</td>
<td>1.23E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.30E+07</td>
<td>68</td>
<td>1.32E+07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.49 – Sampled Values for Parameter CASTILER:PRESSURE (LHS Variable 60) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
<th>#</th>
<th>Value (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>1.19E+07</td>
<td>35</td>
<td>1.46E+07</td>
<td>69</td>
<td>1.30E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.54E+07</td>
<td>36</td>
<td>1.39E+07</td>
<td>70</td>
<td>1.31E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.42E+07</td>
<td>37</td>
<td>1.57E+07</td>
<td>71</td>
<td>1.23E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.44E+07</td>
<td>38</td>
<td>1.46E+07</td>
<td>72</td>
<td>1.27E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.18E+07</td>
<td>39</td>
<td>1.32E+07</td>
<td>73</td>
<td>1.50E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1.26E+07</td>
<td>40</td>
<td>1.28E+07</td>
<td>74</td>
<td>1.45E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.17E+07</td>
<td>41</td>
<td>1.29E+07</td>
<td>75</td>
<td>1.22E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.16E+07</td>
<td>42</td>
<td>1.41E+07</td>
<td>76</td>
<td>1.26E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1.25E+07</td>
<td>43</td>
<td>1.23E+07</td>
<td>77</td>
<td>1.58E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.48E+07</td>
<td>44</td>
<td>1.50E+07</td>
<td>78</td>
<td>1.26E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1.28E+07</td>
<td>45</td>
<td>1.39E+07</td>
<td>79</td>
<td>1.16E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1.21E+07</td>
<td>46</td>
<td>1.28E+07</td>
<td>80</td>
<td>1.53E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1.35E+07</td>
<td>47</td>
<td>1.28E+07</td>
<td>81</td>
<td>1.48E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1.22E+07</td>
<td>48</td>
<td>1.45E+07</td>
<td>82</td>
<td>1.44E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.51E+07</td>
<td>49</td>
<td>1.15E+07</td>
<td>83</td>
<td>1.37E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.47E+07</td>
<td>50</td>
<td>1.43E+07</td>
<td>84</td>
<td>1.61E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.25E+07</td>
<td>51</td>
<td>1.34E+07</td>
<td>85</td>
<td>1.62E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1.51E+07</td>
<td>52</td>
<td>1.33E+07</td>
<td>86</td>
<td>1.38E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>1.19E+07</td>
<td>53</td>
<td>1.40E+07</td>
<td>87</td>
<td>1.22E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>1.56E+07</td>
<td>54</td>
<td>1.27E+07</td>
<td>88</td>
<td>1.34E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>1.38E+07</td>
<td>55</td>
<td>1.52E+07</td>
<td>89</td>
<td>1.21E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>1.32E+07</td>
<td>56</td>
<td>1.40E+07</td>
<td>90</td>
<td>1.31E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.41E+07</td>
<td>57</td>
<td>1.24E+07</td>
<td>91</td>
<td>1.41E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1.30E+07</td>
<td>58</td>
<td>1.29E+07</td>
<td>92</td>
<td>1.33E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1.32E+07</td>
<td>59</td>
<td>1.36E+07</td>
<td>93</td>
<td>1.37E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>1.25E+07</td>
<td>60</td>
<td>1.26E+07</td>
<td>94</td>
<td>1.59E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>1.27E+07</td>
<td>61</td>
<td>1.24E+07</td>
<td>95</td>
<td>1.36E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>1.35E+07</td>
<td>62</td>
<td>1.23E+07</td>
<td>96</td>
<td>1.42E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>1.43E+07</td>
<td>63</td>
<td>1.53E+07</td>
<td>97</td>
<td>1.36E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1.20E+07</td>
<td>64</td>
<td>1.45E+07</td>
<td>98</td>
<td>1.35E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>1.34E+07</td>
<td>65</td>
<td>1.31E+07</td>
<td>99</td>
<td>1.49E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>1.38E+07</td>
<td>66</td>
<td>1.65E+07</td>
<td>100</td>
<td>1.14E+07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>1.30E+07</td>
<td>67</td>
<td>1.55E+07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>1.30E+07</td>
<td>68</td>
<td>1.68E+07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.50 – Sampled Values for Parameter CASTILER:PRMX_LOG (LHS Variable 61), CASTILER:PRMY_LOG \(^1\), and CASTILER:PRMZ_LOG \(^1\)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.16E+01</td>
<td>35</td>
<td>-1.19E+01</td>
<td>69</td>
<td>-1.11E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.18E+01</td>
<td>36</td>
<td>-1.34E+01</td>
<td>70</td>
<td>-1.10E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.04E+01</td>
<td>37</td>
<td>-1.03E+01</td>
<td>71</td>
<td>-1.18E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.21E+01</td>
<td>38</td>
<td>-1.28E+01</td>
<td>72</td>
<td>-1.20E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.10E+01</td>
<td>39</td>
<td>-1.15E+01</td>
<td>73</td>
<td>-1.08E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.15E+01</td>
<td>40</td>
<td>-1.05E+01</td>
<td>74</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.08E+01</td>
<td>41</td>
<td>-1.18E+01</td>
<td>75</td>
<td>-1.21E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.18E+01</td>
<td>42</td>
<td>-1.40E+01</td>
<td>76</td>
<td>-1.35E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.26E+01</td>
<td>43</td>
<td>-1.30E+01</td>
<td>77</td>
<td>-1.13E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.06E+01</td>
<td>44</td>
<td>-1.17E+01</td>
<td>78</td>
<td>-1.09E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.28E+01</td>
<td>45</td>
<td>-1.21E+01</td>
<td>79</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.19E+01</td>
<td>46</td>
<td>-1.33E+01</td>
<td>80</td>
<td>-1.08E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.25E+01</td>
<td>47</td>
<td>-1.30E+01</td>
<td>81</td>
<td>-1.27E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.14E+01</td>
<td>48</td>
<td>-1.32E+01</td>
<td>82</td>
<td>-1.32E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.33E+01</td>
<td>49</td>
<td>-1.27E+01</td>
<td>83</td>
<td>-1.30E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-9.94E+00</td>
<td>50</td>
<td>-1.06E+01</td>
<td>84</td>
<td>-1.28E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.21E+01</td>
<td>51</td>
<td>-1.20E+01</td>
<td>85</td>
<td>-1.10E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.23E+01</td>
<td>52</td>
<td>-1.39E+01</td>
<td>86</td>
<td>-1.41E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.29E+01</td>
<td>53</td>
<td>-1.29E+01</td>
<td>87</td>
<td>-1.37E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.19E+01</td>
<td>54</td>
<td>-1.12E+01</td>
<td>88</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.45E+01</td>
<td>55</td>
<td>-1.14E+01</td>
<td>89</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.25E+01</td>
<td>56</td>
<td>-1.02E+01</td>
<td>90</td>
<td>-1.16E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.12E+01</td>
<td>57</td>
<td>-1.06E+01</td>
<td>91</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.12E+01</td>
<td>58</td>
<td>-1.26E+01</td>
<td>92</td>
<td>-1.35E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.23E+01</td>
<td>59</td>
<td>-1.36E+01</td>
<td>93</td>
<td>-1.16E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.22E+01</td>
<td>60</td>
<td>-1.26E+01</td>
<td>94</td>
<td>-1.20E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.38E+01</td>
<td>61</td>
<td>-1.11E+01</td>
<td>95</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.13E+01</td>
<td>62</td>
<td>-1.26E+01</td>
<td>96</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.38E+01</td>
<td>63</td>
<td>-1.23E+01</td>
<td>97</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.14E+01</td>
<td>64</td>
<td>-1.07E+01</td>
<td>98</td>
<td>-1.23E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.24E+01</td>
<td>65</td>
<td>-1.24E+01</td>
<td>99</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.22E+01</td>
<td>66</td>
<td>-1.43E+01</td>
<td>100</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.20E+01</td>
<td>67</td>
<td>-1.20E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.11E+01</td>
<td>68</td>
<td>-1.34E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.50 – Sampled Values for Parameter CASTILER:PRMX_LOG (LHS Variable 61), CASTILER:PRMY_LOG \(^1\), and CASTILER:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Value (log(m(^2)))</td>
</tr>
<tr>
<td>2</td>
<td>1 -1.27E+01 35 -1.21E+01 69 -1.12E+01</td>
</tr>
<tr>
<td></td>
<td>2 -1.31E+01 36 -1.13E+01 70 -1.26E+01</td>
</tr>
<tr>
<td></td>
<td>3 -1.31E+01 37 -1.20E+01 71 -1.40E+01</td>
</tr>
<tr>
<td></td>
<td>4 -1.33E+01 38 -1.35E+01 72 -1.23E+01</td>
</tr>
<tr>
<td></td>
<td>5 -1.25E+01 39 -1.18E+01 73 -1.18E+01</td>
</tr>
<tr>
<td></td>
<td>6 -1.43E+01 40 -1.04E+01 74 -1.27E+01</td>
</tr>
<tr>
<td></td>
<td>7 -1.06E+01 41 -1.10E+01 75 -1.13E+01</td>
</tr>
<tr>
<td></td>
<td>8 -1.25E+01 42 -1.17E+01 76 -1.16E+01</td>
</tr>
<tr>
<td></td>
<td>9 -1.25E+01 43 -1.22E+01 77 -1.22E+01</td>
</tr>
<tr>
<td></td>
<td>10 -1.29E+01 44 -1.41E+01 78 -1.25E+01</td>
</tr>
<tr>
<td></td>
<td>11 -1.08E+01 45 -1.16E+01 79 -1.17E+01</td>
</tr>
<tr>
<td></td>
<td>12 -1.29E+01 46 -1.39E+01 80 -1.15E+01</td>
</tr>
<tr>
<td></td>
<td>13 -1.24E+01 47 -1.19E+01 81 -1.21E+01</td>
</tr>
<tr>
<td></td>
<td>14 -1.07E+01 48 -1.08E+01 82 -1.18E+01</td>
</tr>
<tr>
<td></td>
<td>15 -1.14E+01 49 -1.34E+01 83 -1.10E+01</td>
</tr>
<tr>
<td></td>
<td>16 -1.12E+01 50 -1.15E+01 84 -1.31E+01</td>
</tr>
<tr>
<td></td>
<td>17 -1.01E+01 51 -1.26E+01 85 -1.22E+01</td>
</tr>
<tr>
<td></td>
<td>18 -1.22E+01 52 -1.27E+01 86 -1.17E+01</td>
</tr>
<tr>
<td></td>
<td>19 -1.26E+01 53 -1.32E+01 87 -1.05E+01</td>
</tr>
<tr>
<td></td>
<td>20 -1.07E+01 54 -1.20E+01 88 -1.36E+01</td>
</tr>
<tr>
<td></td>
<td>21 -1.21E+01 55 -1.38E+01 89 -1.14E+01</td>
</tr>
<tr>
<td></td>
<td>22 -1.37E+01 56 -1.30E+01 90 -1.16E+01</td>
</tr>
<tr>
<td></td>
<td>23 -1.16E+01 57 -1.18E+01 91 -1.13E+01</td>
</tr>
<tr>
<td></td>
<td>24 -1.12E+01 58 -1.15E+01 92 -1.24E+01</td>
</tr>
<tr>
<td></td>
<td>25 -1.11E+01 59 -1.05E+01 93 -1.19E+01</td>
</tr>
<tr>
<td></td>
<td>26 -1.03E+01 60 -1.14E+01 94 -1.23E+01</td>
</tr>
<tr>
<td></td>
<td>27 -1.18E+01 61 -1.19E+01 95 -1.45E+01</td>
</tr>
<tr>
<td></td>
<td>28 -1.11E+01 62 -1.09E+01 96 -1.12E+01</td>
</tr>
<tr>
<td></td>
<td>29 -1.37E+01 63 -1.20E+01 97 -1.24E+01</td>
</tr>
<tr>
<td></td>
<td>30 -1.33E+01 64 -1.28E+01 98 -1.28E+01</td>
</tr>
<tr>
<td></td>
<td>31 -1.09E+01 65 -1.10E+01 99 -1.32E+01</td>
</tr>
<tr>
<td></td>
<td>32 -1.19E+01 66 -1.02E+01 100 -1.30E+01</td>
</tr>
<tr>
<td></td>
<td>33 -1.33E+01 67 -1.23E+01</td>
</tr>
<tr>
<td></td>
<td>34 -1.21E+01 68 -1.35E+01</td>
</tr>
</tbody>
</table>
Table A.50 – Sampled Values for Parameter CASTILER:PRMX_LOG (LHS Variable 61), CASTILER:PRMY_LOG \(^1\), and CASTILER:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
<th>#</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1.07E+01</td>
<td>35</td>
<td>1</td>
<td>-1.09E+01</td>
<td>69</td>
<td>-1.19E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.20E+01</td>
<td>36</td>
<td>2</td>
<td>-1.33E+01</td>
<td>70</td>
<td>-1.13E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.23E+01</td>
<td>37</td>
<td>3</td>
<td>-1.10E+01</td>
<td>71</td>
<td>-1.32E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.22E+01</td>
<td>38</td>
<td>4</td>
<td>-1.14E+01</td>
<td>72</td>
<td>-9.90E+00</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.28E+01</td>
<td>39</td>
<td>5</td>
<td>-1.12E+01</td>
<td>73</td>
<td>-1.33E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.41E+01</td>
<td>40</td>
<td>6</td>
<td>-1.10E+01</td>
<td>74</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.25E+01</td>
<td>41</td>
<td>7</td>
<td>-1.21E+01</td>
<td>75</td>
<td>-1.14E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.34E+01</td>
<td>42</td>
<td>8</td>
<td>-1.30E+01</td>
<td>76</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.18E+01</td>
<td>43</td>
<td>9</td>
<td>-1.30E+01</td>
<td>77</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.32E+01</td>
<td>44</td>
<td>10</td>
<td>-1.16E+01</td>
<td>78</td>
<td>-1.39E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.38E+01</td>
<td>45</td>
<td>11</td>
<td>-1.09E+01</td>
<td>79</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.11E+01</td>
<td>46</td>
<td>12</td>
<td>-1.01E+01</td>
<td>80</td>
<td>-1.22E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.25E+01</td>
<td>47</td>
<td>13</td>
<td>-1.29E+01</td>
<td>81</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.13E+01</td>
<td>48</td>
<td>14</td>
<td>-1.37E+01</td>
<td>82</td>
<td>-1.35E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.14E+01</td>
<td>49</td>
<td>15</td>
<td>-1.08E+01</td>
<td>83</td>
<td>-1.37E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.23E+01</td>
<td>50</td>
<td>16</td>
<td>-1.04E+01</td>
<td>84</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.24E+01</td>
<td>51</td>
<td>17</td>
<td>-1.21E+01</td>
<td>85</td>
<td>-1.27E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.24E+01</td>
<td>52</td>
<td>18</td>
<td>-1.21E+01</td>
<td>86</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.15E+01</td>
<td>53</td>
<td>19</td>
<td>-1.19E+01</td>
<td>87</td>
<td>-1.30E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.42E+01</td>
<td>54</td>
<td>20</td>
<td>-1.26E+01</td>
<td>88</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.27E+01</td>
<td>55</td>
<td>21</td>
<td>-1.28E+01</td>
<td>89</td>
<td>-1.36E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.22E+01</td>
<td>56</td>
<td>22</td>
<td>-1.19E+01</td>
<td>90</td>
<td>-1.21E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.07E+01</td>
<td>57</td>
<td>23</td>
<td>-1.29E+01</td>
<td>91</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.11E+01</td>
<td>58</td>
<td>24</td>
<td>-1.23E+01</td>
<td>92</td>
<td>-1.11E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.26E+01</td>
<td>59</td>
<td>25</td>
<td>-1.26E+01</td>
<td>93</td>
<td>-1.20E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.19E+01</td>
<td>60</td>
<td>26</td>
<td>-1.18E+01</td>
<td>94</td>
<td>-1.28E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.21E+01</td>
<td>61</td>
<td>27</td>
<td>-1.03E+01</td>
<td>95</td>
<td>-1.17E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.16E+01</td>
<td>62</td>
<td>28</td>
<td>-1.16E+01</td>
<td>96</td>
<td>-1.13E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.08E+01</td>
<td>63</td>
<td>29</td>
<td>-1.20E+01</td>
<td>97</td>
<td>-1.09E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.19E+01</td>
<td>64</td>
<td>30</td>
<td>-1.06E+01</td>
<td>98</td>
<td>-1.05E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.13E+01</td>
<td>65</td>
<td>31</td>
<td>-1.16E+01</td>
<td>99</td>
<td>-1.05E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.27E+01</td>
<td>66</td>
<td>32</td>
<td>-1.36E+01</td>
<td>100</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.34E+01</td>
<td>67</td>
<td>33</td>
<td>-1.40E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.18E+01</td>
<td>68</td>
<td>34</td>
<td>-1.12E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(^1\)Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.51 – Sampled Values for Parameter CASTILER:COMP_RCK (LHS Variable 62)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.64E-11</td>
<td>35</td>
<td>3.94E-11</td>
<td>69</td>
<td>6.31E-11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.67E-11</td>
<td>36</td>
<td>5.57E-11</td>
<td>70</td>
<td>3.33E-11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.94E-11</td>
<td>37</td>
<td>3.06E-11</td>
<td>71</td>
<td>5.51E-11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.84E-11</td>
<td>38</td>
<td>5.42E-11</td>
<td>72</td>
<td>4.40E-11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.06E-11</td>
<td>39</td>
<td>4.01E-11</td>
<td>73</td>
<td>4.31E-11</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.81E-11</td>
<td>40</td>
<td>4.21E-11</td>
<td>74</td>
<td>3.75E-11</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.27E-11</td>
<td>41</td>
<td>3.85E-11</td>
<td>75</td>
<td>8.44E-11</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.91E-11</td>
<td>42</td>
<td>7.11E-11</td>
<td>76</td>
<td>8.65E-11</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6.44E-11</td>
<td>43</td>
<td>6.21E-11</td>
<td>77</td>
<td>3.42E-11</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.56E-11</td>
<td>44</td>
<td>3.65E-11</td>
<td>78</td>
<td>5.92E-11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.43E-11</td>
<td>45</td>
<td>4.83E-11</td>
<td>79</td>
<td>4.35E-11</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.17E-11</td>
<td>46</td>
<td>8.45E-11</td>
<td>80</td>
<td>3.83E-11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.13E-11</td>
<td>47</td>
<td>8.90E-11</td>
<td>81</td>
<td>7.52E-11</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.02E-11</td>
<td>48</td>
<td>6.74E-11</td>
<td>82</td>
<td>6.00E-11</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5.72E-11</td>
<td>49</td>
<td>4.54E-11</td>
<td>83</td>
<td>4.87E-11</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.47E-11</td>
<td>50</td>
<td>2.83E-11</td>
<td>84</td>
<td>7.36E-11</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>6.04E-11</td>
<td>51</td>
<td>4.95E-11</td>
<td>85</td>
<td>2.77E-11</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.16E-11</td>
<td>52</td>
<td>6.63E-11</td>
<td>86</td>
<td>9.10E-11</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5.78E-11</td>
<td>53</td>
<td>8.28E-11</td>
<td>87</td>
<td>7.46E-11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.62E-11</td>
<td>54</td>
<td>3.92E-11</td>
<td>88</td>
<td>4.76E-11</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>9.36E-11</td>
<td>55</td>
<td>5.51E-11</td>
<td>89</td>
<td>5.65E-11</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.19E-11</td>
<td>56</td>
<td>2.07E-11</td>
<td>90</td>
<td>4.72E-11</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.20E-11</td>
<td>57</td>
<td>4.12E-11</td>
<td>91</td>
<td>5.08E-11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.55E-11</td>
<td>58</td>
<td>5.23E-11</td>
<td>92</td>
<td>6.76E-11</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.02E-11</td>
<td>59</td>
<td>8.08E-11</td>
<td>93</td>
<td>3.19E-11</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.29E-11</td>
<td>60</td>
<td>5.88E-11</td>
<td>94</td>
<td>4.48E-11</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>6.11E-11</td>
<td>61</td>
<td>4.27E-11</td>
<td>95</td>
<td>5.34E-11</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.49E-11</td>
<td>62</td>
<td>7.69E-11</td>
<td>96</td>
<td>4.97E-11</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>7.31E-11</td>
<td>63</td>
<td>7.73E-11</td>
<td>97</td>
<td>5.37E-11</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2.63E-11</td>
<td>64</td>
<td>4.11E-11</td>
<td>98</td>
<td>6.38E-11</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.98E-11</td>
<td>65</td>
<td>6.50E-11</td>
<td>99</td>
<td>6.85E-11</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.51E-11</td>
<td>66</td>
<td>7.86E-11</td>
<td>100</td>
<td>7.93E-11</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.06E-11</td>
<td>67</td>
<td>3.73E-11</td>
<td></td>
<td>Information Only</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3.25E-11</td>
<td>68</td>
<td>6.54E-11</td>
<td></td>
<td>Information Only</td>
</tr>
</tbody>
</table>
Table A.51 – Sampled Values for Parameter CASTILER:COMP_RCK (LHS Variable 62) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
<th>#</th>
<th>Value (Pa⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>7.12E-11</td>
<td>35</td>
<td>7.26E-11</td>
<td>69</td>
<td>3.55E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5.20E-11</td>
<td>36</td>
<td>4.08E-11</td>
<td>70</td>
<td>4.86E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>6.51E-11</td>
<td>37</td>
<td>5.29E-11</td>
<td>71</td>
<td>6.10E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>8.48E-11</td>
<td>38</td>
<td>8.12E-11</td>
<td>72</td>
<td>3.63E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4.65E-11</td>
<td>39</td>
<td>5.56E-11</td>
<td>73</td>
<td>6.07E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6.34E-11</td>
<td>40</td>
<td>3.24E-11</td>
<td>74</td>
<td>8.95E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>4.24E-11</td>
<td>41</td>
<td>3.35E-11</td>
<td>75</td>
<td>5.04E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>5.59E-11</td>
<td>42</td>
<td>5.37E-11</td>
<td>76</td>
<td>4.90E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>6.78E-11</td>
<td>43</td>
<td>4.02E-11</td>
<td>77</td>
<td>4.39E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>4.33E-11</td>
<td>44</td>
<td>9.48E-11</td>
<td>78</td>
<td>5.74E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>2.96E-11</td>
<td>45</td>
<td>4.62E-11</td>
<td>79</td>
<td>4.31E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>5.31E-11</td>
<td>46</td>
<td>9.15E-11</td>
<td>80</td>
<td>3.48E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>3.67E-11</td>
<td>47</td>
<td>4.56E-11</td>
<td>81</td>
<td>4.42E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>3.41E-11</td>
<td>48</td>
<td>3.74E-11</td>
<td>82</td>
<td>6.73E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>3.86E-11</td>
<td>49</td>
<td>7.80E-11</td>
<td>83</td>
<td>7.52E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>4.26E-11</td>
<td>50</td>
<td>4.78E-11</td>
<td>84</td>
<td>6.57E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2.54E-11</td>
<td>51</td>
<td>5.99E-11</td>
<td>85</td>
<td>3.99E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>5.69E-11</td>
<td>52</td>
<td>5.46E-11</td>
<td>86</td>
<td>3.76E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>6.21E-11</td>
<td>53</td>
<td>8.40E-11</td>
<td>87</td>
<td>2.73E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>2.88E-11</td>
<td>54</td>
<td>5.24E-11</td>
<td>88</td>
<td>7.84E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>4.47E-11</td>
<td>55</td>
<td>7.50E-11</td>
<td>89</td>
<td>5.64E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>7.22E-11</td>
<td>56</td>
<td>4.98E-11</td>
<td>90</td>
<td>4.76E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>3.14E-11</td>
<td>57</td>
<td>6.87E-11</td>
<td>91</td>
<td>3.11E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>3.79E-11</td>
<td>59</td>
<td>3.32E-11</td>
<td>93</td>
<td>4.54E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>2.57E-11</td>
<td>60</td>
<td>5.87E-11</td>
<td>94</td>
<td>7.05E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>4.68E-11</td>
<td>61</td>
<td>4.12E-11</td>
<td>95</td>
<td>8.25E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>5.08E-11</td>
<td>62</td>
<td>2.28E-11</td>
<td>96</td>
<td>4.93E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>7.97E-11</td>
<td>63</td>
<td>5.14E-11</td>
<td>97</td>
<td>6.63E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>6.46E-11</td>
<td>64</td>
<td>7.65E-11</td>
<td>98</td>
<td>6.15E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>5.46E-11</td>
<td>65</td>
<td>4.17E-11</td>
<td>99</td>
<td>7.33E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>5.82E-11</td>
<td>66</td>
<td>3.02E-11</td>
<td>100</td>
<td>6.29E-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>8.74E-11</td>
<td>67</td>
<td>3.96E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>3.90E-11</td>
<td>68</td>
<td>5.92E-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.51 – Sampled Values for Parameter CASTILER:COMP_RCK (LHS Variable 62) (continued)

Replicate						
3	#	Value (Pa⁻¹)	#	Value (Pa⁻¹)	#	Value (Pa⁻¹)
	1	5.27E-11	35	4.52E-11	69	4.02E-11
	2	6.11E-11	36	7.42E-11	70	4.25E-11
	3	4.11E-11	37	3.68E-11	71	8.44E-11
	4	7.04E-11	38	4.55E-11	72	2.63E-11
	5	4.39E-11	39	3.87E-11	73	7.38E-11
	6	8.68E-11	40	3.53E-11	74	3.75E-11
	7	5.37E-11	41	5.65E-11	75	5.45E-11
	8	6.32E-11	42	8.21E-11	76	4.45E-11
	9	5.80E-11	43	5.69E-11	77	4.78E-11
	10	8.02E-11	44	4.20E-11	78	5.55E-11
	11	6.70E-11	45	3.41E-11	79	9.49E-11
	12	4.24E-11	46	2.14E-11	80	4.07E-11
	13	3.81E-11	47	6.02E-11	81	4.91E-11
	14	3.60E-11	48	7.70E-11	82	6.63E-11
	15	2.71E-11	49	4.15E-11	83	7.82E-11
	16	5.14E-11	50	3.01E-11	84	4.69E-11
	17	3.90E-11	51	4.73E-11	85	6.81E-11
	18	5.85E-11	52	6.38E-11	86	9.10E-11
	19	3.72E-11	53	6.16E-11	87	5.22E-11
	20	8.81E-11	54	7.54E-11	88	6.86E-11
	21	6.03E-11	55	7.60E-11	89	6.48E-11
	22	8.48E-11	56	4.82E-11	90	3.94E-11
	23	2.55E-11	57	4.65E-11	91	2.92E-11
	24	3.18E-11	58	6.42E-11	92	4.29E-11
	25	3.34E-11	59	4.87E-11	93	4.61E-11
	26	6.93E-11	60	5.16E-11	94	8.15E-11
	27	4.97E-11	61	3.56E-11	95	5.33E-11
	28	7.22E-11	62	5.48E-11	96	5.57E-11
	29	2.84E-11	63	3.30E-11	97	3.50E-11
	30	4.00E-11	64	3.07E-11	98	3.24E-11
	31	6.21E-11	65	5.78E-11	99	4.49E-11
	32	5.01E-11	66	5.94E-11	100	7.25E-11
	33	6.56E-11	67	7.08E-11		
	34	4.35E-11	68	5.09E-11		
Table A.52 – Sampled Values for Parameter BH_SAND:PRMX_LOG (LHS Variable 63), BH_SAND:PRMY_LOG ¹, and BH_SAND:PRMZ_LOG ¹

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (log(m²))</th>
<th>Value (log(m²))</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.31E+01</td>
<td>35</td>
<td>-1.37E+01</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1.26E+01</td>
<td>36</td>
<td>-1.11E+01</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-1.19E+01</td>
<td>37</td>
<td>-1.54E+01</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-1.62E+01</td>
<td>38</td>
<td>-1.45E+01</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-1.47E+01</td>
<td>39</td>
<td>-1.45E+01</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-1.31E+01</td>
<td>40</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-1.12E+01</td>
<td>41</td>
<td>-1.41E+01</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-1.26E+01</td>
<td>42</td>
<td>-1.58E+01</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>-1.15E+01</td>
<td>43</td>
<td>-1.38E+01</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-1.55E+01</td>
<td>44</td>
<td>-1.40E+01</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>-1.32E+01</td>
<td>45</td>
<td>-1.11E+01</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-1.13E+01</td>
<td>46</td>
<td>-1.29E+01</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>-1.23E+01</td>
<td>47</td>
<td>-1.38E+01</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>-1.28E+01</td>
<td>48</td>
<td>-1.52E+01</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>-1.56E+01</td>
<td>49</td>
<td>-1.55E+01</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>-1.37E+01</td>
<td>50</td>
<td>-1.12E+01</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>-1.10E+01</td>
<td>51</td>
<td>-1.49E+01</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-1.61E+01</td>
<td>52</td>
<td>-1.33E+01</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>-1.43E+01</td>
<td>53</td>
<td>-1.48E+01</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-1.22E+01</td>
<td>54</td>
<td>-1.21E+01</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>-1.61E+01</td>
<td>55</td>
<td>-1.18E+01</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>-1.14E+01</td>
<td>56</td>
<td>-1.62E+01</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>-1.28E+01</td>
<td>57</td>
<td>-1.56E+01</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>-1.39E+01</td>
<td>58</td>
<td>-1.23E+01</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>-1.41E+01</td>
<td>59</td>
<td>-1.42E+01</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>-1.32E+01</td>
<td>60</td>
<td>-1.42E+01</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>-1.14E+01</td>
<td>61</td>
<td>-1.40E+01</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>-1.18E+01</td>
<td>62</td>
<td>-1.35E+01</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>-1.34E+01</td>
<td>63</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>-1.17E+01</td>
<td>64</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>-1.52E+01</td>
<td>65</td>
<td>-1.63E+01</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>-1.59E+01</td>
<td>66</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>-1.48E+01</td>
<td>67</td>
<td>-1.16E+01</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>-1.24E+01</td>
<td>68</td>
<td>-1.49E+01</td>
</tr>
</tbody>
</table>

Information Only
Table A.52 – Sampled Values for Parameter BH_SAND:PRMX_LOG (LHS Variable 63), BH_SAND:PRMY_LOG \(^1\), and BH_SAND:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (log(m(^2))</th>
<th>Vector #</th>
<th>Value (log(m(^2))</th>
<th>Vector #</th>
<th>Value (log(m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1.49E+01</td>
<td>35</td>
<td>-1.34E+01</td>
<td>69</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.46E+01</td>
<td>36</td>
<td>-1.10E+01</td>
<td>70</td>
<td>-1.49E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.26E+01</td>
<td>37</td>
<td>-1.24E+01</td>
<td>71</td>
<td>-1.47E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.12E+01</td>
<td>38</td>
<td>-1.30E+01</td>
<td>72</td>
<td>-1.26E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.62E+01</td>
<td>39</td>
<td>-1.35E+01</td>
<td>73</td>
<td>-1.48E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.23E+01</td>
<td>40</td>
<td>-1.13E+01</td>
<td>74</td>
<td>-1.20E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.54E+01</td>
<td>41</td>
<td>-1.24E+01</td>
<td>75</td>
<td>-1.27E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.32E+01</td>
<td>42</td>
<td>-1.56E+01</td>
<td>76</td>
<td>-1.63E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.42E+01</td>
<td>43</td>
<td>-1.39E+01</td>
<td>77</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.31E+01</td>
<td>44</td>
<td>-1.42E+01</td>
<td>78</td>
<td>-1.52E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.34E+01</td>
<td>45</td>
<td>-1.60E+01</td>
<td>79</td>
<td>-1.22E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.46E+01</td>
<td>46</td>
<td>-1.43E+01</td>
<td>80</td>
<td>-1.36E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.48E+01</td>
<td>47</td>
<td>-1.51E+01</td>
<td>81</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.36E+01</td>
<td>48</td>
<td>-1.21E+01</td>
<td>82</td>
<td>-1.55E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.60E+01</td>
<td>49</td>
<td>-1.51E+01</td>
<td>83</td>
<td>-1.41E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.29E+01</td>
<td>50</td>
<td>-1.25E+01</td>
<td>84</td>
<td>-1.34E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.15E+01</td>
<td>51</td>
<td>-1.39E+01</td>
<td>85</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.32E+01</td>
<td>52</td>
<td>-1.27E+01</td>
<td>86</td>
<td>-1.51E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.45E+01</td>
<td>53</td>
<td>-1.50E+01</td>
<td>87</td>
<td>-1.38E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.43E+01</td>
<td>54</td>
<td>-1.28E+01</td>
<td>88</td>
<td>-1.56E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.16E+01</td>
<td>55</td>
<td>-1.20E+01</td>
<td>89</td>
<td>-1.40E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.37E+01</td>
<td>56</td>
<td>-1.25E+01</td>
<td>90</td>
<td>-1.18E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.53E+01</td>
<td>57</td>
<td>-1.59E+01</td>
<td>91</td>
<td>-1.55E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.16E+01</td>
<td>58</td>
<td>-1.59E+01</td>
<td>92</td>
<td>-1.33E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.19E+01</td>
<td>59</td>
<td>-1.39E+01</td>
<td>93</td>
<td>-1.62E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.23E+01</td>
<td>60</td>
<td>-1.61E+01</td>
<td>94</td>
<td>-1.47E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.40E+01</td>
<td>61</td>
<td>-1.54E+01</td>
<td>95</td>
<td>-1.14E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.11E+01</td>
<td>62</td>
<td>-1.44E+01</td>
<td>96</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.29E+01</td>
<td>63</td>
<td>-1.17E+01</td>
<td>97</td>
<td>-1.58E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.18E+01</td>
<td>64</td>
<td>-1.58E+01</td>
<td>98</td>
<td>-1.13E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.22E+01</td>
<td>65</td>
<td>-1.37E+01</td>
<td>99</td>
<td>-1.52E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.30E+01</td>
<td>66</td>
<td>-1.43E+01</td>
<td>100</td>
<td>-1.29E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.19E+01</td>
<td>67</td>
<td>-1.16E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.12E+01</td>
<td>68</td>
<td>-1.11E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.52 – Sampled Values for Parameter BH_SAND:PRMX_LOG (LHS Variable 63), BH_SAND:PRMY_LOG 1, and BH_SAND:PRMZ_LOG 1 (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m2))</th>
<th>#</th>
<th>Value (log(m2))</th>
<th>#</th>
<th>Value (log(m2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1.61E+01</td>
<td>35</td>
<td>-1.45E+01</td>
<td>69</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.37E+01</td>
<td>36</td>
<td>-1.54E+01</td>
<td>70</td>
<td>-1.52E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.38E+01</td>
<td>37</td>
<td>-1.17E+01</td>
<td>71</td>
<td>-1.40E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.62E+01</td>
<td>38</td>
<td>-1.34E+01</td>
<td>72</td>
<td>-1.35E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.37E+01</td>
<td>39</td>
<td>-1.42E+01</td>
<td>73</td>
<td>-1.28E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.60E+01</td>
<td>40</td>
<td>-1.18E+01</td>
<td>74</td>
<td>-1.30E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.39E+01</td>
<td>41</td>
<td>-1.39E+01</td>
<td>75</td>
<td>-1.32E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.45E+01</td>
<td>42</td>
<td>-1.11E+01</td>
<td>76</td>
<td>-1.55E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.54E+01</td>
<td>43</td>
<td>-1.35E+01</td>
<td>77</td>
<td>-1.19E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.27E+01</td>
<td>44</td>
<td>-1.20E+01</td>
<td>78</td>
<td>-1.24E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.31E+01</td>
<td>45</td>
<td>-1.20E+01</td>
<td>79</td>
<td>-1.23E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.58E+01</td>
<td>46</td>
<td>-1.47E+01</td>
<td>80</td>
<td>-1.58E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.62E+01</td>
<td>47</td>
<td>-1.11E+01</td>
<td>81</td>
<td>-1.42E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.17E+01</td>
<td>48</td>
<td>-1.59E+01</td>
<td>82</td>
<td>-1.56E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.49E+01</td>
<td>49</td>
<td>-1.13E+01</td>
<td>83</td>
<td>-1.43E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.52E+01</td>
<td>50</td>
<td>-1.26E+01</td>
<td>84</td>
<td>-1.30E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.41E+01</td>
<td>51</td>
<td>-1.57E+01</td>
<td>85</td>
<td>-1.48E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.32E+01</td>
<td>52</td>
<td>-1.43E+01</td>
<td>86</td>
<td>-1.12E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.51E+01</td>
<td>53</td>
<td>-1.14E+01</td>
<td>87</td>
<td>-1.53E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.46E+01</td>
<td>54</td>
<td>-1.57E+01</td>
<td>88</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.27E+01</td>
<td>55</td>
<td>-1.60E+01</td>
<td>89</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.36E+01</td>
<td>56</td>
<td>-1.25E+01</td>
<td>90</td>
<td>-1.51E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.61E+01</td>
<td>57</td>
<td>-1.50E+01</td>
<td>91</td>
<td>-1.18E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.22E+01</td>
<td>58</td>
<td>-1.25E+01</td>
<td>92</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.22E+01</td>
<td>59</td>
<td>-1.14E+01</td>
<td>93</td>
<td>-1.10E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.28E+01</td>
<td>60</td>
<td>-1.35E+01</td>
<td>94</td>
<td>-1.46E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.49E+01</td>
<td>61</td>
<td>-1.19E+01</td>
<td>95</td>
<td>-1.22E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.24E+01</td>
<td>62</td>
<td>-1.26E+01</td>
<td>96</td>
<td>-1.15E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.53E+01</td>
<td>63</td>
<td>-1.39E+01</td>
<td>97</td>
<td>-1.16E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.13E+01</td>
<td>64</td>
<td>-1.33E+01</td>
<td>98</td>
<td>-1.48E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.63E+01</td>
<td>65</td>
<td>-1.44E+01</td>
<td>99</td>
<td>-1.55E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.34E+01</td>
<td>66</td>
<td>-1.12E+01</td>
<td>100</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.21E+01</td>
<td>67</td>
<td>-1.29E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.41E+01</td>
<td>68</td>
<td>-1.47E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: 1Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.53 – Sampled Values for Parameter DRZ_1:PRMX_LOG (LHS Variable 64), DRZ_1:PRMY_LOG \(^1\), and DRZ_1:PRMZ_LOG \(^1\)

<table>
<thead>
<tr>
<th>Replicate</th>
<th># Value (log(m(^2)))</th>
<th>Vector</th>
<th># Value (log(m(^2)))</th>
<th># Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 -1.79E+01</td>
<td>35</td>
<td>-1.69E+01</td>
<td>69 -1.49E+01</td>
</tr>
<tr>
<td></td>
<td>2 -1.66E+01</td>
<td>36</td>
<td>-1.83E+01</td>
<td>70 -1.92E+01</td>
</tr>
<tr>
<td></td>
<td>3 -1.57E+01</td>
<td>37</td>
<td>-1.62E+01</td>
<td>71 -1.66E+01</td>
</tr>
<tr>
<td></td>
<td>4 -1.93E+01</td>
<td>38</td>
<td>-1.38E+01</td>
<td>72 -1.44E+01</td>
</tr>
<tr>
<td></td>
<td>5 -1.90E+01</td>
<td>39</td>
<td>-1.40E+01</td>
<td>73 -1.42E+01</td>
</tr>
<tr>
<td></td>
<td>6 -1.76E+01</td>
<td>40</td>
<td>-1.37E+01</td>
<td>74 -1.34E+01</td>
</tr>
<tr>
<td></td>
<td>7 -1.94E+01</td>
<td>41</td>
<td>-1.88E+01</td>
<td>75 -1.53E+01</td>
</tr>
<tr>
<td></td>
<td>8 -1.31E+01</td>
<td>42</td>
<td>-1.63E+01</td>
<td>76 -1.65E+01</td>
</tr>
<tr>
<td></td>
<td>9 -1.84E+01</td>
<td>43</td>
<td>-1.72E+01</td>
<td>77 -1.60E+01</td>
</tr>
<tr>
<td></td>
<td>10 -1.27E+01</td>
<td>44</td>
<td>-1.71E+01</td>
<td>78 -1.33E+01</td>
</tr>
<tr>
<td></td>
<td>11 -1.35E+01</td>
<td>45</td>
<td>-1.56E+01</td>
<td>79 -1.50E+01</td>
</tr>
<tr>
<td></td>
<td>12 -1.39E+01</td>
<td>46</td>
<td>-1.55E+01</td>
<td>80 -1.87E+01</td>
</tr>
<tr>
<td></td>
<td>13 -1.85E+01</td>
<td>47</td>
<td>-1.68E+01</td>
<td>81 -1.80E+01</td>
</tr>
<tr>
<td></td>
<td>14 -1.76E+01</td>
<td>48</td>
<td>-1.43E+01</td>
<td>82 -1.46E+01</td>
</tr>
<tr>
<td></td>
<td>15 -1.84E+01</td>
<td>49</td>
<td>-1.34E+01</td>
<td>83 -1.75E+01</td>
</tr>
<tr>
<td></td>
<td>16 -1.27E+01</td>
<td>50</td>
<td>-1.25E+01</td>
<td>84 -1.59E+01</td>
</tr>
<tr>
<td></td>
<td>17 -1.40E+01</td>
<td>51</td>
<td>-1.83E+01</td>
<td>85 -1.78E+01</td>
</tr>
<tr>
<td></td>
<td>18 -1.30E+01</td>
<td>52</td>
<td>-1.63E+01</td>
<td>86 -1.41E+01</td>
</tr>
<tr>
<td></td>
<td>19 -1.60E+01</td>
<td>53</td>
<td>-1.36E+01</td>
<td>87 -1.42E+01</td>
</tr>
<tr>
<td></td>
<td>20 -1.54E+01</td>
<td>54</td>
<td>-1.49E+01</td>
<td>88 -1.90E+01</td>
</tr>
<tr>
<td></td>
<td>21 -1.39E+01</td>
<td>55</td>
<td>-1.79E+01</td>
<td>89 -1.61E+01</td>
</tr>
<tr>
<td></td>
<td>22 -1.68E+01</td>
<td>56</td>
<td>-1.36E+01</td>
<td>90 -1.58E+01</td>
</tr>
<tr>
<td></td>
<td>23 -1.92E+01</td>
<td>57</td>
<td>-1.64E+01</td>
<td>91 -1.70E+01</td>
</tr>
<tr>
<td></td>
<td>24 -1.74E+01</td>
<td>58</td>
<td>-1.59E+01</td>
<td>92 -1.28E+01</td>
</tr>
<tr>
<td></td>
<td>25 -1.56E+01</td>
<td>59</td>
<td>-1.82E+01</td>
<td>93 -1.26E+01</td>
</tr>
<tr>
<td></td>
<td>26 -1.77E+01</td>
<td>60</td>
<td>-1.29E+01</td>
<td>94 -1.47E+01</td>
</tr>
<tr>
<td></td>
<td>27 -1.52E+01</td>
<td>61</td>
<td>-1.86E+01</td>
<td>95 -1.74E+01</td>
</tr>
<tr>
<td></td>
<td>28 -1.53E+01</td>
<td>62</td>
<td>-1.91E+01</td>
<td>96 -1.73E+01</td>
</tr>
<tr>
<td></td>
<td>29 -1.48E+01</td>
<td>63</td>
<td>-1.52E+01</td>
<td>97 -1.48E+01</td>
</tr>
<tr>
<td></td>
<td>30 -1.89E+01</td>
<td>64</td>
<td>-1.81E+01</td>
<td>98 -1.31E+01</td>
</tr>
<tr>
<td></td>
<td>31 -1.44E+01</td>
<td>65</td>
<td>-1.81E+01</td>
<td>99 -1.73E+01</td>
</tr>
<tr>
<td></td>
<td>32 -1.88E+01</td>
<td>66</td>
<td>-1.51E+01</td>
<td>100 -1.46E+01</td>
</tr>
<tr>
<td></td>
<td>33 -1.29E+01</td>
<td>67</td>
<td>-1.32E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 -1.65E+01</td>
<td>68</td>
<td>-1.70E+01</td>
<td></td>
</tr>
</tbody>
</table>
Table A.53 – Sampled Values for Parameter DRZ_1:PRMX_LOG (LHS Variable 64), DRZ_1:PRMY_LOG \(^1\), and DRZ_1:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Value (log(m(^2)))</td>
</tr>
<tr>
<td>1</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td>2</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td>3</td>
<td>-1.37E+01</td>
</tr>
<tr>
<td>4</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td>5</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td>6</td>
<td>-1.70E+01</td>
</tr>
<tr>
<td>7</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td>8</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td>9</td>
<td>-1.50E+01</td>
</tr>
<tr>
<td>10</td>
<td>-1.52E+01</td>
</tr>
<tr>
<td>11</td>
<td>-1.57E+01</td>
</tr>
<tr>
<td>12</td>
<td>-1.48E+01</td>
</tr>
<tr>
<td>13</td>
<td>-1.54E+01</td>
</tr>
<tr>
<td>14</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td>15</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>16</td>
<td>-1.65E+01</td>
</tr>
<tr>
<td>17</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td>18</td>
<td>-1.44E+01</td>
</tr>
<tr>
<td>19</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td>20</td>
<td>-1.32E+01</td>
</tr>
<tr>
<td>21</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td>22</td>
<td>-1.29E+01</td>
</tr>
<tr>
<td>23</td>
<td>-1.69E+01</td>
</tr>
<tr>
<td>24</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td>25</td>
<td>-1.46E+01</td>
</tr>
<tr>
<td>26</td>
<td>-1.30E+01</td>
</tr>
<tr>
<td>27</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td>28</td>
<td>-1.64E+01</td>
</tr>
<tr>
<td>29</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td>30</td>
<td>-1.66E+01</td>
</tr>
<tr>
<td>31</td>
<td>-1.31E+01</td>
</tr>
<tr>
<td>32</td>
<td>-1.38E+01</td>
</tr>
<tr>
<td>33</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td>34</td>
<td>-1.85E+01</td>
</tr>
</tbody>
</table>
Table A.53 – Sampled Values for Parameter DRZ_1:PRMX_LOG (LHS Variable 64), DRZ_1:PRMY_LOG \(^1\), and DRZ_1:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m^2))</th>
<th>#</th>
<th>Value (log(m^2))</th>
<th>#</th>
<th>Value (log(m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>35</td>
<td>-1.56E+01</td>
<td>69</td>
<td>-1.40E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>36</td>
<td>-1.64E+01</td>
<td>70</td>
<td>-1.76E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>37</td>
<td>-1.93E+01</td>
<td>71</td>
<td>-1.80E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>38</td>
<td>-1.33E+01</td>
<td>72</td>
<td>-1.28E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>39</td>
<td>-1.84E+01</td>
<td>73</td>
<td>-1.32E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>40</td>
<td>-1.58E+01</td>
<td>74</td>
<td>-1.70E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>41</td>
<td>-1.45E+01</td>
<td>75</td>
<td>-1.91E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>42</td>
<td>-1.45E+01</td>
<td>76</td>
<td>-1.82E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>43</td>
<td>-1.29E+01</td>
<td>77</td>
<td>-1.50E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>44</td>
<td>-1.54E+01</td>
<td>78</td>
<td>-1.92E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>45</td>
<td>-1.71E+01</td>
<td>79</td>
<td>-1.38E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>46</td>
<td>-1.60E+01</td>
<td>80</td>
<td>-1.50E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>47</td>
<td>-1.55E+01</td>
<td>81</td>
<td>-1.66E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>48</td>
<td>-1.41E+01</td>
<td>82</td>
<td>-1.69E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>49</td>
<td>-1.42E+01</td>
<td>83</td>
<td>-1.66E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>50</td>
<td>-1.62E+01</td>
<td>84</td>
<td>-1.36E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>51</td>
<td>-1.81E+01</td>
<td>85</td>
<td>-1.48E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>52</td>
<td>-1.59E+01</td>
<td>86</td>
<td>-1.52E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>53</td>
<td>-1.29E+01</td>
<td>87</td>
<td>-1.34E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>54</td>
<td>-1.68E+01</td>
<td>88</td>
<td>-1.88E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>55</td>
<td>-1.47E+01</td>
<td>89</td>
<td>-1.72E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>56</td>
<td>-1.47E+01</td>
<td>90</td>
<td>-1.77E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>57</td>
<td>-1.85E+01</td>
<td>91</td>
<td>-1.89E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>58</td>
<td>-1.73E+01</td>
<td>92</td>
<td>-1.74E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>59</td>
<td>-1.46E+01</td>
<td>93</td>
<td>-1.81E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>60</td>
<td>-1.36E+01</td>
<td>94</td>
<td>-1.75E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>61</td>
<td>-1.51E+01</td>
<td>95</td>
<td>-1.49E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>62</td>
<td>-1.67E+01</td>
<td>96</td>
<td>-1.52E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>63</td>
<td>-1.30E+01</td>
<td>97</td>
<td>-1.62E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>64</td>
<td>-1.83E+01</td>
<td>98</td>
<td>-1.63E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>65</td>
<td>-1.87E+01</td>
<td>99</td>
<td>-1.79E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>66</td>
<td>-1.90E+01</td>
<td>100</td>
<td>-1.74E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>67</td>
<td>-1.55E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>68</td>
<td>-1.76E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(^1\)Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.54 – Sampled Values for Parameter \text{CONC_PLG_PRMX_LOG} (LHS Variable 65), \text{CONC_PLG_PRMY_LOG} 1, and \text{CONC_PLG_PRMZ_LOG} 1

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector#</th>
<th>Value (log(m2))</th>
<th>Vector#</th>
<th>Value (log(m2))</th>
<th>Vector#</th>
<th>Value (log(m2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.78E+01</td>
<td>35</td>
<td>-1.88E+01</td>
<td>69</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.75E+01</td>
<td>36</td>
<td>-1.77E+01</td>
<td>70</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.85E+01</td>
<td>37</td>
<td>-1.89E+01</td>
<td>71</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.82E+01</td>
<td>38</td>
<td>-1.73E+01</td>
<td>72</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.76E+01</td>
<td>39</td>
<td>-1.74E+01</td>
<td>73</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.75E+01</td>
<td>40</td>
<td>-1.83E+01</td>
<td>74</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.86E+01</td>
<td>41</td>
<td>-1.79E+01</td>
<td>75</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.77E+01</td>
<td>42</td>
<td>-1.75E+01</td>
<td>76</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.79E+01</td>
<td>43</td>
<td>-1.84E+01</td>
<td>77</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.87E+01</td>
<td>44</td>
<td>-1.85E+01</td>
<td>78</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.72E+01</td>
<td>45</td>
<td>-1.88E+01</td>
<td>79</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.87E+01</td>
<td>46</td>
<td>-1.86E+01</td>
<td>80</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.81E+01</td>
<td>47</td>
<td>-1.70E+01</td>
<td>81</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.76E+01</td>
<td>48</td>
<td>-1.71E+01</td>
<td>82</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.81E+01</td>
<td>49</td>
<td>-1.90E+01</td>
<td>83</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.72E+01</td>
<td>50</td>
<td>-1.85E+01</td>
<td>84</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.71E+01</td>
<td>51</td>
<td>-1.74E+01</td>
<td>85</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.90E+01</td>
<td>52</td>
<td>-1.83E+01</td>
<td>86</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.78E+01</td>
<td>53</td>
<td>-1.87E+01</td>
<td>87</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.71E+01</td>
<td>54</td>
<td>-1.75E+01</td>
<td>88</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.80E+01</td>
<td>55</td>
<td>-1.77E+01</td>
<td>89</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.88E+01</td>
<td>56</td>
<td>-1.74E+01</td>
<td>90</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.81E+01</td>
<td>57</td>
<td>-1.82E+01</td>
<td>91</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.87E+01</td>
<td>58</td>
<td>-1.79E+01</td>
<td>92</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.83E+01</td>
<td>59</td>
<td>-1.89E+01</td>
<td>93</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.70E+01</td>
<td>60</td>
<td>-1.72E+01</td>
<td>94</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.88E+01</td>
<td>61</td>
<td>-1.84E+01</td>
<td>95</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.70E+01</td>
<td>62</td>
<td>-1.83E+01</td>
<td>96</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.72E+01</td>
<td>63</td>
<td>-1.86E+01</td>
<td>97</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.87E+01</td>
<td>64</td>
<td>-1.84E+01</td>
<td>98</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.80E+01</td>
<td>65</td>
<td>-1.80E+01</td>
<td>99</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.73E+01</td>
<td>66</td>
<td>-1.74E+01</td>
<td>100</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.89E+01</td>
<td>67</td>
<td>-1.90E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.82E+01</td>
<td>68</td>
<td>-1.87E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.54 – Sampled Values for Parameter CONC_PLG:PRMX_LOG (LHS Variable 65), CONC_PLG:PRMY_LOG \(^1\), and CONC_PLG:PRMZ_LOG \(^1\) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>##</th>
<th>Value (log(m(^2)))</th>
<th>##</th>
<th>Value (log(m(^2)))</th>
<th>##</th>
<th>Value (log(m(^2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1.77E+01</td>
<td>35</td>
<td>-1.83E+01</td>
<td>69</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1.75E+01</td>
<td>36</td>
<td>-1.75E+01</td>
<td>70</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-1.76E+01</td>
<td>37</td>
<td>-1.75E+01</td>
<td>71</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-1.78E+01</td>
<td>38</td>
<td>-1.86E+01</td>
<td>72</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-1.74E+01</td>
<td>39</td>
<td>-1.83E+01</td>
<td>73</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-1.86E+01</td>
<td>40</td>
<td>-1.81E+01</td>
<td>74</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-1.71E+01</td>
<td>41</td>
<td>-1.89E+01</td>
<td>75</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-1.86E+01</td>
<td>42</td>
<td>-1.80E+01</td>
<td>76</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>-1.71E+01</td>
<td>43</td>
<td>-1.85E+01</td>
<td>77</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-1.76E+01</td>
<td>44</td>
<td>-1.80E+01</td>
<td>78</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>-1.79E+01</td>
<td>45</td>
<td>-1.81E+01</td>
<td>79</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-1.85E+01</td>
<td>46</td>
<td>-1.77E+01</td>
<td>80</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>-1.72E+01</td>
<td>47</td>
<td>-1.71E+01</td>
<td>81</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>-1.71E+01</td>
<td>48</td>
<td>-1.82E+01</td>
<td>82</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>-1.84E+01</td>
<td>49</td>
<td>-1.75E+01</td>
<td>83</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>-1.74E+01</td>
<td>50</td>
<td>-1.74E+01</td>
<td>84</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>-1.85E+01</td>
<td>51</td>
<td>-1.87E+01</td>
<td>85</td>
<td>-1.70E+01</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>-1.77E+01</td>
<td>52</td>
<td>-1.87E+01</td>
<td>86</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>-1.73E+01</td>
<td>53</td>
<td>-1.85E+01</td>
<td>87</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-1.83E+01</td>
<td>54</td>
<td>-1.89E+01</td>
<td>88</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>-1.82E+01</td>
<td>55</td>
<td>-1.80E+01</td>
<td>89</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>-1.88E+01</td>
<td>56</td>
<td>-1.88E+01</td>
<td>90</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>-1.74E+01</td>
<td>57</td>
<td>-1.79E+01</td>
<td>91</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>-1.77E+01</td>
<td>58</td>
<td>-1.79E+01</td>
<td>92</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>-1.82E+01</td>
<td>59</td>
<td>-1.88E+01</td>
<td>93</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>-1.73E+01</td>
<td>60</td>
<td>-1.76E+01</td>
<td>94</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>-1.86E+01</td>
<td>61</td>
<td>-1.80E+01</td>
<td>95</td>
<td>-1.70E+01</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>-1.72E+01</td>
<td>62</td>
<td>-1.71E+01</td>
<td>96</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>-1.89E+01</td>
<td>63</td>
<td>-1.72E+01</td>
<td>97</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>-1.72E+01</td>
<td>64</td>
<td>-1.78E+01</td>
<td>98</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>-1.74E+01</td>
<td>65</td>
<td>-1.90E+01</td>
<td>99</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>-1.80E+01</td>
<td>66</td>
<td>-1.78E+01</td>
<td>100</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>-1.87E+01</td>
<td>67</td>
<td>-1.78E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>-1.73E+01</td>
<td>68</td>
<td>-1.83E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.54 – Sampled Values for Parameter CONC_PLG:PRMX_LOG (LHS Variable 65), CONC_PLG:PRMY_LOG, and CONC_PLG:PRMZ_LOG (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1.79E+01</td>
<td>35</td>
<td>-1.78E+01</td>
<td>69</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.87E+01</td>
<td>36</td>
<td>-1.89E+01</td>
<td>70</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.80E+01</td>
<td>37</td>
<td>-1.76E+01</td>
<td>71</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.84E+01</td>
<td>38</td>
<td>-1.86E+01</td>
<td>72</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.89E+01</td>
<td>39</td>
<td>-1.87E+01</td>
<td>73</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.79E+01</td>
<td>40</td>
<td>-1.70E+01</td>
<td>74</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.72E+01</td>
<td>41</td>
<td>-1.85E+01</td>
<td>75</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.77E+01</td>
<td>42</td>
<td>-1.89E+01</td>
<td>76</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.74E+01</td>
<td>43</td>
<td>-1.76E+01</td>
<td>77</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.84E+01</td>
<td>44</td>
<td>-1.90E+01</td>
<td>78</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.77E+01</td>
<td>45</td>
<td>-1.81E+01</td>
<td>79</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.80E+01</td>
<td>46</td>
<td>-1.76E+01</td>
<td>80</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.88E+01</td>
<td>47</td>
<td>-1.83E+01</td>
<td>81</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.87E+01</td>
<td>48</td>
<td>-1.72E+01</td>
<td>82</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.75E+01</td>
<td>49</td>
<td>-1.74E+01</td>
<td>83</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.77E+01</td>
<td>50</td>
<td>-1.85E+01</td>
<td>84</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.83E+01</td>
<td>51</td>
<td>-1.73E+01</td>
<td>85</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.81E+01</td>
<td>52</td>
<td>-1.75E+01</td>
<td>86</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.80E+01</td>
<td>53</td>
<td>-1.71E+01</td>
<td>87</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.84E+01</td>
<td>54</td>
<td>-1.75E+01</td>
<td>88</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.72E+01</td>
<td>55</td>
<td>-1.80E+01</td>
<td>89</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.74E+01</td>
<td>56</td>
<td>-1.89E+01</td>
<td>90</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.82E+01</td>
<td>57</td>
<td>-1.80E+01</td>
<td>91</td>
<td>-1.70E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.84E+01</td>
<td>58</td>
<td>-1.84E+01</td>
<td>92</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.78E+01</td>
<td>59</td>
<td>-1.74E+01</td>
<td>93</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.71E+01</td>
<td>60</td>
<td>-1.82E+01</td>
<td>94</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.86E+01</td>
<td>61</td>
<td>-1.89E+01</td>
<td>95</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.75E+01</td>
<td>62</td>
<td>-1.85E+01</td>
<td>96</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.72E+01</td>
<td>63</td>
<td>-1.77E+01</td>
<td>97</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.74E+01</td>
<td>64</td>
<td>-1.81E+01</td>
<td>98</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.88E+01</td>
<td>65</td>
<td>-1.81E+01</td>
<td>99</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.82E+01</td>
<td>66</td>
<td>-1.82E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.90E+01</td>
<td>67</td>
<td>-1.73E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.74E+01</td>
<td>68</td>
<td>-1.86E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Only the x-direction parameter was sampled in LHS. The corresponding y- and z-direction parameters were set equal to the x-direction values.
Table A.55 – Sampled Values for Parameter SHFTU:SAT_RBRN (LHS Variable 66)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.28E-01</td>
<td>35</td>
<td>6.73E-02</td>
<td>69</td>
<td>5.15E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.78E-01</td>
<td>36</td>
<td>3.12E-01</td>
<td>70</td>
<td>5.49E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.62E-01</td>
<td>37</td>
<td>3.01E-02</td>
<td>71</td>
<td>4.45E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.79E-01</td>
<td>38</td>
<td>1.90E-02</td>
<td>72</td>
<td>3.86E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.32E-01</td>
<td>39</td>
<td>1.37E-01</td>
<td>73</td>
<td>1.95E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.02E-01</td>
<td>40</td>
<td>6.15E-02</td>
<td>74</td>
<td>2.27E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.59E-01</td>
<td>41</td>
<td>4.58E-01</td>
<td>75</td>
<td>5.31E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.15E-01</td>
<td>42</td>
<td>2.98E-01</td>
<td>76</td>
<td>1.07E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.75E-02</td>
<td>43</td>
<td>2.81E-01</td>
<td>77</td>
<td>7.82E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.19E-02</td>
<td>44</td>
<td>3.99E-01</td>
<td>78</td>
<td>3.50E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.46E-01</td>
<td>45</td>
<td>1.16E-01</td>
<td>79</td>
<td>2.41E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>9.10E-02</td>
<td>46</td>
<td>4.19E-01</td>
<td>80</td>
<td>8.72E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.81E-01</td>
<td>47</td>
<td>4.53E-01</td>
<td>81</td>
<td>5.58E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.06E-01</td>
<td>48</td>
<td>5.62E-02</td>
<td>82</td>
<td>8.83E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.33E-01</td>
<td>49</td>
<td>5.24E-01</td>
<td>83</td>
<td>3.43E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.89E-01</td>
<td>50</td>
<td>4.31E-01</td>
<td>84</td>
<td>4.03E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.10E-01</td>
<td>51</td>
<td>7.41E-02</td>
<td>85</td>
<td>4.67E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.88E-01</td>
<td>52</td>
<td>6.00E-01</td>
<td>86</td>
<td>5.72E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.77E-01</td>
<td>53</td>
<td>1.79E-03</td>
<td>87</td>
<td>1.19E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.84E-01</td>
<td>54</td>
<td>5.36E-01</td>
<td>88</td>
<td>4.95E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8.29E-02</td>
<td>55</td>
<td>1.68E-01</td>
<td>89</td>
<td>3.06E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.39E-01</td>
<td>56</td>
<td>1.98E-01</td>
<td>90</td>
<td>7.04E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.67E-01</td>
<td>57</td>
<td>2.30E-01</td>
<td>91</td>
<td>1.76E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.02E-03</td>
<td>58</td>
<td>3.50E-01</td>
<td>92</td>
<td>3.83E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.36E-01</td>
<td>59</td>
<td>1.41E-01</td>
<td>93</td>
<td>4.82E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.51E-02</td>
<td>60</td>
<td>4.47E-02</td>
<td>94</td>
<td>1.68E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1.49E-01</td>
<td>61</td>
<td>1.00E-01</td>
<td>95</td>
<td>5.44E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.71E-01</td>
<td>62</td>
<td>2.03E-01</td>
<td>96</td>
<td>2.56E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>3.21E-01</td>
<td>63</td>
<td>2.57E-01</td>
<td>97</td>
<td>3.57E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.72E-01</td>
<td>64</td>
<td>1.49E-02</td>
<td>98</td>
<td>5.02E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.89E-01</td>
<td>65</td>
<td>1.55E-01</td>
<td>99</td>
<td>9.26E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.08E-01</td>
<td>66</td>
<td>1.22E-01</td>
<td>100</td>
<td>3.74E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>4.38E-01</td>
<td>67</td>
<td>1.61E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.22E-01</td>
<td>68</td>
<td>4.81E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.55 – Sampled Values for Parameter SHFTU:SAT_RBRN (LHS Variable 66) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector #</th>
<th>Value (dimensionless)</th>
<th>Vector #</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.36E-01</td>
<td>35</td>
<td>1.92E-01</td>
<td>69</td>
<td>4.28E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.46E-01</td>
<td>36</td>
<td>6.38E-02</td>
<td>70</td>
<td>8.36E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.21E-01</td>
<td>37</td>
<td>1.80E-01</td>
<td>71</td>
<td>1.73E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5.69E-01</td>
<td>38</td>
<td>5.31E-01</td>
<td>72</td>
<td>1.41E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.97E-01</td>
<td>39</td>
<td>5.63E-01</td>
<td>73</td>
<td>1.71E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.07E-02</td>
<td>40</td>
<td>4.71E-01</td>
<td>74</td>
<td>6.03E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.17E-01</td>
<td>41</td>
<td>1.31E-01</td>
<td>75</td>
<td>3.91E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5.19E-01</td>
<td>42</td>
<td>7.96E-02</td>
<td>76</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.66E-01</td>
<td>43</td>
<td>3.23E-01</td>
<td>77</td>
<td>3.73E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.64E-01</td>
<td>44</td>
<td>1.11E-01</td>
<td>78</td>
<td>3.52E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.50E-01</td>
<td>45</td>
<td>1.56E-01</td>
<td>79</td>
<td>5.51E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.05E-01</td>
<td>46</td>
<td>4.81E-01</td>
<td>80</td>
<td>2.76E-03</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.92E-01</td>
<td>47</td>
<td>1.09E-02</td>
<td>81</td>
<td>5.45E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.42E-01</td>
<td>48</td>
<td>9.48E-02</td>
<td>82</td>
<td>1.30E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.39E-01</td>
<td>49</td>
<td>1.96E-01</td>
<td>83</td>
<td>3.44E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.98E-01</td>
<td>50</td>
<td>1.38E-01</td>
<td>84</td>
<td>3.28E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.07E-01</td>
<td>51</td>
<td>2.77E-01</td>
<td>85</td>
<td>9.00E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7.09E-02</td>
<td>52</td>
<td>2.55E-01</td>
<td>86</td>
<td>4.87E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>2.30E-01</td>
<td>53</td>
<td>8.64E-02</td>
<td>87</td>
<td>4.52E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.81E-02</td>
<td>54</td>
<td>9.74E-02</td>
<td>88</td>
<td>4.17E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.81E-01</td>
<td>55</td>
<td>3.76E-01</td>
<td>89</td>
<td>1.56E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.37E-01</td>
<td>56</td>
<td>2.93E-01</td>
<td>90</td>
<td>2.21E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.97E-01</td>
<td>57</td>
<td>1.82E-01</td>
<td>91</td>
<td>2.65E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.10E-01</td>
<td>58</td>
<td>6.66E-02</td>
<td>92</td>
<td>3.29E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.98E-01</td>
<td>59</td>
<td>1.26E-01</td>
<td>93</td>
<td>4.64E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4.54E-01</td>
<td>60</td>
<td>5.55E-01</td>
<td>94</td>
<td>3.15E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.25E-02</td>
<td>61</td>
<td>1.87E-01</td>
<td>95</td>
<td>2.52E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5.78E-01</td>
<td>62</td>
<td>4.73E-01</td>
<td>96</td>
<td>4.27E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.41E-01</td>
<td>63</td>
<td>1.13E-01</td>
<td>97</td>
<td>5.23E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.20E-01</td>
<td>64</td>
<td>2.62E-01</td>
<td>98</td>
<td>4.04E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.00E-01</td>
<td>65</td>
<td>2.38E-01</td>
<td>99</td>
<td>5.88E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.15E-01</td>
<td>66</td>
<td>1.04E-01</td>
<td>100</td>
<td>1.62E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.04E-01</td>
<td>67</td>
<td>2.11E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.69E-02</td>
<td>68</td>
<td>5.76E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.55 – Sampled Values for Parameter SHFTU: SAT_RBRN (LHS Variable 66) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>3.98E-01</td>
<td>35</td>
<td>3.69E-01</td>
<td>69</td>
<td>2.23E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3.42E-01</td>
<td>36</td>
<td>4.02E-01</td>
<td>70</td>
<td>4.84E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>9.80E-02</td>
<td>37</td>
<td>3.07E-01</td>
<td>71</td>
<td>1.69E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.90E-01</td>
<td>38</td>
<td>7.44E-02</td>
<td>72</td>
<td>1.22E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1.79E-01</td>
<td>39</td>
<td>8.83E-02</td>
<td>73</td>
<td>5.79E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3.14E-02</td>
<td>40</td>
<td>5.45E-01</td>
<td>74</td>
<td>6.84E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>1.56E-01</td>
<td>41</td>
<td>5.29E-01</td>
<td>75</td>
<td>6.00E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1.18E-01</td>
<td>42</td>
<td>3.93E-02</td>
<td>76</td>
<td>3.31E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>2.28E-01</td>
<td>43</td>
<td>5.42E-01</td>
<td>77</td>
<td>6.53E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2.70E-01</td>
<td>44</td>
<td>5.62E-01</td>
<td>78</td>
<td>4.97E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>5.89E-01</td>
<td>45</td>
<td>8.69E-02</td>
<td>79</td>
<td>1.35E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>4.77E-01</td>
<td>46</td>
<td>5.55E-01</td>
<td>80</td>
<td>4.47E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1.58E-01</td>
<td>47</td>
<td>1.16E-01</td>
<td>81</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>2.05E-01</td>
<td>48</td>
<td>4.10E-01</td>
<td>82</td>
<td>1.25E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>5.93E-01</td>
<td>49</td>
<td>4.30E-01</td>
<td>83</td>
<td>3.48E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.67E-01</td>
<td>50</td>
<td>1.11E-01</td>
<td>84</td>
<td>1.44E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.50E-01</td>
<td>51</td>
<td>7.63E-02</td>
<td>85</td>
<td>2.93E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>3.67E-01</td>
<td>52</td>
<td>1.86E-01</td>
<td>86</td>
<td>4.32E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>3.17E-01</td>
<td>53</td>
<td>6.26E-03</td>
<td>87</td>
<td>5.70E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>4.93E-02</td>
<td>54</td>
<td>2.41E-01</td>
<td>88</td>
<td>3.84E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>2.73E-01</td>
<td>55</td>
<td>1.28E-01</td>
<td>89</td>
<td>4.34E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>5.28E-01</td>
<td>56</td>
<td>1.82E-01</td>
<td>90</td>
<td>4.72E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>1.51E-02</td>
<td>57</td>
<td>9.23E-03</td>
<td>91</td>
<td>5.56E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1.98E-01</td>
<td>58</td>
<td>2.78E-02</td>
<td>92</td>
<td>9.67E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2.03E-02</td>
<td>59</td>
<td>9.46E-02</td>
<td>93</td>
<td>5.15E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>1.61E-01</td>
<td>60</td>
<td>3.33E-02</td>
<td>94</td>
<td>1.07E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>3.20E-01</td>
<td>61</td>
<td>2.64E-01</td>
<td>95</td>
<td>1.62E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>1.74E-01</td>
<td>62</td>
<td>2.55E-01</td>
<td>96</td>
<td>4.17E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>1.02E-01</td>
<td>63</td>
<td>2.87E-01</td>
<td>97</td>
<td>6.22E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>2.38E-01</td>
<td>64</td>
<td>4.64E-01</td>
<td>98</td>
<td>2.16E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>2.96E-01</td>
<td>65</td>
<td>4.66E-01</td>
<td>99</td>
<td>1.89E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>5.12E-01</td>
<td>66</td>
<td>3.59E-01</td>
<td>100</td>
<td>1.39E-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>4.89E-01</td>
<td>67</td>
<td>8.06E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>4.49E-01</td>
<td>68</td>
<td>1.93E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.56 – Sampled Values for Parameter SHFTU:SAT_RGAS (LHS Variable 67)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.22E-01</td>
<td>1</td>
<td>8.32E-02</td>
<td>69</td>
<td>1.63E-01</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>1.59E-01</td>
<td>36</td>
<td>3.36E-01</td>
<td>70</td>
<td>1.07E-01</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>1.96E-01</td>
<td>37</td>
<td>2.83E-01</td>
<td>71</td>
<td>9.93E-03</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>3.73E-01</td>
<td>38</td>
<td>8.79E-02</td>
<td>72</td>
<td>1.81E-01</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>3.06E-01</td>
<td>39</td>
<td>2.04E-01</td>
<td>73</td>
<td>2.00E-01</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>3.35E-01</td>
<td>40</td>
<td>3.64E-01</td>
<td>74</td>
<td>1.73E-01</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>1.19E-01</td>
<td>41</td>
<td>3.84E-02</td>
<td>75</td>
<td>5.41E-02</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>2.34E-01</td>
<td>42</td>
<td>3.79E-01</td>
<td>76</td>
<td>3.81E-01</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>5.94E-02</td>
<td>43</td>
<td>9.45E-02</td>
<td>77</td>
<td>3.46E-01</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>6.21E-02</td>
<td>44</td>
<td>1.39E-01</td>
<td>78</td>
<td>3.29E-01</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>2.90E-01</td>
<td>45</td>
<td>1.89E-01</td>
<td>79</td>
<td>6.74E-03</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>1.41E-01</td>
<td>46</td>
<td>6.63E-02</td>
<td>80</td>
<td>3.26E-01</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>4.42E-02</td>
<td>47</td>
<td>2.50E-01</td>
<td>81</td>
<td>1.45E-01</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>2.80E-01</td>
<td>48</td>
<td>3.12E-01</td>
<td>82</td>
<td>2.44E-01</td>
<td>48</td>
</tr>
<tr>
<td>15</td>
<td>3.41E-01</td>
<td>49</td>
<td>1.50E-02</td>
<td>83</td>
<td>3.98E-01</td>
<td>49</td>
</tr>
<tr>
<td>16</td>
<td>3.35E-02</td>
<td>50</td>
<td>3.93E-01</td>
<td>84</td>
<td>2.87E-01</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>2.98E-01</td>
<td>51</td>
<td>1.69E-02</td>
<td>85</td>
<td>3.53E-01</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>3.21E-01</td>
<td>52</td>
<td>1.03E-01</td>
<td>86</td>
<td>2.66E-01</td>
<td>52</td>
</tr>
<tr>
<td>19</td>
<td>2.64E-01</td>
<td>53</td>
<td>9.09E-04</td>
<td>87</td>
<td>2.25E-01</td>
<td>53</td>
</tr>
<tr>
<td>20</td>
<td>1.28E-01</td>
<td>54</td>
<td>4.18E-02</td>
<td>88</td>
<td>3.15E-01</td>
<td>54</td>
</tr>
<tr>
<td>21</td>
<td>1.51E-01</td>
<td>55</td>
<td>2.45E-01</td>
<td>89</td>
<td>1.64E-01</td>
<td>55</td>
</tr>
<tr>
<td>22</td>
<td>1.35E-01</td>
<td>56</td>
<td>3.01E-01</td>
<td>90</td>
<td>1.70E-01</td>
<td>56</td>
</tr>
<tr>
<td>23</td>
<td>1.00E-01</td>
<td>57</td>
<td>3.90E-01</td>
<td>91</td>
<td>2.15E-01</td>
<td>57</td>
</tr>
<tr>
<td>24</td>
<td>1.93E-01</td>
<td>58</td>
<td>9.17E-02</td>
<td>92</td>
<td>7.09E-02</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>3.52E-01</td>
<td>59</td>
<td>3.19E-01</td>
<td>93</td>
<td>2.93E-01</td>
<td>59</td>
</tr>
<tr>
<td>26</td>
<td>2.55E-01</td>
<td>60</td>
<td>2.30E-01</td>
<td>94</td>
<td>7.89E-02</td>
<td>60</td>
</tr>
<tr>
<td>27</td>
<td>2.60E-01</td>
<td>61</td>
<td>2.39E-01</td>
<td>95</td>
<td>2.14E-02</td>
<td>61</td>
</tr>
<tr>
<td>28</td>
<td>1.76E-01</td>
<td>62</td>
<td>3.86E-01</td>
<td>96</td>
<td>1.14E-01</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>7.33E-02</td>
<td>63</td>
<td>2.17E-01</td>
<td>97</td>
<td>1.56E-01</td>
<td>63</td>
</tr>
<tr>
<td>30</td>
<td>1.27E-01</td>
<td>64</td>
<td>5.16E-02</td>
<td>98</td>
<td>2.11E-01</td>
<td>64</td>
</tr>
<tr>
<td>31</td>
<td>1.11E-01</td>
<td>65</td>
<td>3.57E-01</td>
<td>99</td>
<td>1.88E-01</td>
<td>65</td>
</tr>
<tr>
<td>32</td>
<td>2.97E-02</td>
<td>66</td>
<td>2.69E-01</td>
<td>100</td>
<td>3.64E-01</td>
<td>66</td>
</tr>
<tr>
<td>33</td>
<td>2.24E-01</td>
<td>67</td>
<td>3.71E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.74E-01</td>
<td>68</td>
<td>2.50E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.56 – Sampled Values for Parameter SHFTU:SAT_RGAS (LHS Variable 67) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4.34E-03</td>
<td>35</td>
<td>3</td>
<td>3.72E-01</td>
<td>69</td>
<td>1.10E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.46E-01</td>
<td>36</td>
<td>3</td>
<td>3.90E-01</td>
<td>70</td>
<td>1.82E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.56E-02</td>
<td>37</td>
<td>3</td>
<td>5.44E-02</td>
<td>71</td>
<td>2.19E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.09E-01</td>
<td>38</td>
<td>3</td>
<td>7.65E-02</td>
<td>72</td>
<td>2.32E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.35E-01</td>
<td>39</td>
<td>3</td>
<td>2.40E-01</td>
<td>73</td>
<td>3.30E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.55E-01</td>
<td>40</td>
<td>3</td>
<td>6.02E-02</td>
<td>74</td>
<td>3.85E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.46E-01</td>
<td>41</td>
<td>3</td>
<td>2.21E-01</td>
<td>75</td>
<td>3.17E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.19E-02</td>
<td>42</td>
<td>3</td>
<td>2.75E-01</td>
<td>76</td>
<td>2.58E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.36E-02</td>
<td>43</td>
<td>3</td>
<td>1.59E-01</td>
<td>77</td>
<td>3.95E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.39E-01</td>
<td>44</td>
<td>3</td>
<td>1.19E-01</td>
<td>78</td>
<td>3.54E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.62E-01</td>
<td>45</td>
<td>3</td>
<td>6.83E-02</td>
<td>79</td>
<td>1.70E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.83E-01</td>
<td>46</td>
<td>3</td>
<td>8.52E-02</td>
<td>80</td>
<td>1.40E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.95E-01</td>
<td>47</td>
<td>3</td>
<td>2.77E-01</td>
<td>81</td>
<td>2.27E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.12E-01</td>
<td>48</td>
<td>3</td>
<td>5.81E-02</td>
<td>82</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.98E-01</td>
<td>49</td>
<td>3</td>
<td>3.40E-01</td>
<td>83</td>
<td>2.68E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.49E-01</td>
<td>50</td>
<td>3</td>
<td>3.76E-01</td>
<td>84</td>
<td>3.62E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1.22E-02</td>
<td>51</td>
<td>3</td>
<td>1.73E-01</td>
<td>85</td>
<td>4.94E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>2.51E-01</td>
<td>52</td>
<td>3</td>
<td>9.52E-02</td>
<td>86</td>
<td>4.61E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>8.15E-02</td>
<td>53</td>
<td>3</td>
<td>9.63E-02</td>
<td>87</td>
<td>8.84E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.16E-01</td>
<td>54</td>
<td>3</td>
<td>2.05E-03</td>
<td>88</td>
<td>2.04E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.51E-01</td>
<td>55</td>
<td>3</td>
<td>1.77E-01</td>
<td>89</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.34E-01</td>
<td>56</td>
<td>3</td>
<td>1.62E-01</td>
<td>90</td>
<td>1.46E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.85E-01</td>
<td>57</td>
<td>3</td>
<td>1.03E-01</td>
<td>91</td>
<td>3.66E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.56E-01</td>
<td>58</td>
<td>3</td>
<td>3.17E-01</td>
<td>92</td>
<td>2.13E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2.96E-01</td>
<td>59</td>
<td>3</td>
<td>2.30E-01</td>
<td>93</td>
<td>3.21E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.44E-01</td>
<td>60</td>
<td>3</td>
<td>3.72E-01</td>
<td>94</td>
<td>2.62E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.43E-02</td>
<td>61</td>
<td>3</td>
<td>2.66E-01</td>
<td>95</td>
<td>2.00E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.95E-01</td>
<td>62</td>
<td>3</td>
<td>7.38E-02</td>
<td>96</td>
<td>2.12E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.88E-02</td>
<td>63</td>
<td>3</td>
<td>3.42E-01</td>
<td>97</td>
<td>3.02E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.08E-01</td>
<td>64</td>
<td>3</td>
<td>3.84E-02</td>
<td>98</td>
<td>1.91E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.01E-01</td>
<td>65</td>
<td>3</td>
<td>2.89E-01</td>
<td>99</td>
<td>2.88E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.13E-02</td>
<td>66</td>
<td>3</td>
<td>1.30E-01</td>
<td>100</td>
<td>2.84E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.66E-01</td>
<td>67</td>
<td>3</td>
<td>3.07E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.53E-01</td>
<td>68</td>
<td>3</td>
<td>3.27E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.56 – Sampled Values for Parameter SHFTU:SAT_RGAS (LHS Variable 67) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.90E-01</td>
<td>35</td>
<td>1.58E-01</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>3.83E-01</td>
<td>36</td>
<td>1.44E-01</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>9.76E-02</td>
<td>37</td>
<td>1.31E-01</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>1.63E-01</td>
<td>38</td>
<td>1.03E-02</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>3.80E-02</td>
<td>39</td>
<td>2.86E-01</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>1.09E-01</td>
<td>40</td>
<td>2.65E-01</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>1.13E-01</td>
<td>41</td>
<td>2.04E-01</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>6.66E-02</td>
<td>42</td>
<td>2.53E-01</td>
<td>76</td>
</tr>
<tr>
<td>9</td>
<td>3.48E-01</td>
<td>43</td>
<td>3.11E-01</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>1.80E-02</td>
<td>44</td>
<td>5.26E-02</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>2.31E-01</td>
<td>45</td>
<td>5.00E-02</td>
<td>79</td>
</tr>
<tr>
<td>12</td>
<td>3.21E-01</td>
<td>46</td>
<td>3.29E-01</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>2.19E-01</td>
<td>47</td>
<td>2.28E-01</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>3.68E-01</td>
<td>48</td>
<td>2.77E-01</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>9.32E-02</td>
<td>49</td>
<td>1.38E-01</td>
<td>83</td>
</tr>
<tr>
<td>16</td>
<td>2.13E-02</td>
<td>50</td>
<td>2.50E-01</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>3.02E-01</td>
<td>51</td>
<td>3.71E-01</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>3.73E-01</td>
<td>52</td>
<td>1.03E-01</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>3.00E-02</td>
<td>53</td>
<td>2.01E-01</td>
<td>87</td>
</tr>
<tr>
<td>20</td>
<td>3.54E-01</td>
<td>54</td>
<td>1.43E-02</td>
<td>88</td>
</tr>
<tr>
<td>21</td>
<td>2.36E-01</td>
<td>55</td>
<td>3.85E-01</td>
<td>89</td>
</tr>
<tr>
<td>22</td>
<td>7.49E-02</td>
<td>56</td>
<td>6.27E-02</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>2.37E-01</td>
<td>57</td>
<td>2.93E-01</td>
<td>91</td>
</tr>
<tr>
<td>24</td>
<td>1.93E-01</td>
<td>58</td>
<td>1.35E-01</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>7.83E-02</td>
<td>59</td>
<td>1.98E-01</td>
<td>93</td>
</tr>
<tr>
<td>26</td>
<td>3.50E-02</td>
<td>60</td>
<td>2.11E-01</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>3.14E-01</td>
<td>61</td>
<td>3.18E-01</td>
<td>95</td>
</tr>
<tr>
<td>28</td>
<td>3.94E-01</td>
<td>62</td>
<td>2.42E-01</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>2.82E-01</td>
<td>63</td>
<td>4.64E-02</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>2.45E-02</td>
<td>64</td>
<td>8.23E-02</td>
<td>98</td>
</tr>
<tr>
<td>31</td>
<td>2.70E-03</td>
<td>65</td>
<td>1.74E-01</td>
<td>99</td>
</tr>
<tr>
<td>32</td>
<td>4.01E-02</td>
<td>66</td>
<td>3.38E-01</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>3.08E-01</td>
<td>67</td>
<td>1.21E-01</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.34E-01</td>
<td>68</td>
<td>6.95E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table A.57 – Sampled Values for Parameter SHFTU:PRMX_LOG (LHS Variable 68)

<table>
<thead>
<tr>
<th>Replicate</th>
<th></th>
<th>Value (log(m²))</th>
<th></th>
<th>Value (log(m²))</th>
<th></th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-1.84E+01</td>
<td>35</td>
<td>-1.69E+01</td>
<td>69</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-1.81E+01</td>
<td>36</td>
<td>-1.90E+01</td>
<td>70</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-1.75E+01</td>
<td>37</td>
<td>-1.89E+01</td>
<td>71</td>
<td>-2.00E+01</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-1.77E+01</td>
<td>38</td>
<td>-1.78E+01</td>
<td>72</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-1.97E+01</td>
<td>39</td>
<td>-1.93E+01</td>
<td>73</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-1.88E+01</td>
<td>40</td>
<td>-1.77E+01</td>
<td>74</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>-1.76E+01</td>
<td>41</td>
<td>-1.89E+01</td>
<td>75</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-1.86E+01</td>
<td>42</td>
<td>-1.86E+01</td>
<td>76</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>-1.77E+01</td>
<td>43</td>
<td>-1.86E+01</td>
<td>77</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>-1.90E+01</td>
<td>44</td>
<td>-1.88E+01</td>
<td>78</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>-1.72E+01</td>
<td>45</td>
<td>-1.94E+01</td>
<td>79</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-1.95E+01</td>
<td>46</td>
<td>-1.70E+01</td>
<td>80</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-1.79E+01</td>
<td>47</td>
<td>-1.84E+01</td>
<td>81</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-1.78E+01</td>
<td>48</td>
<td>-1.92E+01</td>
<td>82</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-1.89E+01</td>
<td>49</td>
<td>-1.76E+01</td>
<td>83</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-2.03E+01</td>
<td>50</td>
<td>-1.99E+01</td>
<td>84</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-1.74E+01</td>
<td>51</td>
<td>-1.82E+01</td>
<td>85</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>-1.81E+01</td>
<td>52</td>
<td>-1.72E+01</td>
<td>86</td>
<td>-2.05E+01</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>-1.83E+01</td>
<td>53</td>
<td>-1.86E+01</td>
<td>87</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>-1.90E+01</td>
<td>54</td>
<td>-1.76E+01</td>
<td>88</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>-1.79E+01</td>
<td>55</td>
<td>-1.80E+01</td>
<td>89</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>-2.00E+01</td>
<td>56</td>
<td>-1.71E+01</td>
<td>90</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>-1.90E+01</td>
<td>57</td>
<td>-1.83E+01</td>
<td>91</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>-1.84E+01</td>
<td>58</td>
<td>-1.89E+01</td>
<td>92</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>-1.81E+01</td>
<td>59</td>
<td>-1.82E+01</td>
<td>93</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>-1.85E+01</td>
<td>60</td>
<td>-1.76E+01</td>
<td>94</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>-1.85E+01</td>
<td>61</td>
<td>-1.75E+01</td>
<td>95</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>-1.77E+01</td>
<td>62</td>
<td>-1.92E+01</td>
<td>96</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>-1.91E+01</td>
<td>63</td>
<td>-1.73E+01</td>
<td>97</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>-1.87E+01</td>
<td>64</td>
<td>-1.82E+01</td>
<td>98</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>-1.71E+01</td>
<td>65</td>
<td>-1.87E+01</td>
<td>99</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>-1.97E+01</td>
<td>66</td>
<td>-1.91E+01</td>
<td>100</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>-1.78E+01</td>
<td>67</td>
<td>-1.79E+01</td>
<td>100</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>-1.84E+01</td>
<td>68</td>
<td>-1.98E+01</td>
<td>100</td>
<td>-1.95E+01</td>
</tr>
</tbody>
</table>
Table A.57 – Sampled Values for Parameter SHFTU:PRMX_LOG (LHS Variable 68) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>-1.86E+01</td>
<td>35</td>
<td>-1.77E+01</td>
<td>69</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-1.84E+01</td>
<td>36</td>
<td>-1.82E+01</td>
<td>70</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-1.77E+01</td>
<td>37</td>
<td>-1.86E+01</td>
<td>71</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-1.83E+01</td>
<td>38</td>
<td>-1.75E+01</td>
<td>72</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-1.85E+01</td>
<td>39</td>
<td>-1.96E+01</td>
<td>73</td>
<td>-1.68E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-1.84E+01</td>
<td>40</td>
<td>-1.84E+01</td>
<td>74</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>-1.87E+01</td>
<td>41</td>
<td>-1.77E+01</td>
<td>75</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>-2.04E+01</td>
<td>42</td>
<td>-1.94E+01</td>
<td>76</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>-1.80E+01</td>
<td>43</td>
<td>-1.92E+01</td>
<td>77</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-1.78E+01</td>
<td>44</td>
<td>-1.91E+01</td>
<td>78</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>-1.76E+01</td>
<td>45</td>
<td>-1.73E+01</td>
<td>79</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>-1.82E+01</td>
<td>46</td>
<td>-1.79E+01</td>
<td>80</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>-1.80E+01</td>
<td>47</td>
<td>-1.75E+01</td>
<td>81</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>-1.85E+01</td>
<td>48</td>
<td>-1.72E+01</td>
<td>82</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-1.94E+01</td>
<td>49</td>
<td>-1.84E+01</td>
<td>83</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>-2.03E+01</td>
<td>50</td>
<td>-1.93E+01</td>
<td>84</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>-1.75E+01</td>
<td>51</td>
<td>-1.88E+01</td>
<td>85</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>-1.99E+01</td>
<td>52</td>
<td>-1.89E+01</td>
<td>86</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>-1.79E+01</td>
<td>53</td>
<td>-1.76E+01</td>
<td>87</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>-1.98E+01</td>
<td>54</td>
<td>-1.93E+01</td>
<td>88</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>-1.83E+01</td>
<td>55</td>
<td>-1.83E+01</td>
<td>89</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>-1.87E+01</td>
<td>56</td>
<td>-1.80E+01</td>
<td>90</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>-1.82E+01</td>
<td>57</td>
<td>-1.95E+01</td>
<td>91</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>-1.71E+01</td>
<td>58</td>
<td>-1.92E+01</td>
<td>92</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>-1.76E+01</td>
<td>59</td>
<td>-1.75E+01</td>
<td>93</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>-2.00E+01</td>
<td>60</td>
<td>-1.90E+01</td>
<td>94</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>-1.91E+01</td>
<td>61</td>
<td>-1.93E+01</td>
<td>95</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>-1.95E+01</td>
<td>62</td>
<td>-1.78E+01</td>
<td>96</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>-1.86E+01</td>
<td>63</td>
<td>-1.89E+01</td>
<td>97</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>-1.88E+01</td>
<td>64</td>
<td>-1.81E+01</td>
<td>98</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>-1.78E+01</td>
<td>65</td>
<td>-1.79E+01</td>
<td>99</td>
<td>-1.70E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>-1.74E+01</td>
<td>66</td>
<td>-1.85E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>-1.99E+01</td>
<td>67</td>
<td>-1.76E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>-1.77E+01</td>
<td>68</td>
<td>-1.73E+01</td>
<td>100</td>
<td>-1.83E+01</td>
</tr>
</tbody>
</table>
Table A.57 – Sampled Values for Parameter SHFTU:PRMX_LOG (LHS Variable 68) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-1.82E+01</td>
<td>35</td>
<td>-1.94E+01</td>
<td>69</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-1.82E+01</td>
<td>36</td>
<td>-1.70E+01</td>
<td>70</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-1.76E+01</td>
<td>37</td>
<td>-2.04E+01</td>
<td>71</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-1.85E+01</td>
<td>38</td>
<td>-1.97E+01</td>
<td>72</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-1.74E+01</td>
<td>39</td>
<td>-1.82E+01</td>
<td>73</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-1.87E+01</td>
<td>40</td>
<td>-1.78E+01</td>
<td>74</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>-1.83E+01</td>
<td>41</td>
<td>-1.78E+01</td>
<td>75</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>-1.86E+01</td>
<td>42</td>
<td>-1.83E+01</td>
<td>76</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>-1.91E+01</td>
<td>43</td>
<td>-1.97E+01</td>
<td>77</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-1.98E+01</td>
<td>44</td>
<td>-1.79E+01</td>
<td>78</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>-1.82E+01</td>
<td>45</td>
<td>-1.90E+01</td>
<td>79</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>-1.78E+01</td>
<td>46</td>
<td>-1.95E+01</td>
<td>80</td>
<td>-2.00E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>-1.82E+01</td>
<td>47</td>
<td>-1.94E+01</td>
<td>81</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>-1.91E+01</td>
<td>48</td>
<td>-1.90E+01</td>
<td>82</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>-1.72E+01</td>
<td>49</td>
<td>-1.93E+01</td>
<td>83</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>-2.00E+01</td>
<td>50</td>
<td>-1.78E+01</td>
<td>84</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>-1.87E+01</td>
<td>51</td>
<td>-1.86E+01</td>
<td>85</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>-1.77E+01</td>
<td>52</td>
<td>-1.99E+01</td>
<td>86</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>-1.77E+01</td>
<td>53</td>
<td>-1.76E+01</td>
<td>87</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>-1.78E+01</td>
<td>54</td>
<td>-1.80E+01</td>
<td>88</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>-1.95E+01</td>
<td>55</td>
<td>-1.80E+01</td>
<td>89</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>-1.71E+01</td>
<td>56</td>
<td>-1.88E+01</td>
<td>90</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>-1.76E+01</td>
<td>57</td>
<td>-1.90E+01</td>
<td>91</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>-1.92E+01</td>
<td>58</td>
<td>-1.77E+01</td>
<td>92</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>-1.75E+01</td>
<td>59</td>
<td>-1.79E+01</td>
<td>93</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>-1.79E+01</td>
<td>60</td>
<td>-1.86E+01</td>
<td>94</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>-1.93E+01</td>
<td>61</td>
<td>-1.88E+01</td>
<td>95</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>-1.84E+01</td>
<td>62</td>
<td>-1.84E+01</td>
<td>96</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>-1.79E+01</td>
<td>63</td>
<td>-1.76E+01</td>
<td>97</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>-1.71E+01</td>
<td>64</td>
<td>-1.73E+01</td>
<td>98</td>
<td>-1.66E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>-1.89E+01</td>
<td>65</td>
<td>-1.82E+01</td>
<td>99</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>-1.74E+01</td>
<td>66</td>
<td>-1.89E+01</td>
<td>100</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>-1.76E+01</td>
<td>67</td>
<td>-1.72E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>-1.83E+01</td>
<td>68</td>
<td>-1.96E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.58 – Sampled Values for Parameter SHFTL_T1:PRMX_LOG (LHS Variable 69)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m2))</th>
<th>#</th>
<th>Value (log(m2))</th>
<th>#</th>
<th>Value (log(m2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.88E+01</td>
<td>35</td>
<td>-1.90E+01</td>
<td>69</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.86E+01</td>
<td>36</td>
<td>-1.81E+01</td>
<td>70</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.83E+01</td>
<td>37</td>
<td>-1.82E+01</td>
<td>71</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.80E+01</td>
<td>38</td>
<td>-1.95E+01</td>
<td>72</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.78E+01</td>
<td>39</td>
<td>-1.90E+01</td>
<td>73</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.93E+01</td>
<td>40</td>
<td>-1.83E+01</td>
<td>74</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.71E+01</td>
<td>41</td>
<td>-1.88E+01</td>
<td>75</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.78E+01</td>
<td>42</td>
<td>-1.89E+01</td>
<td>76</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.70E+01</td>
<td>43</td>
<td>-2.00E+01</td>
<td>77</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.76E+01</td>
<td>44</td>
<td>-1.75E+01</td>
<td>78</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.81E+01</td>
<td>45</td>
<td>-1.89E+01</td>
<td>79</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.84E+01</td>
<td>46</td>
<td>-1.79E+01</td>
<td>80</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.84E+01</td>
<td>47</td>
<td>-1.77E+01</td>
<td>81</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.85E+01</td>
<td>48</td>
<td>-1.69E+01</td>
<td>82</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.71E+01</td>
<td>49</td>
<td>-1.78E+01</td>
<td>83</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.73E+01</td>
<td>50</td>
<td>-1.85E+01</td>
<td>84</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.74E+01</td>
<td>51</td>
<td>-1.78E+01</td>
<td>85</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.77E+01</td>
<td>52</td>
<td>-1.81E+01</td>
<td>86</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.85E+01</td>
<td>53</td>
<td>-1.90E+01</td>
<td>87</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.85E+01</td>
<td>54</td>
<td>-1.87E+01</td>
<td>88</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.92E+01</td>
<td>55</td>
<td>-1.82E+01</td>
<td>89</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.79E+01</td>
<td>56</td>
<td>-1.86E+01</td>
<td>90</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.80E+01</td>
<td>57</td>
<td>-1.77E+01</td>
<td>91</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.73E+01</td>
<td>58</td>
<td>-1.82E+01</td>
<td>92</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.80E+01</td>
<td>59</td>
<td>-1.80E+01</td>
<td>93</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.84E+01</td>
<td>60</td>
<td>-1.89E+01</td>
<td>94</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.75E+01</td>
<td>61</td>
<td>-1.83E+01</td>
<td>95</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.83E+01</td>
<td>62</td>
<td>-1.86E+01</td>
<td>96</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.77E+01</td>
<td>63</td>
<td>-1.74E+01</td>
<td>97</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.83E+01</td>
<td>64</td>
<td>-1.86E+01</td>
<td>98</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.87E+01</td>
<td>65</td>
<td>-1.86E+01</td>
<td>99</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.72E+01</td>
<td>66</td>
<td>-1.84E+01</td>
<td>100</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.78E+01</td>
<td>67</td>
<td>-1.76E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.87E+01</td>
<td>68</td>
<td>-1.75E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.58 – Sampled Values for Parameter SHFTL_T1:PRMX_LOG (LHS Variable 69) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector #</th>
<th>Value (log(m^2))</th>
<th>Vector #</th>
<th>Value (log(m^2))</th>
<th>Vector #</th>
<th>Value (log(m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1.84E+01</td>
<td>35</td>
<td>-1.78E+01</td>
<td>69</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.87E+01</td>
<td>36</td>
<td>-1.76E+01</td>
<td>70</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.92E+01</td>
<td>37</td>
<td>-1.84E+01</td>
<td>71</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.77E+01</td>
<td>38</td>
<td>-1.93E+01</td>
<td>72</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.70E+01</td>
<td>39</td>
<td>-1.91E+01</td>
<td>73</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.75E+01</td>
<td>40</td>
<td>-1.80E+01</td>
<td>74</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.94E+01</td>
<td>41</td>
<td>-1.77E+01</td>
<td>75</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.78E+01</td>
<td>42</td>
<td>-1.82E+01</td>
<td>76</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.77E+01</td>
<td>43</td>
<td>-1.76E+01</td>
<td>77</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.79E+01</td>
<td>44</td>
<td>-1.90E+01</td>
<td>78</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.89E+01</td>
<td>45</td>
<td>-1.81E+01</td>
<td>79</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.70E+01</td>
<td>46</td>
<td>-1.74E+01</td>
<td>80</td>
<td>-1.79E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.80E+01</td>
<td>47</td>
<td>-1.83E+01</td>
<td>81</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.76E+01</td>
<td>48</td>
<td>-1.81E+01</td>
<td>82</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.83E+01</td>
<td>49</td>
<td>-1.95E+01</td>
<td>83</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.82E+01</td>
<td>50</td>
<td>-1.75E+01</td>
<td>84</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.93E+01</td>
<td>51</td>
<td>-1.85E+01</td>
<td>85</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.82E+01</td>
<td>52</td>
<td>-1.94E+01</td>
<td>86</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.75E+01</td>
<td>53</td>
<td>-1.71E+01</td>
<td>87</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.88E+01</td>
<td>54</td>
<td>-1.83E+01</td>
<td>88</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.72E+01</td>
<td>55</td>
<td>-1.80E+01</td>
<td>89</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.87E+01</td>
<td>56</td>
<td>-1.82E+01</td>
<td>90</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.90E+01</td>
<td>57</td>
<td>-1.79E+01</td>
<td>91</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.76E+01</td>
<td>58</td>
<td>-1.83E+01</td>
<td>92</td>
<td>-1.74E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.72E+01</td>
<td>59</td>
<td>-1.86E+01</td>
<td>93</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.78E+01</td>
<td>60</td>
<td>-1.85E+01</td>
<td>94</td>
<td>-1.73E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.85E+01</td>
<td>61</td>
<td>-1.76E+01</td>
<td>95</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.80E+01</td>
<td>62</td>
<td>-1.79E+01</td>
<td>96</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.75E+01</td>
<td>63</td>
<td>-1.86E+01</td>
<td>97</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.77E+01</td>
<td>64</td>
<td>-1.88E+01</td>
<td>98</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.84E+01</td>
<td>65</td>
<td>-1.81E+01</td>
<td>99</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.85E+01</td>
<td>66</td>
<td>-1.79E+01</td>
<td>100</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.82E+01</td>
<td>67</td>
<td>-1.81E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.84E+01</td>
<td>68</td>
<td>-1.80E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.58 – Sampled Values for Parameter SHFTL_T1:PRMX_LOG (LHS Variable 69) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1.75E+01</td>
<td>35</td>
<td>-1.81E+01</td>
<td>69</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.94E+01</td>
<td>36</td>
<td>-1.86E+01</td>
<td>70</td>
<td>-1.76E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.93E+01</td>
<td>37</td>
<td>-1.78E+01</td>
<td>71</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.70E+01</td>
<td>38</td>
<td>-1.80E+01</td>
<td>72</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.76E+01</td>
<td>39</td>
<td>-1.80E+01</td>
<td>73</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.84E+01</td>
<td>40</td>
<td>-1.79E+01</td>
<td>74</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.73E+01</td>
<td>41</td>
<td>-1.81E+01</td>
<td>75</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.78E+01</td>
<td>42</td>
<td>-1.80E+01</td>
<td>76</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.84E+01</td>
<td>43</td>
<td>-1.88E+01</td>
<td>77</td>
<td>-1.75E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.87E+01</td>
<td>44</td>
<td>-1.77E+01</td>
<td>78</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.78E+01</td>
<td>45</td>
<td>-1.89E+01</td>
<td>79</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.82E+01</td>
<td>46</td>
<td>-1.73E+01</td>
<td>80</td>
<td>-1.83E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.77E+01</td>
<td>47</td>
<td>-1.77E+01</td>
<td>81</td>
<td>-1.72E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.82E+01</td>
<td>48</td>
<td>-1.87E+01</td>
<td>82</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.85E+01</td>
<td>49</td>
<td>-1.83E+01</td>
<td>83</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.82E+01</td>
<td>50</td>
<td>-1.83E+01</td>
<td>84</td>
<td>-1.71E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.90E+01</td>
<td>51</td>
<td>-1.74E+01</td>
<td>85</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.71E+01</td>
<td>52</td>
<td>-1.85E+01</td>
<td>86</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.91E+01</td>
<td>53</td>
<td>-1.72E+01</td>
<td>87</td>
<td>-1.81E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.89E+01</td>
<td>54</td>
<td>-1.76E+01</td>
<td>88</td>
<td>-1.77E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.84E+01</td>
<td>55</td>
<td>-1.83E+01</td>
<td>89</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.85E+01</td>
<td>56</td>
<td>-1.90E+01</td>
<td>90</td>
<td>-1.80E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.76E+01</td>
<td>57</td>
<td>-1.79E+01</td>
<td>91</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.86E+01</td>
<td>58</td>
<td>-1.81E+01</td>
<td>92</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.87E+01</td>
<td>59</td>
<td>-1.70E+01</td>
<td>93</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.75E+01</td>
<td>60</td>
<td>-1.77E+01</td>
<td>94</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.85E+01</td>
<td>61</td>
<td>-1.89E+01</td>
<td>95</td>
<td>-1.78E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.79E+01</td>
<td>62</td>
<td>-1.73E+01</td>
<td>96</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.90E+01</td>
<td>63</td>
<td>-1.87E+01</td>
<td>97</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.72E+01</td>
<td>64</td>
<td>-1.80E+01</td>
<td>98</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-1.83E+01</td>
<td>65</td>
<td>-1.75E+01</td>
<td>99</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.81E+01</td>
<td>66</td>
<td>-1.82E+01</td>
<td>100</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.88E+01</td>
<td>67</td>
<td>-1.79E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.91E+01</td>
<td>68</td>
<td>-1.82E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.59 – Sampled Values for Parameter SHFTL_T2:PRMX_LOG (LHS Variable 70)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
<th>#</th>
<th>Value (log(m²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.97E+01</td>
<td>35</td>
<td>-2.04E+01</td>
<td>69</td>
<td>-2.05E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.86E+01</td>
<td>36</td>
<td>-2.00E+01</td>
<td>70</td>
<td>-2.13E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.03E+01</td>
<td>37</td>
<td>-2.07E+01</td>
<td>71</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.17E+01</td>
<td>38</td>
<td>-2.24E+01</td>
<td>72</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.93E+01</td>
<td>39</td>
<td>-2.01E+01</td>
<td>73</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.91E+01</td>
<td>40</td>
<td>-2.06E+01</td>
<td>74</td>
<td>-2.16E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-2.12E+01</td>
<td>41</td>
<td>-1.98E+01</td>
<td>75</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-2.02E+01</td>
<td>42</td>
<td>-1.95E+01</td>
<td>76</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-2.09E+01</td>
<td>43</td>
<td>-1.98E+01</td>
<td>77</td>
<td>-2.08E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.98E+01</td>
<td>44</td>
<td>-2.12E+01</td>
<td>78</td>
<td>-1.82E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1.88E+01</td>
<td>45</td>
<td>-2.19E+01</td>
<td>79</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.92E+01</td>
<td>46</td>
<td>-1.86E+01</td>
<td>80</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.95E+01</td>
<td>47</td>
<td>-2.10E+01</td>
<td>81</td>
<td>-2.04E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-1.91E+01</td>
<td>48</td>
<td>-2.03E+01</td>
<td>82</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.87E+01</td>
<td>49</td>
<td>-2.03E+01</td>
<td>83</td>
<td>-2.11E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-2.09E+01</td>
<td>50</td>
<td>-2.05E+01</td>
<td>84</td>
<td>-2.02E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-2.00E+01</td>
<td>51</td>
<td>-1.80E+01</td>
<td>85</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-2.06E+01</td>
<td>52</td>
<td>-2.18E+01</td>
<td>86</td>
<td>-2.14E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.90E+01</td>
<td>53</td>
<td>-2.04E+01</td>
<td>87</td>
<td>-2.15E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-2.21E+01</td>
<td>54</td>
<td>-1.85E+01</td>
<td>88</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.97E+01</td>
<td>55</td>
<td>-1.98E+01</td>
<td>89</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.87E+01</td>
<td>56</td>
<td>-2.05E+01</td>
<td>90</td>
<td>-2.05E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-2.08E+01</td>
<td>57</td>
<td>-2.02E+01</td>
<td>91</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.11E+01</td>
<td>58</td>
<td>-2.07E+01</td>
<td>92</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.93E+01</td>
<td>59</td>
<td>-2.10E+01</td>
<td>93</td>
<td>-1.97E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.87E+01</td>
<td>60</td>
<td>-2.17E+01</td>
<td>94</td>
<td>-1.88E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.95E+01</td>
<td>61</td>
<td>-2.08E+01</td>
<td>95</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.96E+01</td>
<td>62</td>
<td>-2.00E+01</td>
<td>96</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-1.90E+01</td>
<td>63</td>
<td>-1.96E+01</td>
<td>97</td>
<td>-2.09E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-2.04E+01</td>
<td>64</td>
<td>-1.92E+01</td>
<td>98</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-2.13E+01</td>
<td>65</td>
<td>-2.07E+01</td>
<td>99</td>
<td>-2.02E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-2.03E+01</td>
<td>66</td>
<td>-1.99E+01</td>
<td>100</td>
<td>-1.89E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.83E+01</td>
<td>67</td>
<td>-2.01E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-1.92E+01</td>
<td>68</td>
<td>-1.94E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.59 – Sampled Values for Parameter SHFTL_T2:PRMX_LOG (LHS Variable 70) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (log(m2))</th>
<th>#</th>
<th>Value (log(m2))</th>
<th>#</th>
<th>Value (log(m2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>-1.89E+01</td>
<td>35</td>
<td>-1.93E+01</td>
<td>69</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.18E+01</td>
<td>36</td>
<td>-1.86E+01</td>
<td>70</td>
<td>-2.12E+01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.10E+01</td>
<td>37</td>
<td>-2.04E+01</td>
<td>71</td>
<td>-1.98E+01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.10E+01</td>
<td>38</td>
<td>-1.83E+01</td>
<td>72</td>
<td>-2.11E+01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-1.91E+01</td>
<td>39</td>
<td>-1.97E+01</td>
<td>73</td>
<td>-2.17E+01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-2.05E+01</td>
<td>40</td>
<td>-2.12E+01</td>
<td>74</td>
<td>-2.14E+01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-2.02E+01</td>
<td>41</td>
<td>-1.98E+01</td>
<td>75</td>
<td>-2.13E+01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.99E+01</td>
<td>42</td>
<td>-2.02E+01</td>
<td>76</td>
<td>-1.85E+01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-2.16E+01</td>
<td>43</td>
<td>-1.90E+01</td>
<td>77</td>
<td>-1.96E+01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-2.10E+01</td>
<td>44</td>
<td>-2.19E+01</td>
<td>78</td>
<td>-2.21E+01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-2.05E+01</td>
<td>45</td>
<td>-2.14E+01</td>
<td>79</td>
<td>-2.01E+01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.92E+01</td>
<td>46</td>
<td>-2.06E+01</td>
<td>80</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-2.00E+01</td>
<td>47</td>
<td>-1.97E+01</td>
<td>81</td>
<td>-1.94E+01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-2.00E+01</td>
<td>48</td>
<td>-2.03E+01</td>
<td>82</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.96E+01</td>
<td>49</td>
<td>-1.97E+01</td>
<td>83</td>
<td>-1.90E+01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-2.01E+01</td>
<td>50</td>
<td>-2.01E+01</td>
<td>84</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-2.06E+01</td>
<td>51</td>
<td>-1.82E+01</td>
<td>85</td>
<td>-1.93E+01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-2.09E+01</td>
<td>52</td>
<td>-1.96E+01</td>
<td>86</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.88E+01</td>
<td>53</td>
<td>-2.07E+01</td>
<td>87</td>
<td>-1.86E+01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-2.02E+01</td>
<td>54</td>
<td>-2.15E+01</td>
<td>88</td>
<td>-2.03E+01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.96E+01</td>
<td>55</td>
<td>-1.92E+01</td>
<td>89</td>
<td>-2.13E+01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-2.02E+01</td>
<td>56</td>
<td>-2.03E+01</td>
<td>90</td>
<td>-2.04E+01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-2.08E+01</td>
<td>57</td>
<td>-2.06E+01</td>
<td>91</td>
<td>-1.99E+01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-1.88E+01</td>
<td>58</td>
<td>-2.03E+01</td>
<td>92</td>
<td>-2.20E+01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-2.15E+01</td>
<td>59</td>
<td>-2.01E+01</td>
<td>93</td>
<td>-2.08E+01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-1.95E+01</td>
<td>60</td>
<td>-2.04E+01</td>
<td>94</td>
<td>-1.95E+01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.81E+01</td>
<td>61</td>
<td>-2.05E+01</td>
<td>95</td>
<td>-1.84E+01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.98E+01</td>
<td>62</td>
<td>-1.89E+01</td>
<td>96</td>
<td>-1.91E+01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-2.00E+01</td>
<td>63</td>
<td>-1.99E+01</td>
<td>97</td>
<td>-2.05E+01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.93E+01</td>
<td>64</td>
<td>-2.07E+01</td>
<td>98</td>
<td>-1.87E+01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-2.04E+01</td>
<td>65</td>
<td>-1.97E+01</td>
<td>99</td>
<td>-1.92E+01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.90E+01</td>
<td>66</td>
<td>-2.08E+01</td>
<td>100</td>
<td>-2.00E+01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-1.94E+01</td>
<td>67</td>
<td>-1.99E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-2.23E+01</td>
<td>68</td>
<td>-2.09E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (log(m²))</td>
<td>Vector</td>
<td>#</td>
<td>Value (log(m²))</td>
<td>Vector</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------</td>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1.87E+01</td>
<td>35</td>
<td>69</td>
<td>-1.97E+01</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-2.08E+01</td>
<td>36</td>
<td>70</td>
<td>-2.02E+01</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-2.01E+01</td>
<td>37</td>
<td>71</td>
<td>-1.82E+01</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-2.02E+01</td>
<td>38</td>
<td>72</td>
<td>-2.06E+01</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-2.00E+01</td>
<td>39</td>
<td>73</td>
<td>-2.09E+01</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.88E+01</td>
<td>40</td>
<td>74</td>
<td>-1.87E+01</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-1.98E+01</td>
<td>41</td>
<td>75</td>
<td>-1.91E+01</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-1.85E+01</td>
<td>42</td>
<td>76</td>
<td>-2.11E+01</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-2.11E+01</td>
<td>43</td>
<td>77</td>
<td>-2.02E+01</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-1.99E+01</td>
<td>44</td>
<td>78</td>
<td>-2.19E+01</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-2.09E+01</td>
<td>45</td>
<td>79</td>
<td>-1.96E+01</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-1.95E+01</td>
<td>46</td>
<td>80</td>
<td>-1.80E+01</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>-1.99E+01</td>
<td>47</td>
<td>81</td>
<td>-1.84E+01</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-2.01E+01</td>
<td>48</td>
<td>82</td>
<td>-2.07E+01</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.99E+01</td>
<td>49</td>
<td>83</td>
<td>-1.96E+01</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-1.97E+01</td>
<td>50</td>
<td>84</td>
<td>-2.00E+01</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-1.95E+01</td>
<td>51</td>
<td>85</td>
<td>-1.97E+01</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-2.19E+01</td>
<td>52</td>
<td>86</td>
<td>-1.93E+01</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-2.15E+01</td>
<td>53</td>
<td>87</td>
<td>-1.97E+01</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-1.99E+01</td>
<td>54</td>
<td>88</td>
<td>-1.92E+01</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>-1.93E+01</td>
<td>55</td>
<td>89</td>
<td>-2.03E+01</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-1.94E+01</td>
<td>56</td>
<td>90</td>
<td>-2.04E+01</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.96E+01</td>
<td>57</td>
<td>91</td>
<td>-2.10E+01</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.04E+01</td>
<td>58</td>
<td>92</td>
<td>-2.17E+01</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.92E+01</td>
<td>59</td>
<td>93</td>
<td>-2.03E+01</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-2.17E+01</td>
<td>60</td>
<td>94</td>
<td>-2.14E+01</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>-1.86E+01</td>
<td>61</td>
<td>95</td>
<td>-2.13E+01</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-1.88E+01</td>
<td>62</td>
<td>96</td>
<td>-1.91E+01</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-2.21E+01</td>
<td>63</td>
<td>97</td>
<td>-2.04E+01</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.90E+01</td>
<td>64</td>
<td>98</td>
<td>-1.98E+01</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>-2.23E+01</td>
<td>65</td>
<td>99</td>
<td>-1.86E+01</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.92E+01</td>
<td>66</td>
<td>100</td>
<td>-1.96E+01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>-2.01E+01</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-2.06E+01</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.60 – Sampled Values for Parameter WAS_AREA:BIOGENFC (LHS Variable 71)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector 1</th>
<th>Value (dimensionless)</th>
<th>Replicate</th>
<th>Vector 2</th>
<th>Value (dimensionless)</th>
<th>Replicate</th>
<th>Vector 3</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.26E-01</td>
<td>35</td>
<td>2.27E-01</td>
<td>69</td>
<td>7.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.07E-01</td>
<td>36</td>
<td>9.16E-01</td>
<td>70</td>
<td>6.16E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.32E-01</td>
<td>37</td>
<td>9.97E-01</td>
<td>71</td>
<td>1.81E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.46E-01</td>
<td>38</td>
<td>8.34E-01</td>
<td>72</td>
<td>4.18E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.80E-01</td>
<td>39</td>
<td>6.56E-01</td>
<td>73</td>
<td>7.00E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.53E-01</td>
<td>40</td>
<td>3.39E-01</td>
<td>74</td>
<td>4.68E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.43E-01</td>
<td>41</td>
<td>2.71E-01</td>
<td>75</td>
<td>1.02E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.96E-01</td>
<td>42</td>
<td>6.86E-01</td>
<td>76</td>
<td>2.11E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.59E-01</td>
<td>43</td>
<td>7.56E-01</td>
<td>77</td>
<td>8.81E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.29E-02</td>
<td>44</td>
<td>8.98E-02</td>
<td>78</td>
<td>3.29E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.74E-01</td>
<td>45</td>
<td>5.15E-01</td>
<td>79</td>
<td>6.26E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.61E-01</td>
<td>46</td>
<td>9.82E-01</td>
<td>80</td>
<td>3.81E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.28E-01</td>
<td>47</td>
<td>9.05E-01</td>
<td>81</td>
<td>7.33E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.18E-01</td>
<td>48</td>
<td>5.49E-01</td>
<td>82</td>
<td>1.50E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.80E-01</td>
<td>49</td>
<td>5.85E-01</td>
<td>83</td>
<td>1.21E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7.72E-01</td>
<td>50</td>
<td>8.19E-01</td>
<td>84</td>
<td>6.32E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>7.88E-01</td>
<td>51</td>
<td>7.05E-01</td>
<td>85</td>
<td>9.45E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8.51E-01</td>
<td>52</td>
<td>8.46E-01</td>
<td>86</td>
<td>1.52E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.88E-02</td>
<td>53</td>
<td>4.03E-01</td>
<td>87</td>
<td>8.76E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.28E-01</td>
<td>54</td>
<td>2.98E-01</td>
<td>88</td>
<td>2.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8.64E-01</td>
<td>55</td>
<td>9.21E-01</td>
<td>89</td>
<td>2.53E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>2.03E-01</td>
<td>56</td>
<td>6.62E-02</td>
<td>90</td>
<td>1.34E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5.51E-01</td>
<td>57</td>
<td>1.70E-01</td>
<td>91</td>
<td>5.73E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7.94E-01</td>
<td>58</td>
<td>2.69E-01</td>
<td>92</td>
<td>6.62E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.82E-01</td>
<td>59</td>
<td>9.94E-02</td>
<td>93</td>
<td>4.98E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8.28E-01</td>
<td>60</td>
<td>1.94E-01</td>
<td>94</td>
<td>1.99E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.77E-01</td>
<td>61</td>
<td>2.82E-03</td>
<td>95</td>
<td>6.47E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.71E-01</td>
<td>62</td>
<td>5.93E-01</td>
<td>96</td>
<td>9.58E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>9.40E-01</td>
<td>63</td>
<td>9.68E-01</td>
<td>97</td>
<td>4.90E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5.39E-01</td>
<td>64</td>
<td>5.64E-01</td>
<td>98</td>
<td>3.17E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.07E-01</td>
<td>65</td>
<td>2.88E-01</td>
<td>99</td>
<td>4.38E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5.60E-02</td>
<td>66</td>
<td>2.34E-02</td>
<td>100</td>
<td>7.46E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.06E-01</td>
<td>67</td>
<td>5.06E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>8.95E-01</td>
<td>68</td>
<td>7.13E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.60 – Sampled Values for Parameter WAS_AREA:BIOGENFC (LHS Variable 71) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>9.97E-01</td>
<td>35</td>
<td>4.31E-01</td>
<td>69</td>
<td>2.07E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.07E-01</td>
<td>36</td>
<td>6.93E-01</td>
<td>70</td>
<td>6.83E-01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.01E-01</td>
<td>37</td>
<td>2.59E-01</td>
<td>71</td>
<td>9.60E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.87E-02</td>
<td>38</td>
<td>9.03E-01</td>
<td>72</td>
<td>1.34E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7.79E-01</td>
<td>39</td>
<td>8.17E-01</td>
<td>73</td>
<td>1.80E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.56E-01</td>
<td>40</td>
<td>8.25E-01</td>
<td>74</td>
<td>2.39E-01</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.44E-01</td>
<td>41</td>
<td>4.65E-01</td>
<td>75</td>
<td>8.06E-01</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.79E-02</td>
<td>42</td>
<td>8.38E-01</td>
<td>76</td>
<td>5.18E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.98E-01</td>
<td>43</td>
<td>6.20E-01</td>
<td>77</td>
<td>8.49E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8.86E-01</td>
<td>44</td>
<td>3.32E-01</td>
<td>78</td>
<td>9.78E-01</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.45E-01</td>
<td>45</td>
<td>1.23E-01</td>
<td>79</td>
<td>2.99E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.45E-01</td>
<td>46</td>
<td>2.74E-01</td>
<td>80</td>
<td>1.64E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.30E-01</td>
<td>47</td>
<td>5.73E-01</td>
<td>81</td>
<td>5.52E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>9.45E-01</td>
<td>48</td>
<td>5.82E-01</td>
<td>82</td>
<td>9.32E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.49E-01</td>
<td>49</td>
<td>4.80E-01</td>
<td>83</td>
<td>7.64E-01</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.16E-01</td>
<td>50</td>
<td>5.29E-01</td>
<td>84</td>
<td>1.12E-01</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.94E-01</td>
<td>51</td>
<td>4.25E-01</td>
<td>85</td>
<td>2.90E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7.37E-01</td>
<td>52</td>
<td>4.19E-01</td>
<td>86</td>
<td>8.56E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.77E-01</td>
<td>53</td>
<td>4.90E-01</td>
<td>87</td>
<td>3.11E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.58E-01</td>
<td>54</td>
<td>9.53E-01</td>
<td>88</td>
<td>7.43E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.69E-01</td>
<td>55</td>
<td>7.48E-02</td>
<td>89</td>
<td>1.04E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.61E-01</td>
<td>56</td>
<td>4.03E-02</td>
<td>90</td>
<td>3.57E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1.82E-01</td>
<td>57</td>
<td>2.88E-01</td>
<td>91</td>
<td>3.48E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3.88E-01</td>
<td>58</td>
<td>9.13E-01</td>
<td>92</td>
<td>6.36E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>9.26E-01</td>
<td>59</td>
<td>7.90E-01</td>
<td>93</td>
<td>1.54E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.70E-01</td>
<td>60</td>
<td>6.70E-01</td>
<td>94</td>
<td>3.03E-01</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.79E-02</td>
<td>61</td>
<td>7.30E-01</td>
<td>95</td>
<td>1.47E-01</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.33E-01</td>
<td>62</td>
<td>9.40E-02</td>
<td>96</td>
<td>8.71E-01</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.98E-01</td>
<td>63</td>
<td>9.86E-01</td>
<td>97</td>
<td>2.24E-01</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.55E-01</td>
<td>64</td>
<td>8.91E-01</td>
<td>98</td>
<td>5.36E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.75E-02</td>
<td>65</td>
<td>7.86E-01</td>
<td>99</td>
<td>3.30E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4.01E-01</td>
<td>66</td>
<td>2.61E-01</td>
<td>100</td>
<td>4.97E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1.76E-01</td>
<td>67</td>
<td>8.63E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>7.07E-01</td>
<td>68</td>
<td>7.15E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.60 – Sampled Values for Parameter WAS_AREA:BIOGENFC (LHS Variable 71) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.46E-01</td>
<td>35</td>
<td>1.22E-01</td>
<td>69</td>
<td>6.95E-01</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4.80E-01</td>
<td>36</td>
<td>7.99E-01</td>
<td>70</td>
<td>2.87E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.78E-01</td>
<td>37</td>
<td>2.80E-01</td>
<td>71</td>
<td>6.45E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8.40E-01</td>
<td>38</td>
<td>8.59E-01</td>
<td>72</td>
<td>5.61E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.31E-01</td>
<td>39</td>
<td>6.89E-01</td>
<td>73</td>
<td>3.79E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.36E-01</td>
<td>40</td>
<td>5.44E-01</td>
<td>74</td>
<td>2.96E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.26E-01</td>
<td>41</td>
<td>9.05E-01</td>
<td>75</td>
<td>5.99E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.06E-01</td>
<td>42</td>
<td>1.75E-01</td>
<td>76</td>
<td>9.66E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.06E-01</td>
<td>43</td>
<td>3.49E-01</td>
<td>77</td>
<td>3.28E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.96E-01</td>
<td>44</td>
<td>5.74E-01</td>
<td>78</td>
<td>1.69E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9.35E-01</td>
<td>45</td>
<td>6.77E-01</td>
<td>79</td>
<td>1.01E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.66E-01</td>
<td>46</td>
<td>9.19E-01</td>
<td>80</td>
<td>1.59E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7.44E-01</td>
<td>47</td>
<td>1.81E-01</td>
<td>81</td>
<td>2.46E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.18E-01</td>
<td>48</td>
<td>7.08E-01</td>
<td>82</td>
<td>4.97E-02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.87E-01</td>
<td>49</td>
<td>2.54E-01</td>
<td>83</td>
<td>7.80E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.63E-01</td>
<td>50</td>
<td>8.15E-02</td>
<td>84</td>
<td>7.74E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.53E-01</td>
<td>51</td>
<td>7.91E-02</td>
<td>85</td>
<td>4.52E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8.99E-01</td>
<td>52</td>
<td>6.53E-01</td>
<td>86</td>
<td>9.20E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.39E-01</td>
<td>53</td>
<td>9.88E-01</td>
<td>87</td>
<td>9.99E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>6.69E-01</td>
<td>54</td>
<td>1.47E-01</td>
<td>88</td>
<td>1.85E-02</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8.65E-01</td>
<td>55</td>
<td>2.60E-01</td>
<td>89</td>
<td>7.55E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6.32E-01</td>
<td>56</td>
<td>3.10E-01</td>
<td>90</td>
<td>3.71E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>6.07E-01</td>
<td>57</td>
<td>5.89E-01</td>
<td>91</td>
<td>4.34E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.90E-01</td>
<td>58</td>
<td>8.11E-01</td>
<td>92</td>
<td>9.42E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8.88E-01</td>
<td>59</td>
<td>5.44E-02</td>
<td>93</td>
<td>6.23E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.30E-01</td>
<td>60</td>
<td>4.21E-01</td>
<td>94</td>
<td>2.10E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5.31E-01</td>
<td>61</td>
<td>6.39E-02</td>
<td>95</td>
<td>3.58E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.28E-01</td>
<td>62</td>
<td>7.62E-01</td>
<td>96</td>
<td>9.77E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3.07E-01</td>
<td>63</td>
<td>2.98E-02</td>
<td>97</td>
<td>9.59E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.65E-04</td>
<td>64</td>
<td>5.12E-01</td>
<td>98</td>
<td>2.34E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7.19E-01</td>
<td>65</td>
<td>2.22E-01</td>
<td>99</td>
<td>6.16E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8.08E-01</td>
<td>66</td>
<td>8.45E-01</td>
<td>100</td>
<td>1.15E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.81E-01</td>
<td>67</td>
<td>1.92E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9.11E-02</td>
<td>68</td>
<td>5.04E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.61 – Sampled Values for Parameter PCS_T1:POROSITY (LHS Variable 72)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.34E-01</td>
<td>35</td>
<td>1.61E-01</td>
<td>69</td>
<td>1.60E-01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.45E-01</td>
<td>36</td>
<td>1.26E-01</td>
<td>70</td>
<td>9.90E-02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.78E-02</td>
<td>37</td>
<td>1.21E-01</td>
<td>71</td>
<td>6.62E-02</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.65E-01</td>
<td>38</td>
<td>8.58E-02</td>
<td>72</td>
<td>1.05E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.91E-02</td>
<td>39</td>
<td>1.87E-01</td>
<td>73</td>
<td>1.19E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.06E-01</td>
<td>40</td>
<td>8.80E-02</td>
<td>74</td>
<td>1.80E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.20E-01</td>
<td>41</td>
<td>1.65E-01</td>
<td>75</td>
<td>1.39E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.46E-01</td>
<td>42</td>
<td>9.81E-02</td>
<td>76</td>
<td>9.41E-02</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.62E-02</td>
<td>43</td>
<td>1.22E-01</td>
<td>77</td>
<td>1.11E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9.06E-02</td>
<td>44</td>
<td>1.68E-01</td>
<td>78</td>
<td>1.56E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.72E-01</td>
<td>45</td>
<td>8.07E-02</td>
<td>79</td>
<td>1.82E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.54E-01</td>
<td>46</td>
<td>9.51E-02</td>
<td>80</td>
<td>1.14E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.33E-01</td>
<td>47</td>
<td>6.79E-02</td>
<td>81</td>
<td>1.44E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.15E-01</td>
<td>48</td>
<td>1.85E-01</td>
<td>82</td>
<td>1.49E-01</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.55E-01</td>
<td>49</td>
<td>1.58E-01</td>
<td>83</td>
<td>1.77E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.74E-01</td>
<td>50</td>
<td>1.02E-01</td>
<td>84</td>
<td>1.50E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8.25E-02</td>
<td>51</td>
<td>1.03E-01</td>
<td>85</td>
<td>1.04E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9.18E-02</td>
<td>52</td>
<td>1.63E-01</td>
<td>86</td>
<td>7.35E-02</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.29E-01</td>
<td>53</td>
<td>7.25E-02</td>
<td>87</td>
<td>1.76E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.38E-01</td>
<td>54</td>
<td>8.73E-02</td>
<td>88</td>
<td>1.23E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8.32E-02</td>
<td>55</td>
<td>1.83E-01</td>
<td>89</td>
<td>1.58E-01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>9.74E-02</td>
<td>56</td>
<td>8.44E-02</td>
<td>90</td>
<td>1.36E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.52E-01</td>
<td>57</td>
<td>7.10E-02</td>
<td>91</td>
<td>7.46E-02</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.43E-01</td>
<td>58</td>
<td>1.28E-01</td>
<td>92</td>
<td>1.74E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.64E-01</td>
<td>59</td>
<td>9.34E-02</td>
<td>93</td>
<td>6.94E-02</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.07E-01</td>
<td>60</td>
<td>1.79E-01</td>
<td>94</td>
<td>1.51E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.70E-01</td>
<td>61</td>
<td>1.70E-01</td>
<td>95</td>
<td>1.67E-01</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.28E-01</td>
<td>62</td>
<td>1.25E-01</td>
<td>96</td>
<td>1.76E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.10E-01</td>
<td>63</td>
<td>1.46E-01</td>
<td>97</td>
<td>8.90E-02</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.42E-01</td>
<td>64</td>
<td>8.03E-02</td>
<td>98</td>
<td>1.16E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7.08E-02</td>
<td>65</td>
<td>1.35E-01</td>
<td>99</td>
<td>1.10E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.48E-01</td>
<td>66</td>
<td>1.01E-01</td>
<td>100</td>
<td>1.84E-01</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.31E-01</td>
<td>67</td>
<td>1.32E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.13E-01</td>
<td>68</td>
<td>1.18E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.61 – Sampled Values for Parameter PCS_T1:POROSITY (LHS Variable 72) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.02E-02</td>
<td>35</td>
<td>1.14E-01</td>
<td>69</td>
<td>1.51E-01</td>
</tr>
<tr>
<td>2</td>
<td>6.96E-02</td>
<td>36</td>
<td>1.57E-01</td>
<td>70</td>
<td>1.80E-01</td>
</tr>
<tr>
<td>3</td>
<td>1.49E-01</td>
<td>37</td>
<td>1.67E-01</td>
<td>71</td>
<td>1.52E-01</td>
</tr>
<tr>
<td>4</td>
<td>7.22E-02</td>
<td>38</td>
<td>7.62E-02</td>
<td>72</td>
<td>1.25E-01</td>
</tr>
<tr>
<td>5</td>
<td>1.17E-01</td>
<td>39</td>
<td>6.65E-02</td>
<td>73</td>
<td>9.64E-02</td>
</tr>
<tr>
<td>6</td>
<td>1.22E-01</td>
<td>40</td>
<td>1.11E-01</td>
<td>74</td>
<td>8.83E-02</td>
</tr>
<tr>
<td>7</td>
<td>1.39E-01</td>
<td>41</td>
<td>1.29E-01</td>
<td>75</td>
<td>9.91E-02</td>
</tr>
<tr>
<td>8</td>
<td>1.08E-01</td>
<td>42</td>
<td>9.86E-02</td>
<td>76</td>
<td>1.33E-01</td>
</tr>
<tr>
<td>9</td>
<td>1.47E-01</td>
<td>43</td>
<td>1.61E-01</td>
<td>77</td>
<td>1.79E-01</td>
</tr>
<tr>
<td>10</td>
<td>1.75E-01</td>
<td>44</td>
<td>1.31E-01</td>
<td>78</td>
<td>1.01E-01</td>
</tr>
<tr>
<td>11</td>
<td>7.52E-02</td>
<td>45</td>
<td>1.16E-01</td>
<td>79</td>
<td>1.41E-01</td>
</tr>
<tr>
<td>12</td>
<td>1.25E-01</td>
<td>46</td>
<td>1.42E-01</td>
<td>80</td>
<td>9.45E-02</td>
</tr>
<tr>
<td>13</td>
<td>1.54E-01</td>
<td>47</td>
<td>8.39E-02</td>
<td>81</td>
<td>8.68E-02</td>
</tr>
<tr>
<td>14</td>
<td>1.00E-01</td>
<td>48</td>
<td>1.55E-01</td>
<td>82</td>
<td>1.72E-01</td>
</tr>
<tr>
<td>15</td>
<td>1.06E-01</td>
<td>49</td>
<td>8.92E-02</td>
<td>83</td>
<td>1.15E-01</td>
</tr>
<tr>
<td>16</td>
<td>1.71E-01</td>
<td>50</td>
<td>1.68E-01</td>
<td>84</td>
<td>1.84E-01</td>
</tr>
<tr>
<td>17</td>
<td>1.70E-01</td>
<td>51</td>
<td>7.79E-02</td>
<td>85</td>
<td>1.21E-01</td>
</tr>
<tr>
<td>18</td>
<td>7.19E-02</td>
<td>52</td>
<td>1.75E-01</td>
<td>86</td>
<td>8.56E-02</td>
</tr>
<tr>
<td>19</td>
<td>8.45E-02</td>
<td>53</td>
<td>1.87E-01</td>
<td>87</td>
<td>1.48E-01</td>
</tr>
<tr>
<td>20</td>
<td>1.20E-01</td>
<td>54</td>
<td>1.83E-01</td>
<td>88</td>
<td>1.19E-01</td>
</tr>
<tr>
<td>21</td>
<td>1.04E-01</td>
<td>55</td>
<td>1.28E-01</td>
<td>89</td>
<td>8.28E-02</td>
</tr>
<tr>
<td>22</td>
<td>1.35E-01</td>
<td>56</td>
<td>9.33E-02</td>
<td>90</td>
<td>1.63E-01</td>
</tr>
<tr>
<td>23</td>
<td>1.62E-01</td>
<td>57</td>
<td>1.45E-01</td>
<td>91</td>
<td>1.82E-01</td>
</tr>
<tr>
<td>24</td>
<td>1.30E-01</td>
<td>58</td>
<td>1.28E-01</td>
<td>92</td>
<td>1.13E-01</td>
</tr>
<tr>
<td>25</td>
<td>1.51E-01</td>
<td>59</td>
<td>7.92E-02</td>
<td>93</td>
<td>1.07E-01</td>
</tr>
<tr>
<td>26</td>
<td>9.19E-02</td>
<td>60</td>
<td>1.86E-01</td>
<td>94</td>
<td>1.56E-01</td>
</tr>
<tr>
<td>27</td>
<td>1.60E-01</td>
<td>61</td>
<td>9.55E-02</td>
<td>95</td>
<td>1.03E-01</td>
</tr>
<tr>
<td>28</td>
<td>1.59E-01</td>
<td>62</td>
<td>8.12E-02</td>
<td>96</td>
<td>1.36E-01</td>
</tr>
<tr>
<td>29</td>
<td>1.35E-01</td>
<td>63</td>
<td>1.45E-01</td>
<td>97</td>
<td>1.77E-01</td>
</tr>
<tr>
<td>30</td>
<td>1.64E-01</td>
<td>64</td>
<td>7.04E-02</td>
<td>98</td>
<td>1.73E-01</td>
</tr>
<tr>
<td>31</td>
<td>9.05E-02</td>
<td>65</td>
<td>7.40E-02</td>
<td>99</td>
<td>1.09E-01</td>
</tr>
<tr>
<td>32</td>
<td>1.10E-01</td>
<td>66</td>
<td>1.24E-01</td>
<td>100</td>
<td>1.66E-01</td>
</tr>
<tr>
<td>33</td>
<td>1.38E-01</td>
<td>67</td>
<td>1.77E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1.43E-01</td>
<td>68</td>
<td>6.75E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicate</td>
<td>#</td>
<td>Value (dimensionless)</td>
<td>#</td>
<td>Value (dimensionless)</td>
<td>#</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----------------------</td>
<td>-----</td>
<td>-----------------------</td>
<td>-----</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.41E-01</td>
<td>35</td>
<td>1.36E-01</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.41E-01</td>
<td>36</td>
<td>6.98E-02</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.30E-01</td>
<td>37</td>
<td>7.49E-02</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.12E-01</td>
<td>38</td>
<td>1.52E-01</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.42E-02</td>
<td>39</td>
<td>7.99E-02</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.67E-01</td>
<td>40</td>
<td>1.65E-01</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.84E-01</td>
<td>41</td>
<td>1.04E-01</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.62E-01</td>
<td>42</td>
<td>1.69E-01</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.55E-01</td>
<td>43</td>
<td>1.10E-01</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.23E-01</td>
<td>44</td>
<td>1.68E-01</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>8.35E-02</td>
<td>45</td>
<td>1.03E-01</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8.14E-02</td>
<td>46</td>
<td>1.77E-01</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>8.76E-02</td>
<td>47</td>
<td>6.79E-02</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.13E-01</td>
<td>48</td>
<td>9.28E-02</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.25E-01</td>
<td>49</td>
<td>6.89E-02</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.46E-01</td>
<td>50</td>
<td>9.13E-02</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>8.94E-02</td>
<td>51</td>
<td>1.23E-01</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.19E-01</td>
<td>52</td>
<td>1.37E-01</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.32E-01</td>
<td>53</td>
<td>1.51E-01</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.26E-01</td>
<td>54</td>
<td>9.64E-02</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8.63E-02</td>
<td>55</td>
<td>1.66E-01</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.48E-01</td>
<td>56</td>
<td>1.75E-01</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.94E-02</td>
<td>57</td>
<td>7.89E-02</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.80E-01</td>
<td>58</td>
<td>1.01E-01</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.31E-01</td>
<td>59</td>
<td>1.39E-01</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1.33E-01</td>
<td>60</td>
<td>1.10E-01</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>7.11E-02</td>
<td>61</td>
<td>1.70E-01</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.22E-01</td>
<td>62</td>
<td>1.58E-01</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.38E-01</td>
<td>63</td>
<td>1.53E-01</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.08E-01</td>
<td>64</td>
<td>7.24E-02</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.52E-01</td>
<td>65</td>
<td>1.87E-01</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.43E-01</td>
<td>66</td>
<td>1.82E-01</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>9.46E-02</td>
<td>67</td>
<td>8.78E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.58E-01</td>
<td>68</td>
<td>1.29E-01</td>
<td></td>
</tr>
</tbody>
</table>
Table A.62 – Sampled Values for Parameter PCS_T2:POROSITY (LHS Variable 73)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.09E-02</td>
<td>35</td>
<td>2.51E-02</td>
<td>69</td>
<td>5.35E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.47E-02</td>
<td>36</td>
<td>3.26E-02</td>
<td>70</td>
<td>5.72E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.09E-02</td>
<td>37</td>
<td>4.97E-02</td>
<td>71</td>
<td>5.38E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.68E-02</td>
<td>38</td>
<td>6.56E-02</td>
<td>72</td>
<td>3.84E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.06E-02</td>
<td>39</td>
<td>7.07E-02</td>
<td>73</td>
<td>3.62E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.31E-02</td>
<td>40</td>
<td>5.53E-02</td>
<td>74</td>
<td>5.00E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.79E-02</td>
<td>41</td>
<td>7.42E-02</td>
<td>75</td>
<td>4.02E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.57E-02</td>
<td>42</td>
<td>7.00E-02</td>
<td>76</td>
<td>7.24E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.71E-02</td>
<td>43</td>
<td>5.48E-02</td>
<td>77</td>
<td>5.60E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>7.19E-02</td>
<td>44</td>
<td>5.41E-02</td>
<td>78</td>
<td>7.38E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.12E-02</td>
<td>45</td>
<td>3.40E-02</td>
<td>79</td>
<td>4.55E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.95E-02</td>
<td>46</td>
<td>6.45E-02</td>
<td>80</td>
<td>4.17E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.38E-02</td>
<td>47</td>
<td>4.46E-02</td>
<td>81</td>
<td>3.88E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.50E-02</td>
<td>48</td>
<td>6.51E-02</td>
<td>82</td>
<td>3.97E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.56E-02</td>
<td>49</td>
<td>3.70E-02</td>
<td>83</td>
<td>4.29E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>4.89E-02</td>
<td>50</td>
<td>3.33E-02</td>
<td>84</td>
<td>5.96E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.63E-02</td>
<td>51</td>
<td>4.76E-02</td>
<td>85</td>
<td>6.28E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.35E-02</td>
<td>52</td>
<td>3.43E-02</td>
<td>86</td>
<td>6.89E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.36E-02</td>
<td>53</td>
<td>4.81E-02</td>
<td>87</td>
<td>6.65E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.11E-02</td>
<td>54</td>
<td>4.43E-02</td>
<td>88</td>
<td>7.27E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>2.61E-02</td>
<td>55</td>
<td>3.22E-02</td>
<td>89</td>
<td>3.18E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5.06E-02</td>
<td>56</td>
<td>2.81E-02</td>
<td>90</td>
<td>2.91E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>6.24E-02</td>
<td>57</td>
<td>2.97E-02</td>
<td>91</td>
<td>5.27E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4.24E-02</td>
<td>58</td>
<td>4.13E-02</td>
<td>92</td>
<td>7.00E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.00E-02</td>
<td>59</td>
<td>5.17E-02</td>
<td>93</td>
<td>6.72E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.79E-02</td>
<td>60</td>
<td>4.67E-02</td>
<td>94</td>
<td>6.16E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.88E-02</td>
<td>61</td>
<td>5.21E-02</td>
<td>95</td>
<td>4.93E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>6.90E-02</td>
<td>62</td>
<td>5.85E-02</td>
<td>96</td>
<td>2.66E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5.68E-02</td>
<td>63</td>
<td>7.34E-02</td>
<td>97</td>
<td>5.14E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.47E-02</td>
<td>64</td>
<td>6.82E-02</td>
<td>98</td>
<td>2.73E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.79E-02</td>
<td>65</td>
<td>4.63E-02</td>
<td>99</td>
<td>6.65E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.01E-02</td>
<td>66</td>
<td>2.79E-02</td>
<td>100</td>
<td>5.94E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.53E-02</td>
<td>67</td>
<td>7.13E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>2.87E-02</td>
<td>68</td>
<td>4.59E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.62 – Sampled Values for Parameter PCS_T2:POROSITY (LHS Variable 73) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6.03E-02</td>
<td>35</td>
<td>6.29E-02</td>
<td>69</td>
<td>7.40E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.87E-02</td>
<td>36</td>
<td>6.70E-02</td>
<td>70</td>
<td>4.06E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.92E-02</td>
<td>37</td>
<td>5.18E-02</td>
<td>71</td>
<td>2.55E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.09E-02</td>
<td>38</td>
<td>7.47E-02</td>
<td>72</td>
<td>5.26E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.88E-02</td>
<td>39</td>
<td>2.96E-02</td>
<td>73</td>
<td>4.89E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.71E-02</td>
<td>40</td>
<td>4.13E-02</td>
<td>74</td>
<td>6.69E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.35E-02</td>
<td>41</td>
<td>2.78E-02</td>
<td>75</td>
<td>3.36E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.60E-02</td>
<td>42</td>
<td>4.25E-02</td>
<td>76</td>
<td>3.09E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2.65E-02</td>
<td>43</td>
<td>2.71E-02</td>
<td>77</td>
<td>6.48E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.30E-02</td>
<td>44</td>
<td>7.08E-02</td>
<td>78</td>
<td>3.59E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6.56E-02</td>
<td>45</td>
<td>5.37E-02</td>
<td>79</td>
<td>3.50E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4.81E-02</td>
<td>46</td>
<td>6.79E-02</td>
<td>80</td>
<td>5.46E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.66E-02</td>
<td>47</td>
<td>5.30E-02</td>
<td>81</td>
<td>2.55E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.32E-02</td>
<td>48</td>
<td>6.11E-02</td>
<td>82</td>
<td>5.21E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.24E-02</td>
<td>49</td>
<td>3.63E-02</td>
<td>83</td>
<td>4.74E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.56E-02</td>
<td>50</td>
<td>5.90E-02</td>
<td>84</td>
<td>3.84E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4.16E-02</td>
<td>51</td>
<td>5.77E-02</td>
<td>85</td>
<td>5.98E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.54E-02</td>
<td>52</td>
<td>3.28E-02</td>
<td>86</td>
<td>6.85E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.21E-02</td>
<td>53</td>
<td>5.61E-02</td>
<td>87</td>
<td>4.64E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.55E-02</td>
<td>54</td>
<td>4.91E-02</td>
<td>88</td>
<td>6.96E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.67E-02</td>
<td>55</td>
<td>3.69E-02</td>
<td>89</td>
<td>3.14E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.33E-02</td>
<td>56</td>
<td>5.41E-02</td>
<td>90</td>
<td>6.51E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.78E-02</td>
<td>57</td>
<td>3.03E-02</td>
<td>91</td>
<td>7.10E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.82E-02</td>
<td>58</td>
<td>5.67E-02</td>
<td>92</td>
<td>6.19E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.08E-02</td>
<td>59</td>
<td>3.49E-02</td>
<td>93</td>
<td>5.90E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5.12E-02</td>
<td>60</td>
<td>7.29E-02</td>
<td>94</td>
<td>4.43E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.79E-02</td>
<td>61</td>
<td>7.01E-02</td>
<td>95</td>
<td>3.99E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.02E-02</td>
<td>62</td>
<td>7.19E-02</td>
<td>96</td>
<td>3.70E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>6.63E-02</td>
<td>63</td>
<td>7.21E-02</td>
<td>97</td>
<td>4.37E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>7.34E-02</td>
<td>64</td>
<td>3.95E-02</td>
<td>98</td>
<td>2.81E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6.85E-02</td>
<td>65</td>
<td>4.21E-02</td>
<td>99</td>
<td>2.89E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6.93E-02</td>
<td>66</td>
<td>5.03E-02</td>
<td>100</td>
<td>6.43E-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.17E-02</td>
<td>67</td>
<td>4.48E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4.96E-02</td>
<td>68</td>
<td>3.43E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.62 – Sampled Values for Parameter PCS_T2:POROSITY (LHS Variable 73) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>5.84E-02</td>
<td>35</td>
<td>7.26E-02</td>
<td>69</td>
<td>7.20E-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6.68E-02</td>
<td>36</td>
<td>4.49E-02</td>
<td>70</td>
<td>3.17E-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.59E-02</td>
<td>37</td>
<td>7.31E-02</td>
<td>71</td>
<td>3.98E-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.01E-02</td>
<td>38</td>
<td>2.59E-02</td>
<td>72</td>
<td>6.21E-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.96E-02</td>
<td>39</td>
<td>2.50E-02</td>
<td>73</td>
<td>6.85E-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.35E-02</td>
<td>40</td>
<td>3.30E-02</td>
<td>74</td>
<td>4.22E-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.89E-02</td>
<td>41</td>
<td>6.51E-02</td>
<td>75</td>
<td>7.09E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.71E-02</td>
<td>42</td>
<td>2.68E-02</td>
<td>76</td>
<td>5.04E-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.37E-02</td>
<td>43</td>
<td>6.59E-02</td>
<td>77</td>
<td>2.92E-02</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.08E-02</td>
<td>44</td>
<td>6.89E-02</td>
<td>78</td>
<td>3.22E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.45E-02</td>
<td>45</td>
<td>6.34E-02</td>
<td>79</td>
<td>5.97E-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.59E-02</td>
<td>46</td>
<td>6.06E-02</td>
<td>80</td>
<td>3.52E-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6.40E-02</td>
<td>47</td>
<td>4.05E-02</td>
<td>81</td>
<td>5.48E-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6.97E-02</td>
<td>48</td>
<td>5.17E-02</td>
<td>82</td>
<td>5.59E-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.51E-02</td>
<td>49</td>
<td>2.82E-02</td>
<td>83</td>
<td>7.21E-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5.11E-02</td>
<td>50</td>
<td>2.70E-02</td>
<td>84</td>
<td>3.61E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5.32E-02</td>
<td>51</td>
<td>2.63E-02</td>
<td>85</td>
<td>4.14E-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.75E-02</td>
<td>52</td>
<td>4.89E-02</td>
<td>86</td>
<td>3.81E-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>6.63E-02</td>
<td>53</td>
<td>6.76E-02</td>
<td>87</td>
<td>3.90E-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.29E-02</td>
<td>54</td>
<td>6.45E-02</td>
<td>88</td>
<td>6.94E-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3.26E-02</td>
<td>55</td>
<td>5.08E-02</td>
<td>89</td>
<td>4.95E-02</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.03E-02</td>
<td>56</td>
<td>5.54E-02</td>
<td>90</td>
<td>4.30E-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>4.66E-02</td>
<td>57</td>
<td>5.69E-02</td>
<td>91</td>
<td>4.05E-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5.30E-02</td>
<td>58</td>
<td>7.11E-02</td>
<td>92</td>
<td>7.38E-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6.01E-02</td>
<td>59</td>
<td>6.45E-02</td>
<td>93</td>
<td>5.62E-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>6.72E-02</td>
<td>60</td>
<td>6.13E-02</td>
<td>94</td>
<td>3.76E-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.86E-02</td>
<td>61</td>
<td>5.76E-02</td>
<td>95</td>
<td>4.19E-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.68E-02</td>
<td>62</td>
<td>5.94E-02</td>
<td>96</td>
<td>5.22E-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>3.12E-02</td>
<td>63</td>
<td>6.28E-02</td>
<td>97</td>
<td>4.64E-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.00E-02</td>
<td>64</td>
<td>4.43E-02</td>
<td>98</td>
<td>3.43E-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2.78E-02</td>
<td>65</td>
<td>5.71E-02</td>
<td>99</td>
<td>7.47E-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.95E-02</td>
<td>66</td>
<td>4.81E-02</td>
<td>100</td>
<td>3.71E-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.45E-02</td>
<td>67</td>
<td>7.44E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6.20E-02</td>
<td>68</td>
<td>3.36E-02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.63 – Sampled Values for Parameter PCS_T3:POROSITY (LHS Variable 74)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2.35E-02</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.41E-02</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.31E-02</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.87E-02</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.44E-02</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.57E-02</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9.41E-03</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.36E-02</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.71E-02</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.05E-02</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.63E-02</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.83E-02</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4.26E-03</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4.89E-02</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.30E-02</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.75E-02</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3.68E-03</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4.33E-02</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.45E-03</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.54E-02</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8.85E-03</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.15E-02</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3.28E-02</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.94E-02</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.99E-02</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>7.06E-03</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>3.89E-02</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>2.47E-03</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.39E-02</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.72E-02</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>3.04E-02</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>2.04E-02</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3.13E-02</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1.78E-02</td>
<td>68</td>
</tr>
</tbody>
</table>
Table A.63 – Sampled Values for Parameter PCS_T3:POROSITY (LHS Variable 74) (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.95E-02 35 1.85E-02 69 1.75E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.55E-02 36 2.51E-02 70 7.02E-03</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.37E-02 37 2.96E-02 71 1.80E-02</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.31E-02 38 2.71E-02 72 3.16E-02</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.95E-02 39 1.35E-02 73 1.47E-02</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.13E-02 40 1.51E-02 74 1.63E-02</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.95E-02 41 2.54E-02 75 2.55E-02</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.69E-02 42 4.25E-02 76 1.41E-02</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.12E-03 43 1.74E-02 77 3.67E-02</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.04E-02 44 4.02E-02 78 3.51E-02</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.89E-02 45 4.88E-02 79 3.19E-02</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.18E-02 46 9.56E-03 80 1.10E-02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.99E-03 47 4.30E-02 81 1.87E-03</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6.51E-03 48 1.72E-02 82 3.90E-02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.01E-02 49 1.30E-02 83 3.14E-02</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.46E-02 50 4.40E-02 84 2.86E-02</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2.20E-03 51 3.46E-02 85 2.88E-02</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.59E-02 52 1.90E-02 86 2.41E-02</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.23E-02 53 4.06E-02 87 3.88E-02</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.08E-02 54 4.90E-02 88 5.46E-03</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.16E-02 55 3.09E-02 89 9.91E-03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2.75E-03 56 5.12E-02 90 2.25E-02</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.23E-02 57 4.86E-03 91 3.57E-02</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.74E-02 58 3.33E-02 92 4.27E-03</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.46E-03 59 2.56E-02 93 2.08E-02</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.97E-02 60 1.54E-02 94 2.81E-02</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>8.51E-03 61 7.34E-03 95 3.48E-02</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3.89E-02 62 2.24E-02 96 1.82E-02</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.10E-02 63 3.19E-03 97 2.62E-02</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>8.06E-03 64 3.52E-02 98 2.38E-02</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3.09E-02 65 2.77E-02 99 1.96E-02</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.64E-02 66 3.39E-02 100 2.01E-02</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1.21E-02 67 2.48E-02</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.58E-02 68 1.04E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table A.63 – Sampled Values for Parameter PCS_T3:POROSITY (LHS Variable 74)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>#</th>
<th>Value</th>
<th>Value</th>
<th>#</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2.17E-02</td>
<td>35</td>
<td>1.93E-02</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>4.38E-02</td>
<td>36</td>
<td>1.28E-02</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>1.72E-02</td>
<td>37</td>
<td>4.45E-02</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>2.11E-02</td>
<td>38</td>
<td>2.20E-02</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>3.45E-02</td>
<td>39</td>
<td>2.44E-02</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>4.20E-02</td>
<td>40</td>
<td>8.99E-03</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>2.88E-02</td>
<td>41</td>
<td>1.49E-02</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>4.39E-02</td>
<td>42</td>
<td>1.70E-02</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>1.39E-02</td>
<td>43</td>
<td>4.14E-02</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>1.05E-02</td>
<td>44</td>
<td>3.62E-02</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11</td>
<td>1.86E-02</td>
<td>45</td>
<td>2.60E-02</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>3.35E-02</td>
<td>46</td>
<td>1.47E-02</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>13</td>
<td>4.72E-03</td>
<td>47</td>
<td>3.52E-02</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>1.19E-02</td>
<td>48</td>
<td>4.94E-02</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
<td>3.98E-02</td>
<td>49</td>
<td>2.11E-02</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>4.36E-02</td>
<td>50</td>
<td>5.11E-03</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>3.04E-02</td>
<td>51</td>
<td>1.91E-03</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18</td>
<td>1.96E-02</td>
<td>52</td>
<td>2.24E-02</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>19</td>
<td>2.23E-02</td>
<td>53</td>
<td>4.59E-02</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>2.42E-02</td>
<td>54</td>
<td>3.09E-02</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21</td>
<td>3.23E-02</td>
<td>55</td>
<td>1.13E-02</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>22</td>
<td>2.51E-03</td>
<td>56</td>
<td>1.07E-02</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>23</td>
<td>7.12E-03</td>
<td>57</td>
<td>2.95E-03</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24</td>
<td>4.65E-02</td>
<td>58</td>
<td>2.46E-02</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>1.00E-02</td>
<td>59</td>
<td>2.58E-02</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>26</td>
<td>2.79E-02</td>
<td>60</td>
<td>4.54E-03</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>27</td>
<td>5.01E-02</td>
<td>61</td>
<td>9.46E-03</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>28</td>
<td>2.91E-02</td>
<td>62</td>
<td>2.83E-02</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>29</td>
<td>1.90E-02</td>
<td>63</td>
<td>2.67E-02</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>2.20E-02</td>
<td>64</td>
<td>2.39E-02</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>31</td>
<td>1.58E-02</td>
<td>65</td>
<td>3.19E-02</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>32</td>
<td>3.07E-02</td>
<td>66</td>
<td>4.69E-02</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>33</td>
<td>3.76E-02</td>
<td>67</td>
<td>2.74E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>34</td>
<td>3.85E-02</td>
<td>68</td>
<td>3.17E-02</td>
<td></td>
</tr>
</tbody>
</table>
Table A.64 – Sampled Values for Parameter PCS_T2:POR2PERM (LHS Variable 75), PCS_T3:POR2PERM

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1.45E+00</td>
<td>35</td>
<td>4.06E-01</td>
<td>69</td>
<td>8.49E-01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.60E-01</td>
<td>36</td>
<td>4.91E-01</td>
<td>70</td>
<td>1.06E+00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.16E-02</td>
<td>37</td>
<td>3.65E-01</td>
<td>71</td>
<td>-8.00E-01</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-6.87E-01</td>
<td>38</td>
<td>-1.14E+00</td>
<td>72</td>
<td>-5.28E-01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-4.40E-01</td>
<td>39</td>
<td>3.58E-01</td>
<td>73</td>
<td>4.49E-01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.44E-01</td>
<td>40</td>
<td>8.35E-01</td>
<td>74</td>
<td>8.67E-03</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>-3.15E-02</td>
<td>41</td>
<td>2.97E-01</td>
<td>75</td>
<td>4.56E-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-8.58E-01</td>
<td>42</td>
<td>7.20E-01</td>
<td>76</td>
<td>-4.15E-01</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7.61E-01</td>
<td>43</td>
<td>9.32E-01</td>
<td>77</td>
<td>1.43E-01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.47E-01</td>
<td>44</td>
<td>1.35E+00</td>
<td>78</td>
<td>-6.44E-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-6.52E-01</td>
<td>45</td>
<td>-6.63E-01</td>
<td>79</td>
<td>-1.23E-01</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.05E-01</td>
<td>46</td>
<td>-7.46E-01</td>
<td>80</td>
<td>1.24E-01</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>5.82E-01</td>
<td>47</td>
<td>3.32E-01</td>
<td>81</td>
<td>-2.11E-01</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-4.88E-01</td>
<td>48</td>
<td>6.07E-01</td>
<td>82</td>
<td>4.75E-01</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6.27E-02</td>
<td>49</td>
<td>2.28E-01</td>
<td>83</td>
<td>1.27E+00</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-9.32E-01</td>
<td>50</td>
<td>6.93E-01</td>
<td>84</td>
<td>-7.52E-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>9.03E-01</td>
<td>51</td>
<td>-4.66E-02</td>
<td>85</td>
<td>-3.40E-01</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-1.40E-01</td>
<td>52</td>
<td>-7.31E-01</td>
<td>86</td>
<td>-3.31E-01</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.91E-01</td>
<td>53</td>
<td>1.65E-01</td>
<td>87</td>
<td>-3.83E-01</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-2.93E-01</td>
<td>54</td>
<td>1.13E+00</td>
<td>88</td>
<td>-4.47E-01</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1.58E-01</td>
<td>55</td>
<td>-1.29E+00</td>
<td>89</td>
<td>-1.91E-01</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>7.92E-02</td>
<td>56</td>
<td>5.58E-01</td>
<td>90</td>
<td>-8.89E-01</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>-1.05E-01</td>
<td>57</td>
<td>-1.09E+00</td>
<td>91</td>
<td>-5.46E-01</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-2.28E-01</td>
<td>58</td>
<td>5.23E-01</td>
<td>92</td>
<td>-8.16E-01</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5.55E-01</td>
<td>59</td>
<td>1.02E+00</td>
<td>93</td>
<td>-5.64E-01</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-4.84E-01</td>
<td>60</td>
<td>-3.03E-01</td>
<td>94</td>
<td>-1.19E+00</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4.32E-01</td>
<td>61</td>
<td>-1.63E+00</td>
<td>95</td>
<td>1.68E+00</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-8.26E-03</td>
<td>62</td>
<td>3.13E-01</td>
<td>96</td>
<td>1.19E+00</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>-2.48E-01</td>
<td>63</td>
<td>1.93E-01</td>
<td>97</td>
<td>1.50E+00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-1.00E+00</td>
<td>64</td>
<td>-2.72E-01</td>
<td>98</td>
<td>-5.82E-01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>9.57E-01</td>
<td>65</td>
<td>9.91E-02</td>
<td>99</td>
<td>-9.69E-01</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>-1.78E-01</td>
<td>66</td>
<td>-1.31E+00</td>
<td>100</td>
<td>-1.63E-01</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6.65E-01</td>
<td>67</td>
<td>-3.61E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-6.22E-01</td>
<td>68</td>
<td>8.04E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A.64 – Sampled Values for Parameter PCS_T2:POR2PERM (LHS Variable 75), PCS_T3:POR2PERM ¹ (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>#</th>
<th>Value (dimensionless)</th>
<th>#</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>7.73E-01</td>
<td>35</td>
<td>-7.36E-01</td>
<td>69</td>
<td>7.39E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-4.32E-01</td>
<td>36</td>
<td>-4.72E-01</td>
<td>70</td>
<td>4.08E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.49E-01</td>
<td>37</td>
<td>1.80E-01</td>
<td>71</td>
<td>-1.44E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1.24E-01</td>
<td>38</td>
<td>-5.08E-01</td>
<td>72</td>
<td>9.66E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.95E-01</td>
<td>39</td>
<td>2.06E-01</td>
<td>73</td>
<td>5.53E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-6.29E-01</td>
<td>40</td>
<td>4.54E-02</td>
<td>74</td>
<td>-2.86E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.08E-01</td>
<td>41</td>
<td>7.44E-02</td>
<td>75</td>
<td>3.37E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>-2.43E-01</td>
<td>42</td>
<td>-6.68E-01</td>
<td>76</td>
<td>3.27E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-1.29E+00</td>
<td>43</td>
<td>-7.51E-01</td>
<td>77</td>
<td>-2.35E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.32E-01</td>
<td>44</td>
<td>-3.50E-02</td>
<td>78</td>
<td>-5.75E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4.77E-01</td>
<td>45</td>
<td>-8.23E-01</td>
<td>79</td>
<td>2.79E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.72E-01</td>
<td>46</td>
<td>-2.74E-01</td>
<td>80</td>
<td>-1.33E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.47E-01</td>
<td>47</td>
<td>-1.97E-01</td>
<td>81</td>
<td>-7.87E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.70E+00</td>
<td>48</td>
<td>-6.96E-01</td>
<td>82</td>
<td>5.49E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-1.10E+00</td>
<td>49</td>
<td>-3.41E-01</td>
<td>83</td>
<td>3.19E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-2.17E-01</td>
<td>50</td>
<td>-6.91E-02</td>
<td>84</td>
<td>1.00E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>-4.54E-01</td>
<td>51</td>
<td>-9.79E-01</td>
<td>85</td>
<td>-4.10E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1.27E-01</td>
<td>52</td>
<td>-1.17E+00</td>
<td>86</td>
<td>5.97E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>-1.03E+00</td>
<td>53</td>
<td>-9.28E-02</td>
<td>87</td>
<td>7.86E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.21E+00</td>
<td>54</td>
<td>6.75E-01</td>
<td>88</td>
<td>-4.02E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.87E-01</td>
<td>55</td>
<td>2.97E-01</td>
<td>89</td>
<td>-1.54E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1.33E+00</td>
<td>56</td>
<td>-1.42E+00</td>
<td>90</td>
<td>-1.68E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>9.49E-02</td>
<td>57</td>
<td>-9.00E-01</td>
<td>91</td>
<td>4.43E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1.09E+00</td>
<td>58</td>
<td>6.41E-01</td>
<td>92</td>
<td>1.13E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-1.58E+00</td>
<td>59</td>
<td>-3.62E-01</td>
<td>93</td>
<td>3.47E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2.35E-01</td>
<td>60</td>
<td>-5.90E-01</td>
<td>94</td>
<td>1.28E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>8.27E-01</td>
<td>61</td>
<td>-8.90E-02</td>
<td>95</td>
<td>3.15E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-6.49E-01</td>
<td>62</td>
<td>-9.23E-01</td>
<td>96</td>
<td>-1.06E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>8.79E-01</td>
<td>63</td>
<td>-3.16E-01</td>
<td>97</td>
<td>3.92E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.56E-01</td>
<td>64</td>
<td>-3.83E-01</td>
<td>98</td>
<td>-8.58E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>8.75E-01</td>
<td>65</td>
<td>-3.33E-01</td>
<td>99</td>
<td>1.41E+00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1.98E-01</td>
<td>66</td>
<td>5.29E-01</td>
<td>100</td>
<td>-5.39E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>5.58E-01</td>
<td>67</td>
<td>-1.37E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>-5.30E-01</td>
<td>68</td>
<td>1.23E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table A.64 – Sampled Values for Parameter PCS_T2:POR2PERM (LHS Variable 75), PCS_T3:POR2PERM ¹ (continued)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Vector</th>
<th>Value (dimensionless)</th>
<th>Value (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.61E-01</td>
<td>35</td>
<td>1.68E-01</td>
<td>69</td>
<td>5.36E-02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-7.39E-01</td>
<td>36</td>
<td>8.27E-01</td>
<td>70</td>
<td>5.04E-01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.72E-01</td>
<td>37</td>
<td>2.87E-01</td>
<td>71</td>
<td>8.66E-01</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-4.64E-01</td>
<td>38</td>
<td>1.65E+00</td>
<td>72</td>
<td>-6.65E-01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-2.52E-01</td>
<td>39</td>
<td>1.07E+00</td>
<td>73</td>
<td>9.23E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.36E+00</td>
<td>40</td>
<td>-1.45E+00</td>
<td>74</td>
<td>-3.03E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-5.06E-01</td>
<td>41</td>
<td>1.20E+00</td>
<td>75</td>
<td>-9.12E-01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-7.60E-01</td>
<td>42</td>
<td>-1.06E-01</td>
<td>76</td>
<td>1.20E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1.17E-01</td>
<td>43</td>
<td>8.99E-01</td>
<td>77</td>
<td>-5.62E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.07E-02</td>
<td>44</td>
<td>-8.26E-01</td>
<td>78</td>
<td>-6.10E-01</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-1.17E+00</td>
<td>45</td>
<td>-8.01E-01</td>
<td>79</td>
<td>-2.60E-01</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-3.96E-02</td>
<td>46</td>
<td>2.48E-01</td>
<td>80</td>
<td>5.13E-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-8.41E-02</td>
<td>47</td>
<td>1.49E-01</td>
<td>81</td>
<td>-8.56E-01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9.72E-01</td>
<td>48</td>
<td>4.59E-01</td>
<td>82</td>
<td>-2.57E-02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-1.97E-01</td>
<td>49</td>
<td>-9.19E-01</td>
<td>83</td>
<td>-3.75E-01</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-1.58E+00</td>
<td>50</td>
<td>-4.15E-01</td>
<td>84</td>
<td>-9.62E-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>6.35E-01</td>
<td>51</td>
<td>3.07E-01</td>
<td>85</td>
<td>-2.13E-01</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-1.24E+00</td>
<td>52</td>
<td>-2.23E-01</td>
<td>86</td>
<td>3.85E-01</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-1.33E-01</td>
<td>53</td>
<td>5.84E-01</td>
<td>87</td>
<td>3.48E-01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-6.88E-01</td>
<td>54</td>
<td>1.03E+00</td>
<td>88</td>
<td>1.96E-01</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-1.73E-01</td>
<td>55</td>
<td>-4.36E-01</td>
<td>89</td>
<td>2.84E-02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>-1.03E+00</td>
<td>56</td>
<td>-1.57E-01</td>
<td>90</td>
<td>-2.85E-01</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-5.40E-01</td>
<td>57</td>
<td>3.25E-01</td>
<td>91</td>
<td>-3.25E-01</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-1.12E+00</td>
<td>58</td>
<td>-4.67E-01</td>
<td>92</td>
<td>-5.16E-01</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.05E-01</td>
<td>59</td>
<td>-6.04E-01</td>
<td>93</td>
<td>-3.39E-01</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8.24E-02</td>
<td>60</td>
<td>1.28E+00</td>
<td>94</td>
<td>7.64E-01</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2.69E-01</td>
<td>61</td>
<td>-6.39E-01</td>
<td>95</td>
<td>1.47E+00</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7.03E-01</td>
<td>62</td>
<td>2.31E-01</td>
<td>96</td>
<td>5.41E-01</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-8.55E-03</td>
<td>63</td>
<td>1.11E+00</td>
<td>97</td>
<td>8.04E-01</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.34E+00</td>
<td>64</td>
<td>4.02E-01</td>
<td>98</td>
<td>-3.94E-01</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4.42E-01</td>
<td>65</td>
<td>6.30E-01</td>
<td>99</td>
<td>6.64E-01</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.29E-01</td>
<td>66</td>
<td>5.58E-01</td>
<td>100</td>
<td>-1.06E+00</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9.78E-02</td>
<td>67</td>
<td>1.16E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>7.16E-01</td>
<td>68</td>
<td>-6.64E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: ¹Only one-time duration was sampled in LHS for this parameter. The corresponding parameters for a tertiary time duration (T3) were set equal to the previous time duration.
APPENDIX B – WASTE STREAM INVENTORY DATA USED IN THE CRA-2019 PA

The PA code EPAUNI is implemented to calculate EPA units for each waste stream (Kicker 2019a). The EPA Units for each waste stream are listed in Appendix B for both CH and RH waste decayed to the following time periods: years 0, 100, 125, 175, 350, 1000, 3000, 5000, 7500, and 10000. The EPAUNI output files includes the calculated EPA units for each waste stream. The EPAUNI output files epu_CRA19_ch.out2, and epu_CRA19_rh.out2 are located in a directory on the Solaris running SunOS 5.11. In the host server of santana.sandia.gov, the directory of EPAUNI output files is /nfs/data/CVSLIB/WIPP_ANALYSES/CRA19/EPAUNI/Output.
<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m3)</th>
<th>Time (yr)</th>
<th>EPA Units / m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-T001</td>
<td>1.33E+02</td>
<td>0</td>
<td>1.20E-03</td>
</tr>
<tr>
<td>AE-T003</td>
<td>1.77E+01</td>
<td>100</td>
<td>1.05E-03</td>
</tr>
<tr>
<td>WP-AECHDM</td>
<td>1.02E+02</td>
<td>125</td>
<td>1.03E-03</td>
</tr>
<tr>
<td>WP-AECHHM</td>
<td>1.40E+01</td>
<td>175</td>
<td>9.79E-04</td>
</tr>
<tr>
<td>WP-MU-W002</td>
<td>4.50E+00</td>
<td>350</td>
<td>4.36E-04</td>
</tr>
<tr>
<td>AW-5648N</td>
<td>2.10E+01</td>
<td>1000</td>
<td>3.91E-04</td>
</tr>
<tr>
<td>AW-N027.531</td>
<td>5.73E+01</td>
<td>3000</td>
<td>3.49E-04</td>
</tr>
<tr>
<td>AW-T033.125</td>
<td>3.48E+01</td>
<td>5000</td>
<td>3.13E-04</td>
</tr>
<tr>
<td>WP-AEC-102</td>
<td>6.05E+01</td>
<td>7500</td>
<td>2.91E-04</td>
</tr>
<tr>
<td>WP-AEC-105</td>
<td>2.94E+00</td>
<td>10000</td>
<td>2.57E-04</td>
</tr>
<tr>
<td>WP-BN-501</td>
<td>4.20E+01</td>
<td>0</td>
<td>1.70E-03</td>
</tr>
<tr>
<td>WP-BN-522</td>
<td>2.06E+01</td>
<td>100</td>
<td>1.64E-03</td>
</tr>
<tr>
<td>WP-BN-523</td>
<td>1.14E+01</td>
<td>125</td>
<td>1.58E-03</td>
</tr>
<tr>
<td>WP-BN-525</td>
<td>3.80E-01</td>
<td>175</td>
<td>1.49E-03</td>
</tr>
<tr>
<td>WP-BN-527</td>
<td>7.60E-01</td>
<td>350</td>
<td>1.30E-03</td>
</tr>
<tr>
<td>WP-BN-529</td>
<td>4.20E-01</td>
<td>1000</td>
<td>1.12E-03</td>
</tr>
<tr>
<td>WP-BN-538</td>
<td>2.96E+02</td>
<td>3000</td>
<td>6.86E-05</td>
</tr>
<tr>
<td>WP-BN-540</td>
<td>6.53E+03</td>
<td>5000</td>
<td>9.22E-04</td>
</tr>
<tr>
<td>IN-AE-102</td>
<td>6.05E+01</td>
<td>7500</td>
<td>1.37E-05</td>
</tr>
<tr>
<td>IN-AE-105</td>
<td>2.94E+00</td>
<td>10000</td>
<td>1.67E-06</td>
</tr>
<tr>
<td>IN-BC-203</td>
<td>6.46E+00</td>
<td>0</td>
<td>1.13E-02</td>
</tr>
<tr>
<td>IN-BN-501</td>
<td>4.20E-01</td>
<td>100</td>
<td>1.64E-03</td>
</tr>
<tr>
<td>IN-BN-522</td>
<td>2.06E+01</td>
<td>125</td>
<td>1.16E-03</td>
</tr>
<tr>
<td>IN-BN-523</td>
<td>1.14E+01</td>
<td>175</td>
<td>1.58E-03</td>
</tr>
<tr>
<td>IN-BN-525</td>
<td>3.80E-01</td>
<td>350</td>
<td>1.99E-03</td>
</tr>
<tr>
<td>IN-BN-527</td>
<td>7.60E-01</td>
<td>1000</td>
<td>2.89E-05</td>
</tr>
<tr>
<td>IN-BN-529</td>
<td>4.20E-01</td>
<td>3000</td>
<td>6.86E-05</td>
</tr>
<tr>
<td>IN-BN-538</td>
<td>2.96E+02</td>
<td>5000</td>
<td>9.22E-04</td>
</tr>
<tr>
<td>IN-BN-540</td>
<td>6.53E+03</td>
<td>7500</td>
<td>9.22E-04</td>
</tr>
<tr>
<td>IN-BN004</td>
<td>5.85E+01</td>
<td>0</td>
<td>1.70E-03</td>
</tr>
<tr>
<td>IN-BN222</td>
<td>7.24E+01</td>
<td>100</td>
<td>7.05E-03</td>
</tr>
<tr>
<td>IN-BN510</td>
<td>7.60E+01</td>
<td>125</td>
<td>1.05E-03</td>
</tr>
<tr>
<td>IN-BN510.1</td>
<td>1.79E+01</td>
<td>175</td>
<td>1.10E-03</td>
</tr>
<tr>
<td>IN-BN510.2</td>
<td>1.25E+01</td>
<td>350</td>
<td>1.10E-03</td>
</tr>
<tr>
<td>IN-BN510.3</td>
<td>3.83E+01</td>
<td>1000</td>
<td>1.20E-03</td>
</tr>
<tr>
<td>IN-BN510.4</td>
<td>2.67E+03</td>
<td>3000</td>
<td>5.91E-05</td>
</tr>
<tr>
<td>IN-BN600</td>
<td>1.13E+02</td>
<td>7500</td>
<td>3.17E-05</td>
</tr>
<tr>
<td>IN-BN835</td>
<td>2.48E+01</td>
<td>10000</td>
<td>2.27E-05</td>
</tr>
<tr>
<td>IN-BN836</td>
<td>7.41E+01</td>
<td>0</td>
<td>3.13E-04</td>
</tr>
</tbody>
</table>

Table B.1 – CH-TRU Waste Stream Inventory Data
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m3)</th>
<th>EPA Units / m3</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-TRU Waste Stream</td>
<td>Volume (m3)</td>
<td>EPA Units / m3</td>
<td>Time (yr)</td>
</tr>
<tr>
<td>IN-BINW216</td>
<td>5.91E+02</td>
<td>1.69E-02</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>IN-BINW218</td>
<td>9.52E-01</td>
<td>1.32E-04</td>
<td>1.21E-04</td>
</tr>
<tr>
<td>IN-BW-515</td>
<td>2.66E+00</td>
<td>1.26E-02</td>
<td>1.19E-02</td>
</tr>
<tr>
<td>IN-BW-516</td>
<td>3.80E+01</td>
<td>2.87E-03</td>
<td>2.74E-03</td>
</tr>
<tr>
<td>IN-BW-517</td>
<td>3.80E-01</td>
<td>6.70E-04</td>
<td>6.27E-04</td>
</tr>
<tr>
<td>IN-BNINW218</td>
<td>5.91E+02</td>
<td>1.69E-02</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>IN-BNINW218</td>
<td>9.52E-01</td>
<td>1.32E-04</td>
<td>1.21E-04</td>
</tr>
<tr>
<td>IN-BW-515</td>
<td>2.66E+00</td>
<td>1.26E-02</td>
<td>1.19E-02</td>
</tr>
<tr>
<td>IN-BW-516</td>
<td>3.80E+01</td>
<td>2.87E-03</td>
<td>2.74E-03</td>
</tr>
<tr>
<td>IN-BW-517</td>
<td>3.80E-01</td>
<td>6.70E-04</td>
<td>6.27E-04</td>
</tr>
<tr>
<td>IN-BNINW218</td>
<td>5.91E+02</td>
<td>1.69E-02</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>IN-BNINW218</td>
<td>9.52E-01</td>
<td>1.32E-04</td>
<td>1.21E-04</td>
</tr>
<tr>
<td>IN-BW-515</td>
<td>2.66E+00</td>
<td>1.26E-02</td>
<td>1.19E-02</td>
</tr>
<tr>
<td>IN-BW-516</td>
<td>3.80E+01</td>
<td>2.87E-03</td>
<td>2.74E-03</td>
</tr>
<tr>
<td>IN-BW-517</td>
<td>3.80E-01</td>
<td>6.70E-04</td>
<td>6.27E-04</td>
</tr>
<tr>
<td>IN-BNINW218</td>
<td>5.91E+02</td>
<td>1.69E-02</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>IN-BNINW218</td>
<td>9.52E-01</td>
<td>1.32E-04</td>
<td>1.21E-04</td>
</tr>
<tr>
<td>IN-BW-515</td>
<td>2.66E+00</td>
<td>1.26E-02</td>
<td>1.19E-02</td>
</tr>
<tr>
<td>IN-BW-516</td>
<td>3.80E+01</td>
<td>2.87E-03</td>
<td>2.74E-03</td>
</tr>
<tr>
<td>IN-BW-517</td>
<td>3.80E-01</td>
<td>6.70E-04</td>
<td>6.27E-04</td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN-RF-411</td>
<td>8.82E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-412</td>
<td>4.20E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-414</td>
<td>2.10E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-420</td>
<td>2.10E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-421</td>
<td>3.19E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-422</td>
<td>3.78E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-697</td>
<td>7.98E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-745</td>
<td>4.20E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-753</td>
<td>1.09E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-823</td>
<td>4.20E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-RF-990</td>
<td>2.27E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-SD-178</td>
<td>3.86E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-BNINW216</td>
<td>2.22E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-ID-RF-S3114</td>
<td>4.95E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-BN510.3</td>
<td>1.33E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN004</td>
<td>4.14E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN161</td>
<td>5.84E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN211</td>
<td>5.22E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN222</td>
<td>1.14E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN243</td>
<td>1.50E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN252</td>
<td>1.79E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN296</td>
<td>4.75E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN304</td>
<td>3.05E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN510</td>
<td>9.63E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN510.1</td>
<td>3.41E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN510.2</td>
<td>7.59E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN510.3</td>
<td>9.12E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN600</td>
<td>2.31E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN835</td>
<td>1.09E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-BN836</td>
<td>1.78E+03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CH-TRU Waste Stream Volume (m³) EPA Units / m³ Time (yr) Information Only
<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m3)</th>
<th>EPA Units / m3</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-BNINW216</td>
<td>6.19E+03</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>WP-BNINW218</td>
<td>6.08E+02</td>
<td>5.22E-02</td>
<td>8.06E-03</td>
</tr>
<tr>
<td>WP-ID-AECHDM</td>
<td>1.81E+01</td>
<td>6.33E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-AECHHH</td>
<td>8.38E+02</td>
<td>2.17E-02</td>
<td>1.06E-02</td>
</tr>
<tr>
<td>WP-ID-GEVNC-02</td>
<td>1.26E+00</td>
<td>8.08E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-LBNL-S54</td>
<td>2.10E+01</td>
<td>6.19E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-LL-M001-</td>
<td>4.32E+01</td>
<td>5.90E-04</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-LL-T004-</td>
<td>3.76E+00</td>
<td>2.13E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NRD.1</td>
<td>5.97E+00</td>
<td>8.39E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NT-RF-DE</td>
<td>1.88E+00</td>
<td>1.56E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTLBL-S3</td>
<td>2.09E+00</td>
<td>2.28E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTLLBL-</td>
<td>1.88E+00</td>
<td>4.98E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTLLNL-S</td>
<td>1.80E+00</td>
<td>4.35E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTLNL-S</td>
<td>1.40E+02</td>
<td>2.06E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTLRC-S5</td>
<td>2.10E-01</td>
<td>3.08E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTS-EGG-</td>
<td>2.10E-01</td>
<td>2.68E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTS-ITRI</td>
<td>2.10E-01</td>
<td>6.45E-04</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTS-ITR-</td>
<td>2.10E-01</td>
<td>2.13E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-NTVERB-S</td>
<td>3.76E+00</td>
<td>9.26E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-RF-BNL-A</td>
<td>2.10E-01</td>
<td>1.52E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-RF-S3114</td>
<td>3.46E+03</td>
<td>2.94E-04</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-RF-S3150</td>
<td>2.48E+02</td>
<td>3.19E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-RF-S5100</td>
<td>6.42E+02</td>
<td>4.35E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-RF-S5126</td>
<td>2.51E+02</td>
<td>1.52E-02</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-RF-S5300</td>
<td>2.79E+00</td>
<td>4.40E-04</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-SA-T001</td>
<td>5.88E+00</td>
<td>9.27E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-SDA-DEBR</td>
<td>5.42E+02</td>
<td>8.39E-03</td>
<td>7.96E-03</td>
</tr>
<tr>
<td>WP-ID-SDA-SLUD</td>
<td>5.76E+03</td>
<td>6.18E-03</td>
<td>7.96E-03</td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (yr)</td>
<td>Information Only</td>
</tr>
<tr>
<td>WP-ID-SDA-SOIL</td>
<td>1.07E+03</td>
<td>3.37E-03</td>
<td>2.89E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.48E-03</td>
<td>1.58E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.40E-03</td>
<td>1.45E-03</td>
</tr>
<tr>
<td>WP-ID-SNL-HCF-</td>
<td>2.72E+00</td>
<td>1.42E-03</td>
<td>9.89E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.23E-03</td>
<td>7.58E-04</td>
</tr>
<tr>
<td>WP-ID-SNL-SOUR</td>
<td>6.30E-01</td>
<td>6.69E-04</td>
<td>5.08E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.72E-04</td>
<td>3.89E-04</td>
</tr>
<tr>
<td>WP-INW161.001</td>
<td>1.93E+01</td>
<td>3.58E-02</td>
<td>3.27E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.02E-02</td>
<td>2.80E-02</td>
</tr>
<tr>
<td>WP-INW169.001</td>
<td>1.93E+01</td>
<td>4.72E-03</td>
<td>3.18E-03</td>
</tr>
<tr>
<td>WP-INW198.001</td>
<td>4.96E+00</td>
<td>3.35E-03</td>
<td>3.09E-03</td>
</tr>
<tr>
<td>WP-INW211.001</td>
<td>3.07E+02</td>
<td>5.42E-03</td>
<td>4.91E-04</td>
</tr>
<tr>
<td>WP-INW216.001</td>
<td>1.26E+03</td>
<td>1.42E-01</td>
<td>8.49E-04</td>
</tr>
<tr>
<td>WP-INW218.001</td>
<td>1.12E+03</td>
<td>3.91E-03</td>
<td>6.13E-04</td>
</tr>
<tr>
<td>WP-INW222.001</td>
<td>6.57E+01</td>
<td>1.95E-02</td>
<td>1.60E-02</td>
</tr>
<tr>
<td>WP-INW243.001</td>
<td>7.56E+01</td>
<td>1.53E-02</td>
<td>1.19E-02</td>
</tr>
<tr>
<td>WP-INW247.001R</td>
<td>1.18E+02</td>
<td>1.63E-02</td>
<td>1.16E-02</td>
</tr>
<tr>
<td>WP-INW252.001</td>
<td>6.15E+01</td>
<td>2.24E-02</td>
<td>2.04E-02</td>
</tr>
<tr>
<td>WP-INW276.001</td>
<td>1.03E+01</td>
<td>1.36E-02</td>
<td>1.26E-02</td>
</tr>
<tr>
<td>WP-INW276.002</td>
<td>1.62E+01</td>
<td>1.36E-02</td>
<td>1.21E-02</td>
</tr>
<tr>
<td>WP-INW276.003</td>
<td>1.88E+02</td>
<td>4.27E-02</td>
<td>3.81E-02</td>
</tr>
<tr>
<td>WP-INW276.004</td>
<td>4.73E+01</td>
<td>3.66E-02</td>
<td>3.25E-02</td>
</tr>
<tr>
<td>WP-INW296.001</td>
<td>9.87E+01</td>
<td>2.54E-02</td>
<td>2.42E-02</td>
</tr>
<tr>
<td>KN-B234TRU</td>
<td>4.38E+02</td>
<td>5.65E-03</td>
<td>4.71E-03</td>
</tr>
<tr>
<td>LA-CIN01.001</td>
<td>7.27E+02</td>
<td>2.81E-01</td>
<td>9.33E-02</td>
</tr>
<tr>
<td>LA-CIN02.001</td>
<td>1.21E+02</td>
<td>1.76E-02</td>
<td>1.38E-02</td>
</tr>
<tr>
<td>LA-CIN03.001</td>
<td>2.94E+00</td>
<td>8.55E-04</td>
<td>6.86E-04</td>
</tr>
<tr>
<td>LA-LA225D</td>
<td>4.62E+00</td>
<td>1.14E-03</td>
<td>8.51E-04</td>
</tr>
<tr>
<td>LA-LA238H0016</td>
<td>1.88E+00</td>
<td>2.23E-01</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>LA-LA238H0016R</td>
<td>2.10E-01</td>
<td>1.22E+00</td>
<td>7.94E-02</td>
</tr>
<tr>
<td>LA-LAMHD22238</td>
<td>1.88E+00</td>
<td>2.33E-02</td>
<td>5.11E-03</td>
</tr>
<tr>
<td>LA-LAMIN04S</td>
<td>8.40E-01</td>
<td>2.30E-01</td>
<td>1.43E-01</td>
</tr>
<tr>
<td>LA-LANHD01</td>
<td>2.98E+01</td>
<td>2.95E-03</td>
<td>2.60E-03</td>
</tr>
<tr>
<td>LA-LANHD22238</td>
<td>6.90E+00</td>
<td>2.53E-01</td>
<td>5.63E-04</td>
</tr>
<tr>
<td>LA-LANIN03NC</td>
<td>4.20E-01</td>
<td>5.28E-01</td>
<td>3.58E-01</td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (yr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LA-MHD01.001</td>
<td>5.86E+03</td>
<td></td>
</tr>
<tr>
<td>LA-MHD03.001</td>
<td>1.56E+03</td>
<td></td>
</tr>
<tr>
<td>LA-MHD04.001</td>
<td>1.00E+02</td>
<td></td>
</tr>
<tr>
<td>LA-MHD05-ITRI</td>
<td>4.61E+01</td>
<td></td>
</tr>
<tr>
<td>LA-MHD08.001</td>
<td>4.39E+00</td>
<td></td>
</tr>
<tr>
<td>LA-MHD09.001</td>
<td>2.48E+01</td>
<td></td>
</tr>
<tr>
<td>LA-MIN02-V.001</td>
<td>4.95E+01</td>
<td></td>
</tr>
<tr>
<td>LA-MIN03-NC.00</td>
<td>5.98E+01</td>
<td></td>
</tr>
<tr>
<td>LA-MIN04-S.001</td>
<td>5.65E+00</td>
<td></td>
</tr>
<tr>
<td>LA-MIN05-V.001</td>
<td>2.72E+00</td>
<td></td>
</tr>
<tr>
<td>LA-MSG04.001</td>
<td>6.25E+00</td>
<td></td>
</tr>
<tr>
<td>LA-OS-00-01.00</td>
<td>1.92E+02</td>
<td></td>
</tr>
<tr>
<td>LA-OS-00-04</td>
<td>2.10E+01</td>
<td></td>
</tr>
<tr>
<td>LA-TA-00-01</td>
<td>8.19E+01</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-10</td>
<td>6.64E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-14</td>
<td>9.40E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-28</td>
<td>1.05E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-30</td>
<td>2.10E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-CVD-C</td>
<td>2.94E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-07</td>
<td>6.36E+02</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-08</td>
<td>4.20E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-09</td>
<td>1.43E+01</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-12</td>
<td>3.46E+02</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-13</td>
<td>4.59E+02</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-15</td>
<td>3.36E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-16</td>
<td>5.50E+01</td>
<td></td>
</tr>
<tr>
<td>LA-TA-21-17</td>
<td>6.30E-01</td>
<td></td>
</tr>
<tr>
<td>LA-TA-50-18</td>
<td>4.20E-01</td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>LA-TA-50-19</td>
<td>6.30E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TA-55-19</td>
<td>5.68E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TA-55-21</td>
<td>2.31E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TA-55-30</td>
<td>2.25E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TA-55-38</td>
<td>8.40E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TRU-Empty-1</td>
<td>1.88E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TRU-Empty-5</td>
<td>1.32E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-TRU-Empty-8</td>
<td>8.08E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-LA-CIN01.00</td>
<td>1.72E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-LA-MHD01.00</td>
<td>3.92E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-LA-MHD04.00</td>
<td>5.64E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-CIN01.00</td>
<td>5.91E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-CIN02.00</td>
<td>9.40E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MHD01.00</td>
<td>4.36E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MHD03.00</td>
<td>5.95E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MHD04.00</td>
<td>1.30E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MHD05.IT</td>
<td>2.51E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MHD08.00</td>
<td>2.35E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MHD09.00</td>
<td>4.54E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MIN02-V.</td>
<td>6.52E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MIN03-NC</td>
<td>1.55E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MIN04-S.</td>
<td>1.88E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MIN05-V.</td>
<td>2.04E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC-LA-MIN06-G.</td>
<td>4.70E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-LA-CIN01.00</td>
<td>5.37E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-LA-MHD01.00</td>
<td>5.37E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-LA-MHD02-PT</td>
<td>6.30E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-LA-MHD02.00</td>
<td>1.37E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-LA-MHD03.00</td>
<td>7.28E+02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-LA-MHD04.00</td>
<td>5.17E+02</td>
<td>WP-LA-MHD05-IT</td>
<td>1.28E+01</td>
<td>8.04E-03</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-MHD08.00</td>
<td>9.24E+00</td>
<td>WP-LA-MHD09.00</td>
<td>1.05E+02</td>
<td>1.99E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-MHD10.00</td>
<td>6.58E+01</td>
<td>WP-LA-MHD11-V</td>
<td>1.11E+02</td>
<td>1.17E-01</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-MIN02-NC</td>
<td>8.02E+00</td>
<td>WP-LA-MIN03-NC</td>
<td>7.67E+01</td>
<td>7.64E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-MIN03-NC</td>
<td>1.47E+01</td>
<td>WP-LA-MIN04-S</td>
<td>6.77E+01</td>
<td>7.64E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-MIN04-S</td>
<td>2.10E+00</td>
<td>WP-LA-MIN05-S</td>
<td>4.18E+00</td>
<td>5.97E-04</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-01</td>
<td>4.20E-01</td>
<td>WP-LA-OS-00-01</td>
<td>2.61E+02</td>
<td>3.15E-01</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-03</td>
<td>1.47E+01</td>
<td>WP-LA-OS-00-03</td>
<td>7.33E+01</td>
<td>2.77E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-04</td>
<td>2.10E-01</td>
<td>WP-LA-OS-00-04</td>
<td>1.68E+00</td>
<td>6.30E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-01</td>
<td>4.20E-01</td>
<td>WP-LA-OS-00-01</td>
<td>1.33E+02</td>
<td>4.01E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-03</td>
<td>1.47E+01</td>
<td>WP-LA-OS-00-03</td>
<td>7.33E+01</td>
<td>2.77E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-04</td>
<td>2.10E-01</td>
<td>WP-LA-OS-00-04</td>
<td>1.68E+00</td>
<td>6.30E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-01</td>
<td>4.20E-01</td>
<td>WP-LA-OS-00-01</td>
<td>1.33E+02</td>
<td>4.01E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-03</td>
<td>1.47E+01</td>
<td>WP-LA-OS-00-03</td>
<td>7.33E+01</td>
<td>2.77E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-04</td>
<td>2.10E-01</td>
<td>WP-LA-OS-00-04</td>
<td>1.68E+00</td>
<td>6.30E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-01</td>
<td>4.20E-01</td>
<td>WP-LA-OS-00-01</td>
<td>1.33E+02</td>
<td>4.01E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-03</td>
<td>1.47E+01</td>
<td>WP-LA-OS-00-03</td>
<td>7.33E+01</td>
<td>2.77E-02</td>
<td>0</td>
</tr>
<tr>
<td>WP-LA-OS-00-04</td>
<td>2.10E-01</td>
<td>WP-LA-OS-00-04</td>
<td>1.68E+00</td>
<td>6.30E-02</td>
<td>0</td>
</tr>
<tr>
<td>CH-TRU Waste Stream</td>
<td>Volume (m³)</td>
<td>EPA Units / m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time (yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NT-RF-BERYL</td>
<td>2.96E+01</td>
<td>3.61E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NT-RF-GRAPH</td>
<td>3.78E+00</td>
<td>4.14E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NT-RF-METAL</td>
<td>6.09E+00</td>
<td>4.80E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NTLTLB-S5400</td>
<td>1.68E+00</td>
<td>3.67E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NTLRC-S5400</td>
<td>3.15E+00</td>
<td>1.51E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NTS54332R0</td>
<td>3.10E+02</td>
<td>6.12E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-NTS54COMR0</td>
<td>5.08E+01</td>
<td>6.97E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-CHEM-CH-HET</td>
<td>3.91E+01</td>
<td>2.11E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-CRF-CH-HET</td>
<td>4.20E+00</td>
<td>1.74E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-GENR-CH-HET</td>
<td>3.09E+01</td>
<td>1.33E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-IFEL-CH-HET</td>
<td>3.28E+01</td>
<td>4.08E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-ISTP-CH-HET</td>
<td>1.34E+02</td>
<td>1.45E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-MRF-CH-HET</td>
<td>8.61E+00</td>
<td>8.60E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-NBL-CH-HET</td>
<td>1.24E+01</td>
<td>5.61E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-NFS-CH-HET</td>
<td>1.07E+02</td>
<td>6.63E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-NFS-CH-HOM</td>
<td>9.24E+00</td>
<td>6.97E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-NFS-CH-SOIL</td>
<td>4.87E+00</td>
<td>7.15E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-OXIDE-CH-HE</td>
<td>1.13E+01</td>
<td>9.08E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-PGRD-CH-HET</td>
<td>6.72E+00</td>
<td>1.06E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-RADP-CH-HET</td>
<td>3.93E+00</td>
<td>3.46E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-REDC-CH-HET</td>
<td>9.92E+00</td>
<td>1.37E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-RF-CH-HET</td>
<td>8.48E+01</td>
<td>9.04E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-RF-CH-HOM</td>
<td>1.26E+01</td>
<td>1.61E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-SWSA-CH-HE</td>
<td>6.30E+01</td>
<td>1.03E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-SWSA-CH-SOI</td>
<td>2.73E+00</td>
<td>4.45E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-TBD-CH-HET</td>
<td>2.58E+01</td>
<td>3.90E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-WSTR-CH-HET</td>
<td>9.03E+00</td>
<td>3.18E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-Y12-CH-HET</td>
<td>6.30E+00</td>
<td>1.53E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WA-OR-NFS-CH-S</td>
<td>1.30E+01</td>
<td>1.28E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-TRU Waste Stream</td>
<td>Volume (m³)</td>
<td>EPA Units / m³</td>
<td>Time (yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-01</td>
<td>1.07E+01</td>
<td>1.48E-03</td>
<td>1.01E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-02</td>
<td>1.35E+01</td>
<td>1.06E-03</td>
<td>1.04E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-03</td>
<td>1.46E+01</td>
<td>3.48E-03</td>
<td>3.27E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-OR-CHEM-CH-01</td>
<td>4.20E+00</td>
<td>8.63E-04</td>
<td>6.21E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-04</td>
<td>2.37E+01</td>
<td>1.37E-02</td>
<td>1.21E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-05</td>
<td>2.73E+00</td>
<td>2.90E-04</td>
<td>2.72E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-06</td>
<td>2.35E+01</td>
<td>1.12E-03</td>
<td>1.04E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-07</td>
<td>4.66E+01</td>
<td>3.48E-03</td>
<td>3.19E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-08</td>
<td>1.92E+03</td>
<td>9.10E-03</td>
<td>8.63E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-09</td>
<td>4.20E+00</td>
<td>2.90E-04</td>
<td>2.72E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-10</td>
<td>1.05E+02</td>
<td>1.12E-03</td>
<td>1.04E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-11</td>
<td>4.14E+01</td>
<td>6.84E-03</td>
<td>6.41E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-12</td>
<td>9.86E+02</td>
<td>1.82E-02</td>
<td>1.73E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-13</td>
<td>1.46E+03</td>
<td>1.50E-02</td>
<td>1.45E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-14</td>
<td>3.59E+02</td>
<td>1.61E-01</td>
<td>1.57E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-15</td>
<td>2.86E+02</td>
<td>1.21E-02</td>
<td>1.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-16</td>
<td>1.21E+02</td>
<td>2.87E-02</td>
<td>2.66E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-17</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-18</td>
<td>2.38E+02</td>
<td>1.79E-01</td>
<td>1.75E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-19</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-20</td>
<td>1.34E+03</td>
<td>3.10E-01</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-21</td>
<td>6.31E+02</td>
<td>4.65E-02</td>
<td>4.54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-22</td>
<td>7.99E+01</td>
<td>8.34E-02</td>
<td>8.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-23</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-24</td>
<td>2.38E+02</td>
<td>1.79E-01</td>
<td>1.75E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-25</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-26</td>
<td>1.34E+03</td>
<td>3.10E-01</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-27</td>
<td>6.31E+02</td>
<td>4.65E-02</td>
<td>4.54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-28</td>
<td>7.99E+01</td>
<td>8.34E-02</td>
<td>8.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-29</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-30</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-31</td>
<td>1.34E+03</td>
<td>3.10E-01</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-32</td>
<td>6.31E+02</td>
<td>4.65E-02</td>
<td>4.54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-33</td>
<td>7.99E+01</td>
<td>8.34E-02</td>
<td>8.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-34</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-35</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-36</td>
<td>1.34E+03</td>
<td>3.10E-01</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-37</td>
<td>6.31E+02</td>
<td>4.65E-02</td>
<td>4.54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-38</td>
<td>7.99E+01</td>
<td>8.34E-02</td>
<td>8.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-39</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-40</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-41</td>
<td>1.34E+03</td>
<td>3.10E-01</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-42</td>
<td>6.31E+02</td>
<td>4.65E-02</td>
<td>4.54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-43</td>
<td>7.99E+01</td>
<td>8.34E-02</td>
<td>8.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-44</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-45</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-46</td>
<td>1.34E+03</td>
<td>3.10E-01</td>
<td>2.87E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-47</td>
<td>6.31E+02</td>
<td>4.65E-02</td>
<td>4.54E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-48</td>
<td>7.99E+01</td>
<td>8.34E-02</td>
<td>8.16E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-49</td>
<td>7.92E+01</td>
<td>3.85E-01</td>
<td>3.48E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-OR-CHEM-CH-50</td>
<td>9.81E+01</td>
<td>1.74E-01</td>
<td>1.69E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-RF101.31</td>
<td>6.29E+01</td>
<td>1.84E-02</td>
<td>1.79E-02</td>
</tr>
<tr>
<td>WP-RF101.35</td>
<td>8.02E+01</td>
<td>4.14E-02</td>
<td>4.01E-02</td>
</tr>
<tr>
<td>WP-RF102.01</td>
<td>2.23E+02</td>
<td>1.28E-02</td>
<td>1.25E-02</td>
</tr>
<tr>
<td>WP-RF102.31</td>
<td>1.24E+02</td>
<td>1.26E-02</td>
<td>1.21E-02</td>
</tr>
<tr>
<td>WP-RF104.01</td>
<td>5.48E+01</td>
<td>1.36E-02</td>
<td>1.35E-02</td>
</tr>
<tr>
<td>WP-RF107.01</td>
<td>6.14E+01</td>
<td>1.32E-01</td>
<td>1.14E-01</td>
</tr>
<tr>
<td>WP-RF107.03</td>
<td>6.15E+01</td>
<td>2.27E-03</td>
<td>2.17E-03</td>
</tr>
<tr>
<td>WP-RF107.04</td>
<td>1.11E+02</td>
<td>4.70E-03</td>
<td>4.48E-03</td>
</tr>
<tr>
<td>WP-RF107.05</td>
<td>4.41E+00</td>
<td>2.27E-02</td>
<td>2.22E-02</td>
</tr>
<tr>
<td>WP-RF107.06</td>
<td>1.45E+01</td>
<td>9.73E-04</td>
<td>9.60E-04</td>
</tr>
<tr>
<td>WP-RF107.07</td>
<td>5.94E+01</td>
<td>6.55E-02</td>
<td>6.35E-02</td>
</tr>
<tr>
<td>WP-RF107.10</td>
<td>9.24E+00</td>
<td>7.65E-02</td>
<td>7.34E-02</td>
</tr>
<tr>
<td>WP-RF107.05</td>
<td>9.24E+00</td>
<td>7.65E-02</td>
<td>7.34E-02</td>
</tr>
<tr>
<td>WP-RF110.05</td>
<td>3.16E+01</td>
<td>6.58E-02</td>
<td>6.43E-02</td>
</tr>
<tr>
<td>WP-RF113.01</td>
<td>4.20E-01</td>
<td>4.10E-03</td>
<td>4.03E-03</td>
</tr>
<tr>
<td>WP-RF115.01</td>
<td>1.16E+02</td>
<td>9.86E-02</td>
<td>9.52E-02</td>
</tr>
<tr>
<td>WP-RF116.01</td>
<td>3.99E+01</td>
<td>1.11E-01</td>
<td>1.08E-01</td>
</tr>
<tr>
<td>WP-RF117.01</td>
<td>1.89E+00</td>
<td>6.18E-02</td>
<td>6.06E-02</td>
</tr>
<tr>
<td>WP-RF118.01</td>
<td>1.45E+03</td>
<td>2.19E-01</td>
<td>2.13E-01</td>
</tr>
<tr>
<td>WP-RF119.01</td>
<td>2.44E+01</td>
<td>2.97E-02</td>
<td>2.90E-02</td>
</tr>
<tr>
<td>WP-RF121.01</td>
<td>4.64E+01</td>
<td>1.82E-01</td>
<td>1.79E-01</td>
</tr>
<tr>
<td>WP-RF122.01</td>
<td>3.59E+01</td>
<td>1.73E-01</td>
<td>1.68E-01</td>
</tr>
<tr>
<td>WP-RF122.03</td>
<td>4.41E+00</td>
<td>3.56E-02</td>
<td>3.32E-02</td>
</tr>
<tr>
<td>WP-RF122.04</td>
<td>5.46E+01</td>
<td>2.90E-02</td>
<td>2.86E-02</td>
</tr>
<tr>
<td>WP-RF122.05</td>
<td>1.64E+01</td>
<td>1.93E-03</td>
<td>1.86E-03</td>
</tr>
<tr>
<td>WP-RF122.06</td>
<td>7.35E+00</td>
<td>1.59E-01</td>
<td>1.54E-01</td>
</tr>
<tr>
<td>WP-RF123.01</td>
<td>9.44E+00</td>
<td>1.48E-01</td>
<td>1.42E-01</td>
</tr>
<tr>
<td>WP-RF123.02</td>
<td>8.40E+01</td>
<td>4.70E-04</td>
<td>4.62E-04</td>
</tr>
<tr>
<td>WP-RF123.03</td>
<td>1.22E+01</td>
<td>1.43E-01</td>
<td>1.32E-01</td>
</tr>
<tr>
<td>WP-RF123.04</td>
<td>4.49E+01</td>
<td>8.46E-02</td>
<td>8.34E-02</td>
</tr>
<tr>
<td>WP-RF124.01</td>
<td>9.51E+01</td>
<td>1.22E-02</td>
<td>1.20E-02</td>
</tr>
</tbody>
</table>

Information Only
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (yr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>WP-RF124.02</td>
<td>1.34E+01</td>
<td></td>
</tr>
<tr>
<td>WP-RF125.01</td>
<td>1.45E+01</td>
<td></td>
</tr>
<tr>
<td>WP-RF126.01</td>
<td>1.05E+00</td>
<td></td>
</tr>
<tr>
<td>WP-RF126.04</td>
<td>2.10E+00</td>
<td></td>
</tr>
<tr>
<td>WP-RF128.01</td>
<td>2.00E+02</td>
<td></td>
</tr>
<tr>
<td>WP-RF129.01</td>
<td>4.65E+02</td>
<td></td>
</tr>
<tr>
<td>WP-RF129.05</td>
<td>4.46E+02</td>
<td></td>
</tr>
<tr>
<td>WP-RF130.01</td>
<td>3.88E+01</td>
<td></td>
</tr>
<tr>
<td>WP-RF134.02</td>
<td>1.13E+01</td>
<td></td>
</tr>
<tr>
<td>WP-RF135.01</td>
<td>2.31E+00</td>
<td></td>
</tr>
<tr>
<td>WP-RF135.02</td>
<td>1.05E+01</td>
<td></td>
</tr>
<tr>
<td>WP-RF137.01</td>
<td>4.20E-01</td>
<td></td>
</tr>
<tr>
<td>WP-RF139.01</td>
<td>1.18E+01</td>
<td></td>
</tr>
<tr>
<td>WP-RF140.01</td>
<td>1.71E+02</td>
<td></td>
</tr>
<tr>
<td>WP-RF141.01</td>
<td>4.60E+00</td>
<td></td>
</tr>
<tr>
<td>WP-RF141.02</td>
<td>1.78E+02</td>
<td></td>
</tr>
<tr>
<td>RL105-01</td>
<td>5.91E+01</td>
<td></td>
</tr>
<tr>
<td>RL105-03</td>
<td>6.93E+01</td>
<td></td>
</tr>
<tr>
<td>RL200-01</td>
<td>7.58E+01</td>
<td></td>
</tr>
<tr>
<td>RL200-02</td>
<td>6.85E+03</td>
<td></td>
</tr>
<tr>
<td>RL201-03</td>
<td>1.45E+01</td>
<td></td>
</tr>
<tr>
<td>RL202S-01</td>
<td>1.26E+00</td>
<td></td>
</tr>
<tr>
<td>RL209E-01</td>
<td>1.01E+02</td>
<td></td>
</tr>
<tr>
<td>RL216Z-02</td>
<td>3.42E+02</td>
<td></td>
</tr>
<tr>
<td>RL221U-03</td>
<td>4.20E-01</td>
<td></td>
</tr>
<tr>
<td>RL222S-01</td>
<td>8.83E+01</td>
<td></td>
</tr>
<tr>
<td>RL231Z-01</td>
<td>6.08E+02</td>
<td></td>
</tr>
<tr>
<td>RL231Z-03</td>
<td>8.40E-01</td>
<td></td>
</tr>
<tr>
<td>RL233S-01</td>
<td>4.19E+01</td>
<td></td>
</tr>
<tr>
<td>RL233S-03</td>
<td>5.25E+00</td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>Time (yr)</th>
<th>EPA Units / m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL300-01</td>
<td>1.14E+02</td>
<td>0</td>
<td>5.84E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>5.68E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>5.59E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>5.45E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>5.09E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>4.36E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>3.71E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>3.39E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>3.05E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>2.77E-02</td>
</tr>
<tr>
<td>RL300-03</td>
<td>5.67E+00</td>
<td>0</td>
<td>2.09E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1.97E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>1.93E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>1.86E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>1.67E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>1.31E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>1.04E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>9.35E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>8.31E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>7.43E-03</td>
</tr>
<tr>
<td>RL308-01</td>
<td>3.48E+02</td>
<td>0</td>
<td>3.38E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>3.28E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>3.18E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>2.99E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>2.52E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>2.16E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>1.69E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>1.16E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>1.03E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>9.05E-02</td>
</tr>
<tr>
<td>RL308-03</td>
<td>4.20E+01</td>
<td>0</td>
<td>5.48E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>5.08E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>4.98E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>4.82E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>4.38E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>3.55E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>2.89E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>2.63E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>2.36E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>2.12E-03</td>
</tr>
<tr>
<td>RL325-01</td>
<td>8.18E+02</td>
<td>0</td>
<td>5.49E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>5.14E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>5.01E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>4.79E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>4.20E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>3.11E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>2.35E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>2.12E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>1.89E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>1.70E-03</td>
</tr>
<tr>
<td>RL325-03</td>
<td>1.03E+02</td>
<td>0</td>
<td>2.05E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1.90E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>1.85E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>1.76E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>1.54E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>1.15E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>8.83E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>7.98E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>7.15E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>6.44E-03</td>
</tr>
<tr>
<td>RL325-05</td>
<td>1.76E+02</td>
<td>0</td>
<td>3.63E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1.91E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>1.85E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>1.76E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>1.54E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>1.15E-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>8.65E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>7.83E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>7.15E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>6.44E-03</td>
</tr>
<tr>
<td>RL618-01</td>
<td>5.64E+00</td>
<td>0</td>
<td>7.16E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>6.67E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>6.56E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>6.37E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>5.88E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>5.01E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>4.22E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>3.44E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>2.74E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>3.10E-03</td>
</tr>
<tr>
<td>RLALE-02</td>
<td>6.30E-01</td>
<td>0</td>
<td>2.64E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>2.63E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>2.62E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175</td>
<td>2.61E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>350</td>
<td>2.55E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>2.39E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000</td>
<td>2.25E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>2.09E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7500</td>
<td>1.94E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10000</td>
<td>Information Only</td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>CH-TRU Waste Stream Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLPFP-05</td>
<td>2.18E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLPURX-01</td>
<td>9.57E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLFET-01</td>
<td>2.04E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLSAN-01</td>
<td>3.36E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLSWO-01</td>
<td>1.28E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLSWO-05</td>
<td>1.36E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLPURX-01</td>
<td>9.57E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLFET-01</td>
<td>2.04E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLSAN-01</td>
<td>3.36E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLSWO-01</td>
<td>1.28E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLSWO-05</td>
<td>1.36E+02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m3)</th>
<th>EPA Units / m3</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>WP-RLNPURX.001</td>
<td>3.92E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-RLRFETS.001</td>
<td>6.45E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-RLSWOCD.001</td>
<td>3.97E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP-RLVIPAC.001</td>
<td>1.54E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-W134</td>
<td>1.47E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-W136</td>
<td>5.96E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-W137</td>
<td>8.40E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-W138M</td>
<td>2.10E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA-W139</td>
<td>1.66E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-CHHD</td>
<td>6.27E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-221H-EUOx</td>
<td>6.30E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-AGNS-HOM</td>
<td>2.30E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-BCLDP-HET</td>
<td>3.76E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-BCLDP.003.0</td>
<td>2.10E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-BCLDP.004.0</td>
<td>2.10E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-DWPF-HET</td>
<td>2.10E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-HBL-235F-HE</td>
<td>2.51E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-KAC-HET</td>
<td>2.92E+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-KAC-PuOx</td>
<td>6.07E+03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-LA-PAD1</td>
<td>4.62E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-MD-HET</td>
<td>1.46E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-MD-PAD1</td>
<td>6.21E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-MD-SOIL</td>
<td>2.10E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-NIST-HET</td>
<td>2.10E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-SDS-HE1-A</td>
<td>5.65E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-SDS-HOM-A</td>
<td>3.99E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-SDS-HOM-B</td>
<td>1.07E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-SWMS-HET-A</td>
<td>7.75E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-SWMS-HET-B</td>
<td>1.05E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR-T001-WSB-1</td>
<td>6.30E+03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SR-W026-221F-H</td>
<td>8.40E-01</td>
<td>4.71E-03</td>
<td>4.56E-03</td>
</tr>
<tr>
<td>SR-W026-221F-H</td>
<td>6.48E+00</td>
<td>8.30E-03</td>
<td>7.75E-03</td>
</tr>
<tr>
<td>SR-W026-221F-H</td>
<td>1.20E+01</td>
<td>1.49E-03</td>
<td>1.31E-03</td>
</tr>
<tr>
<td>SR-W026-221F-H</td>
<td>1.47E+00</td>
<td>8.67E-03</td>
<td>8.53E-03</td>
</tr>
<tr>
<td>SR-W026-772F-H</td>
<td>1.14E+02</td>
<td>2.52E-02</td>
<td>1.26E-02</td>
</tr>
<tr>
<td>SR-W026-MFFF-1</td>
<td>4.35E+03</td>
<td>1.38E-02</td>
<td>1.51E-02</td>
</tr>
<tr>
<td>SR-W026-WSB-2</td>
<td>8.22E+00</td>
<td>2.09E-01</td>
<td>1.78E-01</td>
</tr>
<tr>
<td>SR-W027-221F-H</td>
<td>7.74E+00</td>
<td>3.23E-03</td>
<td>3.11E-03</td>
</tr>
<tr>
<td>SR-W027-221H-H</td>
<td>1.14E+02</td>
<td>6.48E+00</td>
<td>8.30E-03</td>
</tr>
<tr>
<td>SR-W027-221H-H</td>
<td>8.50E+00</td>
<td>1.49E-03</td>
<td>1.31E-03</td>
</tr>
<tr>
<td>SR-W027-221H-H</td>
<td>1.20E+01</td>
<td>8.67E-03</td>
<td>8.53E-03</td>
</tr>
<tr>
<td>SR-W027-772F-H</td>
<td>1.14E+02</td>
<td>2.52E-02</td>
<td>1.26E-02</td>
</tr>
<tr>
<td>SR-W027-MFFF-1</td>
<td>4.35E+03</td>
<td>1.38E-02</td>
<td>1.51E-02</td>
</tr>
<tr>
<td>SR-W027-WSB-2</td>
<td>8.22E+00</td>
<td>2.09E-01</td>
<td>1.78E-01</td>
</tr>
<tr>
<td>WP-SR-221H-PUO</td>
<td>1.46E+01</td>
<td>1.37E-01</td>
<td>1.33E-01</td>
</tr>
<tr>
<td>WP-SR-AGNS-HOM</td>
<td>4.81E+00</td>
<td>4.20E-03</td>
<td>4.06E-03</td>
</tr>
<tr>
<td>WP-SR-AGNS-HE</td>
<td>7.32E+00</td>
<td>2.30E-03</td>
<td>1.12E-03</td>
</tr>
<tr>
<td>WP-SR-AGNS-HOM</td>
<td>1.88E+00</td>
<td>2.12E-04</td>
<td>1.99E-04</td>
</tr>
<tr>
<td>WP-SR-AGNS-HE</td>
<td>4.45E+01</td>
<td>2.80E-03</td>
<td>1.63E-03</td>
</tr>
<tr>
<td>WP-SR-AGNS-HOM</td>
<td>1.49E+00</td>
<td>2.84E-01</td>
<td>2.34E-01</td>
</tr>
<tr>
<td>WP-SR-LA-PAD1</td>
<td>2.76E+02</td>
<td>1.19E-02</td>
<td>5.58E-03</td>
</tr>
</tbody>
</table>
Table B.1 – CH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>CH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-SR-MD-HOM-A</td>
<td>5.64E+00</td>
<td>7.53E-02</td>
<td>2.48E-05</td>
</tr>
<tr>
<td>WP-SR-MD-HOM-C</td>
<td>1.89E+00</td>
<td>1.39E-03</td>
<td>3.45E-07</td>
</tr>
<tr>
<td>WP-SR-MD-PAI</td>
<td>6.16E+02</td>
<td>1.77E-04</td>
<td>1.20E-09</td>
</tr>
<tr>
<td>WP-SR-MD-SOIL</td>
<td>2.94E+01</td>
<td>9.06E-04</td>
<td>9.06E-08</td>
</tr>
<tr>
<td>WP-SR-SDD-HET-</td>
<td>3.76E+00</td>
<td>1.46E-04</td>
<td>1.32E-08</td>
</tr>
<tr>
<td>WP-SR-SDD-HOM-</td>
<td>3.76E+00</td>
<td>9.10E-04</td>
<td>9.10E-08</td>
</tr>
<tr>
<td>WP-SR-SDD-HOM-</td>
<td>1.63E+01</td>
<td>1.33E-03</td>
<td>1.33E-07</td>
</tr>
<tr>
<td>WP-SR-SWDF-HET</td>
<td>3.05E+02</td>
<td>7.75E-03</td>
<td>7.75E-07</td>
</tr>
<tr>
<td>WP-SR-W026-221</td>
<td>4.10E+02</td>
<td>5.15E-03</td>
<td>5.15E-07</td>
</tr>
<tr>
<td>WP-SR-W026-221</td>
<td>1.16E+03</td>
<td>6.07E-03</td>
<td>6.07E-07</td>
</tr>
<tr>
<td>WP-SR-W026-221</td>
<td>2.51E+00</td>
<td>4.53E-03</td>
<td>4.53E-07</td>
</tr>
<tr>
<td>WP-SR-W026-221</td>
<td>3.42E+03</td>
<td>1.53E-02</td>
<td>1.53E-06</td>
</tr>
<tr>
<td>WP-SR-W026-221</td>
<td>1.32E+01</td>
<td>8.54E-03</td>
<td>8.54E-07</td>
</tr>
<tr>
<td>WP-SR-W026-221</td>
<td>1.74E+00</td>
<td>6.87E-03</td>
<td>6.87E-07</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>1.07E+02</td>
<td>5.26E-03</td>
<td>5.26E-07</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>2.23E+03</td>
<td>5.81E-03</td>
<td>5.81E-07</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>2.34E+02</td>
<td>1.33E-02</td>
<td>1.33E-06</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>3.42E+03</td>
<td>1.21E-02</td>
<td>1.21E-06</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>6.11E+01</td>
<td>8.56E-03</td>
<td>8.56E-07</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>8.10E+00</td>
<td>7.03E-03</td>
<td>7.03E-07</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>8.10E+00</td>
<td>3.12E-02</td>
<td>3.12E-06</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>8.10E+00</td>
<td>1.06E-01</td>
<td>1.06E-05</td>
</tr>
<tr>
<td>WP-SR-W026-772</td>
<td>5.24E+00</td>
<td>1.14E-03</td>
<td>1.14E-07</td>
</tr>
<tr>
<td>WP-SR-W026-321</td>
<td>3.15E+00</td>
<td>2.11E-04</td>
<td>2.11E-08</td>
</tr>
<tr>
<td>WP-SR-W026-321</td>
<td>1.88E+00</td>
<td>6.30E-05</td>
<td>6.30E-09</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>8.87E+02</td>
<td>9.64E-03</td>
<td>9.64E-07</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>8.87E+02</td>
<td>1.96E-02</td>
<td>1.96E-06</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>1.88E+00</td>
<td>5.77E-02</td>
<td>5.77E-06</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>3.17E+03</td>
<td>8.06E-03</td>
<td>8.06E-07</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>1.39E+03</td>
<td>6.32E-03</td>
<td>6.32E-07</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>6.17E+01</td>
<td>6.79E-04</td>
<td>6.79E-08</td>
</tr>
<tr>
<td>WP-SR-W026-773</td>
<td>7.06E+01</td>
<td>8.23E-04</td>
<td>8.23E-08</td>
</tr>
</tbody>
</table>
Table B.2 – RH-TRU Waste Stream Inventory Data

<table>
<thead>
<tr>
<th>RH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
<th>Time (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-T009</td>
<td>3.57E+02</td>
<td>2.85E-02</td>
<td>1.69E-02</td>
</tr>
<tr>
<td>WP-AERHDM</td>
<td>6.66E+01</td>
<td>1.10E-01</td>
<td>5.77E-02</td>
</tr>
<tr>
<td>AW-S410N</td>
<td>6.30E-01</td>
<td>6.41E-04</td>
<td>3.53E-04</td>
</tr>
<tr>
<td>AW-5862N</td>
<td>6.30E-01</td>
<td>7.07E-04</td>
<td>5.08E-04</td>
</tr>
<tr>
<td>AW-T031.1322</td>
<td>2.85E+02</td>
<td>3.92E-02</td>
<td>1.45E-02</td>
</tr>
<tr>
<td>AW-W020.13</td>
<td>8.27E+01</td>
<td>1.40E-01</td>
<td>4.60E-02</td>
</tr>
<tr>
<td>BT-T001</td>
<td>3.15E+00</td>
<td>2.96E-03</td>
<td>7.37E-04</td>
</tr>
<tr>
<td>WP-BT-T001</td>
<td>5.54E+01</td>
<td>2.25E-01</td>
<td>5.33E-02</td>
</tr>
<tr>
<td>IN-AE-ANLE-BIN</td>
<td>2.52E+00</td>
<td>1.44E-03</td>
<td>1.44E-03</td>
</tr>
<tr>
<td>IN-ID-ANLW-W26</td>
<td>6.30E-01</td>
<td>1.20E-01</td>
<td>1.16E-01</td>
</tr>
<tr>
<td>IN-ID-BTO-030</td>
<td>1.26E+00</td>
<td>6.35E-03</td>
<td>1.36E-03</td>
</tr>
<tr>
<td>IN-ID-EBR-S500</td>
<td>4.41E+00</td>
<td>1.67E-02</td>
<td>1.07E-02</td>
</tr>
<tr>
<td>IN-ID-HFEF-S30</td>
<td>3.78E+00</td>
<td>5.71E-02</td>
<td>1.31E-02</td>
</tr>
<tr>
<td>IN-ID-HFEF-S50</td>
<td>2.02E+01</td>
<td>3.13E-02</td>
<td>1.45E-02</td>
</tr>
<tr>
<td>IN-ID-INL-152M</td>
<td>1.63E-01</td>
<td>2.33E-02</td>
<td>3.27E-02</td>
</tr>
<tr>
<td>IN-ID-MFC-SOLI</td>
<td>1.26E+00</td>
<td>6.55E-03</td>
<td>1.33E-03</td>
</tr>
<tr>
<td>IN-ID-MISC-RH</td>
<td>6.30E-01</td>
<td>8.56E-03</td>
<td>4.26E-03</td>
</tr>
<tr>
<td>IN-ID-Miscella</td>
<td>6.30E-01</td>
<td>1.30E+00</td>
<td>5.95E-01</td>
</tr>
<tr>
<td>IN-ID-RF-S5000</td>
<td>1.26E+00</td>
<td>2.42E-01</td>
<td>2.07E-01</td>
</tr>
<tr>
<td>IN-ID-Source-M</td>
<td>6.30E-01</td>
<td>9.01E-02</td>
<td>7.78E-02</td>
</tr>
<tr>
<td>IN-ID-TRA-W345</td>
<td>6.30E-01</td>
<td>1.60E-02</td>
<td>1.82E-02</td>
</tr>
<tr>
<td>IN-IT-152</td>
<td>8.90E-01</td>
<td>3.41E-03</td>
<td>2.90E-03</td>
</tr>
<tr>
<td>IN-NRF-SPC-103</td>
<td>1.39E+02</td>
<td>3.48E-02</td>
<td>7.94E-03</td>
</tr>
<tr>
<td>WP-ID-ANLE-S50</td>
<td>1.19E+02</td>
<td>2.18E-02</td>
<td>1.16E-02</td>
</tr>
<tr>
<td>WP-ID-HFEF-S54</td>
<td>3.44E+01</td>
<td>3.74E-03</td>
<td>2.21E-02</td>
</tr>
<tr>
<td>WP-ID-INTEC-RH</td>
<td>4.20E+01</td>
<td>1.79E-02</td>
<td>1.28E-02</td>
</tr>
<tr>
<td>WP-ID-MFC-S540</td>
<td>1.68E+00</td>
<td>3.02E-03</td>
<td>1.68E-03</td>
</tr>
</tbody>
</table>

Information Only
<table>
<thead>
<tr>
<th>RH-TRU Waste Stream</th>
<th>Volume (m3)</th>
<th>EPA Units / m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-ID-RTC-S300</td>
<td>8.40E-01</td>
<td></td>
</tr>
<tr>
<td>WP-IN-ID-NRF-1</td>
<td>3.36E+00</td>
<td></td>
</tr>
<tr>
<td>WP-IN-ID-NRF-S</td>
<td>1.74E+01</td>
<td></td>
</tr>
<tr>
<td>KA-T001</td>
<td>1.60E+02</td>
<td></td>
</tr>
<tr>
<td>KA-T002</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>KA-W016</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-00-03</td>
<td>2.67E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-27</td>
<td>7.74E+01</td>
<td></td>
</tr>
<tr>
<td>WP-ID-RTC-S300</td>
<td>8.40E-01</td>
<td></td>
</tr>
<tr>
<td>WP-IN-ID-NRF-1</td>
<td>3.36E+00</td>
<td></td>
</tr>
<tr>
<td>WP-IN-ID-NRF-S</td>
<td>1.74E+01</td>
<td></td>
</tr>
<tr>
<td>KA-T001</td>
<td>1.60E+02</td>
<td></td>
</tr>
<tr>
<td>KA-T002</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>KA-W016</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-00-03</td>
<td>2.67E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-27</td>
<td>7.74E+01</td>
<td></td>
</tr>
<tr>
<td>WP-ID-RTC-S300</td>
<td>8.40E-01</td>
<td></td>
</tr>
<tr>
<td>WP-IN-ID-NRF-1</td>
<td>3.36E+00</td>
<td></td>
</tr>
<tr>
<td>WP-IN-ID-NRF-S</td>
<td>1.74E+01</td>
<td></td>
</tr>
<tr>
<td>KA-T001</td>
<td>1.60E+02</td>
<td></td>
</tr>
<tr>
<td>KA-T002</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>KA-W016</td>
<td>8.02E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-00-03</td>
<td>2.67E+00</td>
<td></td>
</tr>
<tr>
<td>LA-TA-03-27</td>
<td>7.74E+01</td>
<td></td>
</tr>
</tbody>
</table>

Table B.2 – RH-TRU Waste Stream Inventory Data (continued)
Table B.2 – RH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>RH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>EPA Units / m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL618-08</td>
<td>1.87E+01</td>
<td></td>
</tr>
<tr>
<td>RL685-01</td>
<td>6.80E-03</td>
<td>1.09E-03</td>
</tr>
<tr>
<td>RL685-02</td>
<td>8.08E-04</td>
<td>5.59E-04</td>
</tr>
<tr>
<td>RL685-03</td>
<td>4.06E-04</td>
<td>3.08E-04</td>
</tr>
<tr>
<td>RL685-04</td>
<td>2.39E-04</td>
<td>1.94E-04</td>
</tr>
<tr>
<td>RL685-05</td>
<td>1.75E-04</td>
<td></td>
</tr>
<tr>
<td>RL685-06</td>
<td>1.00E-04</td>
<td></td>
</tr>
<tr>
<td>RL685-07</td>
<td>4.35E-05</td>
<td></td>
</tr>
<tr>
<td>RL685-08</td>
<td>1.97E-05</td>
<td></td>
</tr>
<tr>
<td>RL685-09</td>
<td>9.94E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-10</td>
<td>3.75E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-11</td>
<td>1.57E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-12</td>
<td>3.99E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-13</td>
<td>3.00E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-14</td>
<td>2.97E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-15</td>
<td>2.61E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-16</td>
<td>2.40E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-17</td>
<td>2.30E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-18</td>
<td>2.20E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-19</td>
<td>2.11E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-20</td>
<td>2.02E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-21</td>
<td>1.94E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-22</td>
<td>1.86E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-23</td>
<td>1.79E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-24</td>
<td>1.72E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-25</td>
<td>1.65E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-26</td>
<td>1.59E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-27</td>
<td>1.53E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-28</td>
<td>1.48E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-29</td>
<td>1.43E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-30</td>
<td>1.38E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-31</td>
<td>1.33E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-32</td>
<td>1.29E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-33</td>
<td>1.24E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-34</td>
<td>1.20E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-35</td>
<td>1.16E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-36</td>
<td>1.12E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-37</td>
<td>1.08E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-38</td>
<td>1.05E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-39</td>
<td>1.02E-06</td>
<td></td>
</tr>
<tr>
<td>RL685-40</td>
<td>9.90E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-41</td>
<td>9.69E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-42</td>
<td>9.49E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-43</td>
<td>9.29E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-44</td>
<td>9.10E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-45</td>
<td>8.91E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-46</td>
<td>8.72E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-47</td>
<td>8.53E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-48</td>
<td>8.34E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-49</td>
<td>8.16E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-50</td>
<td>7.98E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-51</td>
<td>7.80E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-52</td>
<td>7.62E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-53</td>
<td>7.44E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-54</td>
<td>7.26E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-55</td>
<td>7.09E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-56</td>
<td>6.91E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-57</td>
<td>6.74E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-58</td>
<td>6.56E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-59</td>
<td>6.39E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-60</td>
<td>6.21E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-61</td>
<td>6.04E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-62</td>
<td>5.87E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-63</td>
<td>5.70E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-64</td>
<td>5.53E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-65</td>
<td>5.36E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-66</td>
<td>5.19E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-67</td>
<td>5.02E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-68</td>
<td>4.85E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-69</td>
<td>4.69E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-70</td>
<td>4.52E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-71</td>
<td>4.36E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-72</td>
<td>4.20E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-73</td>
<td>4.04E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-74</td>
<td>3.88E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-75</td>
<td>3.72E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-76</td>
<td>3.56E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-77</td>
<td>3.40E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-78</td>
<td>3.25E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-79</td>
<td>3.10E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-80</td>
<td>2.95E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-81</td>
<td>2.81E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-82</td>
<td>2.66E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-83</td>
<td>2.52E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-84</td>
<td>2.38E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-85</td>
<td>2.24E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-86</td>
<td>2.10E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-87</td>
<td>1.96E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-88</td>
<td>1.82E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-89</td>
<td>1.68E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-90</td>
<td>1.54E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-91</td>
<td>1.40E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-92</td>
<td>1.27E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-93</td>
<td>1.14E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-94</td>
<td>1.01E-07</td>
<td></td>
</tr>
<tr>
<td>RL685-95</td>
<td>8.87E-08</td>
<td></td>
</tr>
<tr>
<td>RL685-96</td>
<td>7.66E-08</td>
<td></td>
</tr>
<tr>
<td>RL685-97</td>
<td>6.45E-08</td>
<td></td>
</tr>
<tr>
<td>RL685-98</td>
<td>5.24E-08</td>
<td></td>
</tr>
<tr>
<td>RL685-99</td>
<td>4.03E-08</td>
<td></td>
</tr>
<tr>
<td>RL685-100</td>
<td>2.82E-08</td>
<td></td>
</tr>
</tbody>
</table>

Information Only
Table B.2 – RH-TRU Waste Stream Inventory Data (continued)

<table>
<thead>
<tr>
<th>RH-TRU Waste Stream</th>
<th>Volume (m³)</th>
<th>0</th>
<th>100</th>
<th>125</th>
<th>175</th>
<th>350</th>
<th>1000</th>
<th>3000</th>
<th>5000</th>
<th>7500</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP-SR-BCLDP.00</td>
<td>2.10E-01</td>
<td>1.46E-01</td>
<td>7.68E-02</td>
<td>7.05E-02</td>
<td>6.19E-02</td>
<td>4.59E-02</td>
<td>2.25E-02</td>
<td>9.85E-03</td>
<td>8.17E-03</td>
<td>6.90E-03</td>
<td>5.90E-03</td>
</tr>
<tr>
<td>WP-SR-BCLDP.00</td>
<td>1.47E+00</td>
<td>5.60E-04</td>
<td>2.95E-04</td>
<td>2.71E-04</td>
<td>2.38E-04</td>
<td>1.76E-04</td>
<td>8.65E-05</td>
<td>3.79E-05</td>
<td>3.15E-05</td>
<td>2.66E-05</td>
<td>2.27E-05</td>
</tr>
<tr>
<td>WP-SR-BCLDP.00</td>
<td>1.05E+00</td>
<td>5.11E-04</td>
<td>3.13E-04</td>
<td>2.91E-04</td>
<td>2.60E-04</td>
<td>1.92E-04</td>
<td>8.25E-05</td>
<td>2.48E-05</td>
<td>1.97E-05</td>
<td>1.66E-05</td>
<td>1.43E-05</td>
</tr>
<tr>
<td>WP-SR-BCLDP.00</td>
<td>4.20E-01</td>
<td>2.41E-03</td>
<td>1.42E-03</td>
<td>1.31E-03</td>
<td>1.16E-03</td>
<td>8.69E-04</td>
<td>4.44E-04</td>
<td>2.12E-04</td>
<td>1.78E-04</td>
<td>1.50E-04</td>
<td>1.29E-04</td>
</tr>
<tr>
<td>WP-SR-RH-FBL.0</td>
<td>1.68E+00</td>
<td>2.00E-01</td>
<td>1.73E-01</td>
<td>1.66E-01</td>
<td>1.56E-01</td>
<td>1.31E-01</td>
<td>9.19E-02</td>
<td>6.53E-02</td>
<td>5.71E-02</td>
<td>4.94E-02</td>
<td>4.31E-02</td>
</tr>
<tr>
<td>WP-SR-RL-BCLDP</td>
<td>1.84E+01</td>
<td>2.89E-02</td>
<td>1.50E-02</td>
<td>1.38E-02</td>
<td>1.21E-02</td>
<td>8.95E-03</td>
<td>4.40E-03</td>
<td>1.93E-03</td>
<td>1.60E-03</td>
<td>1.35E-03</td>
<td>1.16E-03</td>
</tr>
<tr>
<td>WP-SR-RL-BCLDP</td>
<td>2.10E-01</td>
<td>1.87E+00</td>
<td>9.34E-01</td>
<td>8.63E-01</td>
<td>7.68E-01</td>
<td>5.69E-01</td>
<td>2.01E-01</td>
<td>8.89E-03</td>
<td>9.96E-04</td>
<td>5.57E-04</td>
<td>4.59E-04</td>
</tr>
<tr>
<td>WP-GEVNC.01</td>
<td>1.97E+01</td>
<td>1.28E-02</td>
<td>1.05E-02</td>
<td>1.01E-02</td>
<td>9.35E-03</td>
<td>7.32E-03</td>
<td>3.30E-03</td>
<td>1.11E-03</td>
<td>9.32E-04</td>
<td>8.27E-04</td>
<td>7.42E-04</td>
</tr>
</tbody>
</table>