ABSENCE OF MINERAL COLLOIDS IN HIGH IONIC STRENGTH SOLUTIONS ASSOCIATED WITH SALT FORMATIONS: EXPERIMENTAL DETERMINATION AND APPLICATIONS TO NUCLEAR WASTE MANAGEMENT

Work Carried Out under Tasks 1 and 2 of AP-172: Analysis Plan for Experimental Investigation of Absence or Presence of Mineral Fragment Colloids in the GWB and ERDA-6 Brines Under the WIPP Relevant Conditions at Sandia National Laboratories Carlsbad Facility.
To be included in the AP-172 records package

Author: Y Geliang Xiong, Org. 8882
Date June 15, 2017

Technical Reviewer: Paul Domski, Org. 8882
Date 6-15-17

QA Reviewer: Shelly R. Nielsen, Org. 8882
Date 6-15-17

Management Reviewer: Christi D. Leigh, Org. 8882
Date 6-15-17
TABLE OF CONTENTS

1 INTRODUCTION .. 5
2 METHODS .. 11
3 RESULTS .. 13
4 CONCLUSIONS ... 16
5 REFERENCES ... 17
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3</td>
<td>26</td>
</tr>
<tr>
<td>Figure 4</td>
<td>27</td>
</tr>
<tr>
<td>Figure 5</td>
<td>28</td>
</tr>
<tr>
<td>Figure 6</td>
<td>29</td>
</tr>
<tr>
<td>Figure 7</td>
<td>30</td>
</tr>
<tr>
<td>Figure 8</td>
<td>31</td>
</tr>
<tr>
<td>Figure 9</td>
<td>32</td>
</tr>
<tr>
<td>Figure 10</td>
<td>33</td>
</tr>
<tr>
<td>Figure 11</td>
<td>34</td>
</tr>
<tr>
<td>Figure 12</td>
<td>35</td>
</tr>
<tr>
<td>Figure 13</td>
<td>36</td>
</tr>
<tr>
<td>Figure 14</td>
<td>37</td>
</tr>
<tr>
<td>Figure 15</td>
<td>38</td>
</tr>
<tr>
<td>Figure 16</td>
<td>39</td>
</tr>
<tr>
<td>Figure 17</td>
<td>40</td>
</tr>
<tr>
<td>Figure 18</td>
<td>41</td>
</tr>
<tr>
<td>Figure 19</td>
<td>42</td>
</tr>
<tr>
<td>Figure 20</td>
<td>43</td>
</tr>
<tr>
<td>Figure 21</td>
<td>44</td>
</tr>
<tr>
<td>Figure 22</td>
<td>45</td>
</tr>
<tr>
<td>Figure 23</td>
<td>46</td>
</tr>
<tr>
<td>Figure 24</td>
<td>47</td>
</tr>
<tr>
<td>Figure 25</td>
<td>48</td>
</tr>
<tr>
<td>Figure 26</td>
<td>49</td>
</tr>
<tr>
<td>Figure 27</td>
<td>50</td>
</tr>
<tr>
<td>Figure 28</td>
<td>51</td>
</tr>
<tr>
<td>Figure 29</td>
<td>52</td>
</tr>
<tr>
<td>Figure 30</td>
<td>53</td>
</tr>
<tr>
<td>Figure 31</td>
<td>54</td>
</tr>
<tr>
<td>Figure 32</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Abbreviations, Acronyms, and Initialisms. ... 8
INTRODUCTION

This analysis report (AR) provides the results regarding the evaluation of the absence of mineral fragment colloids related to the WIPP engineered barrier, MgO.

This analysis was carried out under Tasks 1 and 2 of AP-172 (Kim, Xiong, Kirkes, 2015).

Table 1 (see next page) defines the generic abbreviations, acronyms, and initialisms used in this report and other analysis reports.

A colloid is a dispersed, separable phase that is suspended within a second phase, in this case, aqueous brine solutions. In this study, we follow the operational terminology defined by Ross and Sherrell (1999) regarding colloidal and dissolved fractions; i.e., the colloidal fraction can be separated from solution using filters/ultrafilters with pore sizes ranging from 10 kDa to 0.2 µm.

Colloids can facilitate transport of contaminants including actinides (e.g., Wen et al., 1999), and therefore, the possible persistence of colloids is important in performance of the isolation characteristic of a nuclear waste repository. The persistence of colloids may increase actinide mobility and enhance transport of actinides.

Salt formations are ideal for nuclear waste isolation, as recommended by National Academy of Science as early as 1950’s (U.S. National Academy of Science, 1957), as salt formations have the following advantages: (1) low permeability; (2) plastic deformation after closure of a repository to encapsulate wastes, (3) self-healing of fractures, and (4) high thermal conductivity of salt.

There are four types of colloids considered in the conceptual model for the Waste Isolation Pilot Plant (WIPP), a nuclear waste repository in a bedded salt formation, located in southeast New Mexico. These are: intrinsic colloids, mineral fragment colloids, humic colloids, and biocolloids. Intrinsic colloids are generated by polymerization of actinides via hydrolysis. When actinide elements (intrinsic colloids or aqueous species) are absorbed onto inorganic or organic aquatic colloids because of their affinity to these colloids, the final products become actinide pseudocolloids (e.g., Olofsson and Allard, 1986). Mineral fragment colloids are pseudocolloids formed by sorption of aqueous actinide species or intrinsic actinide colloids onto inorganic aquatic colloids (Zhao and Steward, 1997). Aquatic colloids that can absorb aqueous actinide species or intrinsic actinide colloids may be inorganic or organic. Humic substance is an example of aquatic organic colloids (Kim et al., 1994). Various mineral fragments, such as α-Al₂O₃ (Olofsson et al., 1983), bentonite (Kelly et al., 1996), hematite and goethite (Itagaki et al., 1991; Kelly et al., 1996), montmorillonite (Olofsson and Allard, 1986); SiO₂ (Allen and Matijević, 1969, 1971; Olofsson and Allard, 1986; Itagaki et al., 1991), and ZrO₂ (Bitea et al., 2003), are examples of aquatic inorganic colloids.
The stability of both intrinsic colloids and pseudocolloids, highly depends on the ionic strength of the aqueous solution (Allen and Matijević, 1969, 1971; van Olphen, 1991). The ionic strength at which rapid destabilization and agglomeration of both intrinsic colloids and pseudocolloids occurs is referred to as the critical coagulation concentration, c.c.c. Regarding the c.c.c. required for mineral fragment colloids, electrolytes containing monovalent cations such as Na⁺ and K⁺ have a higher c.c.c. up to 0.15 M (van Olphen, 1991). In contrast, electrolytes containing divalent cations such as Mg²⁺ and Ca²⁺ have a much lower c.c.c., ranging from 5×10^{-4} to 2×10^{-3} M (van Olphen, 1991).

Solutions associated with salt formations are characterized by high ionic strengths. For example, in the WIPP, there are two brines considered for the performance of the repository, i.e., Generic Weep Brine (GWB), and Energy Research and Development Administration (WIPP Well) 6 (ERDA-6). They have ionic strengths of 8.26 mol•kg⁻¹ and 5.82 mol•kg⁻¹, respectively (Xiong and Lord, 2008). In the Asse, the brine used for assessing performance is the Q-brine, an Mg-Cl dominated brine with an ionic strength of ~13 mol•kg⁻¹ (Schuessler et al., 2001). In such high ionic strength solutions with multiple components, it is expected that the formation of mineral fragment colloids is unlikely, but has not been experimentally demonstrated.

In work performed by Altmaier et al. (2004), the authors suggested the potential formation of mineral fragment colloids composed of magnesium chloride hydroxide hydrate in pure MgCl₂ solutions. There are two types of magnesium chloride hydroxide hydrates that are typically observed, i.e., Mg₃Cl(OH)₃•4H₂O (called phase 3 in the cement industry) and Mg₅Cl(OH)₅•4H₂O (called phase 5 in the cement industry). Altmaier et al. (2004) concluded that Th(IV) could adsorb to phase 3 mineral fragments to form actinide pseudocolloids. In the U.S. EPA Technical Support Document (TSD) related to the WIPP Compliance Recertification Application in 2009 (CRA-2009), referring to the work of Altmaier et al. (2004), U.S. EPA stated that “although the mineral fragment colloids reported in the recent literature are not expected to be stable in WIPP brines, examination of the data used to develop the colloidal actinide source term model has shown that possible formation of mineral fragment colloids by MgO and its hydration and carbonation products under WIPP-relevant conditions has not been evaluated” (U.S. EPA, 2010).

In the WIPP near field geochemical model there are two types of brines, ERDA-6 and GWB. GWB is a Na-Mg-Cl dominated brine, and ERDA-6 is a Na-Cl dominated brine. These brines are characterized by high ionic strengths, with GWB and ERDA-6 having ionic strengths of 8.26 mol•kg⁻¹ and 5.82 mol•kg⁻¹, respectively (Xiong and Lord, 2008). These brines are multi-component, and are significantly different from pure MgCl₂ solutions used in the experiments of Altmaier et al. (2004). These brines have high concentrations of both monovalent and divalent ions. For example, the ERDA-6 brine has 5.35 mol•kg⁻¹, 0.106 mol•kg⁻¹, 0.0209 mol•kg⁻¹, 0.0132 mol•kg⁻¹ for Na⁺, K⁺, Mg²⁺, and Ca²⁺ (Xiong and Lord, 2008), respectively. Similarly, GWB has 4.04 mol•kg⁻¹, 0.532 mol•kg⁻¹, 1.16 mol•kg⁻¹, 0.0163 mol•kg⁻¹ for Na⁺, K⁺, Mg²⁺, and Ca²⁺ (Xiong and Lord, 2008), respectively. These concentrations are much higher than the c.c.c. mentioned above, implying that any mineral fragments and their pseudocolloids are unstable in these brines. The presence of both monovalent and divalent cations in the WIPP brines is important. In fact, Altmaier et al. (2004)
mentioned that “in NaCl or dilute MgCl₂ solutions, neither solid Mg₂(OH)₃Cl·4H₂O(s) nor its colloids are stable.” Therefore, the chemical compositions of the brine solutions make it unlikely that magnesium chloride hydroxide hydrate colloids would form (Xiong, Brush, Garner, and Long, 2010), but to this date has not been demonstrated.

When industrial grade MgO is added as an engineered barrier to react with GWB, only phase 5 is formed (Xiong and Lord, 2008). However, when the ERDA-6 brine reacts with industrial grade MgO, neither phase 5 nor phase 3 is observed (Xiong and Lord, 2008). These observations are in agreement with thermodynamic calculations (Xiong et al., 2010b). Therefore, it has been reasoned that colloidal suspensions of either phase 3 or phase 5 are not a concern in the ERDA-6 brine. In the presence of CO₂(g), when GWB and ERDA-6 react with MgO, hydromagnesite forms (Xiong and Lord, 2008).

The objective of this work is to experimentally evaluate the possible presence of mineral fragment colloids in high ionic strength solutions associated with salt formations, with a special reference to the possible presence of mineral fragment colloids resulting from the reaction of MgO with WIPP brines, including hydration and carbonation products. The results from this study will also have broad applications to other geological repositories in salt formations in general.
Table 1. Abbreviations, Acronyms, and Initialisms.

<table>
<thead>
<tr>
<th>Abbreviation, Acronym, or Initialism</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>acetate</td>
<td>CH₃COO⁻ or CH₃CO₂⁻</td>
</tr>
<tr>
<td>Am, Am(III)</td>
<td>americium, americium in the +III oxidation state</td>
</tr>
<tr>
<td>am</td>
<td>amorphous</td>
</tr>
<tr>
<td>anhydrite</td>
<td>CaSO₄</td>
</tr>
<tr>
<td>AP</td>
<td>analysis plan</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>aragonite</td>
<td>CaCO₃, a polymorph of CaCO₃ that is metastable with respect to calcite</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere(s)</td>
</tr>
<tr>
<td>B, B(III)</td>
<td>boron, boron in the +III oxidation state</td>
</tr>
<tr>
<td>Br, Br(−I)</td>
<td>bromine, bromine in the −I oxidation state</td>
</tr>
<tr>
<td>brucite</td>
<td>Mg(OH)₂</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>Ca, Ca(II), Ca²⁺</td>
<td>calcium, calcium in the +II oxidation state, calcium ion</td>
</tr>
<tr>
<td>calcite</td>
<td>CaCO₃, the thermodynamically stable polymorph of CaCO₃</td>
</tr>
<tr>
<td>citrate</td>
<td>(CH₂COO)₂C(OH)(COO)₃⁻ or (CH₂CO₂)₂C(OH)(CO₂)₃⁻</td>
</tr>
<tr>
<td>c.c.c.</td>
<td>critical coagulation concentration</td>
</tr>
<tr>
<td>Cl, Cl(−I), Cl⁻</td>
<td>chlorine, chlorine in the −I oxidation state, chloride ion</td>
</tr>
<tr>
<td>CMS</td>
<td>(Sandia/WIPP software) Configuration Management System</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>carbonate</td>
</tr>
<tr>
<td>CRA-2009</td>
<td>the second WIPP Compliance Recertification Application, submitted to the EPA in March 2009</td>
</tr>
<tr>
<td>DB</td>
<td>(thermodynamic) database</td>
</tr>
<tr>
<td>DOE</td>
<td>(U.S.) Department of Energy</td>
</tr>
<tr>
<td>dolomite</td>
<td>CaMg(CO₃)₂, a carbonate mineral that is nucleates and grows slowly under low-temperature conditions and is often suppressed (prevented from forming) in geochemical modeling calculations disturbed rock zone</td>
</tr>
<tr>
<td>DRZ</td>
<td>ethylenediaminetetraacetate, (CH₂COO)₂N(CH₂)₂N(CH₂COO)₂)⁺ or (CH₂CO₂)₂N(CH₂)₂N(CH₂CO₂)⁺</td>
</tr>
<tr>
<td>EDTA</td>
<td>(U.S.) Environmental Protection Agency</td>
</tr>
<tr>
<td>EPA</td>
<td>a geochemical software package for speciation and solubility calculations (EQ3NR) and reaction-path calculations (EQ6)</td>
</tr>
</tbody>
</table>

Table 1 continued on next page
Table 1. Abbreviations, Acronyms, and Initialisms (continued).

<table>
<thead>
<tr>
<th>Abbreviation, Acronym, or Initialism</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERDA-6</td>
<td>Energy Research and Development Administration (WIPP Well) 6, a synthetic brine representative of fluids in Castile brine reservoirs</td>
</tr>
<tr>
<td>f<sub>CO₂</sub></td>
<td>fugacity (similar to the partial pressure) of CO₂</td>
</tr>
<tr>
<td>Fm.</td>
<td>Formation</td>
</tr>
<tr>
<td>FMT</td>
<td>Fracture-Matrix Transport, a geochemical speciation and solubility code</td>
</tr>
<tr>
<td>GWB</td>
<td>Generic Weep Brine, a synthetic brine representative of intergranular Salado brines at or near the stratigraphic horizon of the repository</td>
</tr>
<tr>
<td>gypsum</td>
<td>CaSO₄·2H₂O</td>
</tr>
<tr>
<td>H or H₂, H⁺</td>
<td>hydrogen or hydrogen ion</td>
</tr>
<tr>
<td>halite</td>
<td>NaCl</td>
</tr>
<tr>
<td>H₂O</td>
<td>water (aq, g, or contained in solid phases)</td>
</tr>
<tr>
<td>hydromagnesite</td>
<td>Mg₅(CO₃)₄(OH)₂·4H₂O</td>
</tr>
<tr>
<td>I</td>
<td>ionic strength</td>
</tr>
<tr>
<td>K, K(I)</td>
<td>potassium, potassium in the +I oxidation state</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>m</td>
<td>meter(s) or molal</td>
</tr>
<tr>
<td>magnesite</td>
<td>MgCO₃</td>
</tr>
<tr>
<td>Mg, Mg(II)</td>
<td>magnesium, magnesium in the +II oxidation state</td>
</tr>
<tr>
<td>MgO</td>
<td>magnesium oxide, used to refer to the WIPP engineered barrier, which includes periclase as the primary constituent and various impurities</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>Na, Na(I), Na⁺</td>
<td>sodium, sodium in the +I oxidation state, sodium ion</td>
</tr>
<tr>
<td>nesquehonite</td>
<td>MgCO₃·3H₂O</td>
</tr>
<tr>
<td>Np, Np(V)</td>
<td>neptunium, neptunium in the +V oxidation state</td>
</tr>
<tr>
<td>O or O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>OH⁻, OH⁻</td>
<td>hydroxide or hydroxide ion</td>
</tr>
<tr>
<td>oxalate</td>
<td>(COO)²⁻ or C₂O₄²⁻</td>
</tr>
<tr>
<td>PA</td>
<td>performance assessment</td>
</tr>
<tr>
<td>PABC</td>
<td>Performance Assessment Baseline Calculations</td>
</tr>
</tbody>
</table>

Table 1 continued on next page
Table 1. Abbreviations, Acronyms, and Initialisms (continued).

<table>
<thead>
<tr>
<th>Abbreviation, Acronym, or Initialism</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>periclase</td>
<td>pure, crystalline MgO, the primary constituent of the WIPP engineered barrier</td>
</tr>
<tr>
<td>pH</td>
<td>the negative, common logarithm of the activity of H⁺</td>
</tr>
<tr>
<td>pcH</td>
<td>the negative, common logarithm of the molar concentration of H⁺</td>
</tr>
<tr>
<td>phase 3</td>
<td>Mg₂Cl(OH)₃·4H₂O</td>
</tr>
<tr>
<td>phase 5</td>
<td>Mg₃(OH)₂Cl·4H₂O</td>
</tr>
<tr>
<td>polyhalite</td>
<td>K₂MgCa₂(SO₄)₄·2H₂O</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>Rev.</td>
<td>revision</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>S, S(VI), SO₄²⁻</td>
<td>sulfur, sulfur in the +VI oxidation state, sulfate ion</td>
</tr>
<tr>
<td>s</td>
<td>solid</td>
</tr>
<tr>
<td>SCA</td>
<td>S. Cohen and Associates</td>
</tr>
<tr>
<td>SNL</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>Th, Th(IV)</td>
<td>thorium, thorium in the +IV oxidation state</td>
</tr>
<tr>
<td>TIC</td>
<td>total inorganic C</td>
</tr>
<tr>
<td>WIPP</td>
<td>(U.S. DOE) Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>wt %</td>
<td>weight percent</td>
</tr>
<tr>
<td>µ₀/RT</td>
<td>dimensionless standard chemical potential</td>
</tr>
</tbody>
</table>
2 METHODS

In this work, we investigated the possible presence of mineral fragment colloids by using the method of ultrafiltration. We designed two sets of experiments for this purpose. In the first set of experiments, we withdrew five aliquots of solution samples from long-term MgO hydration or carbonation experiments, which were set-up in 2008 at Sandia National Laboratories (SNL) in Carlsbad, NM (Deng, Nemer, Xiong, 2006; Deng, Xiong, Nemer, Johnsen, 2009). Then, each aliquot is separately subject to phase separation with filtration and ultrafiltration corresponding to 0.2 µm and molecular weight (MW) cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Then, these samples were analyzed for Mg using inductively coupled plasma atomic emission spectrometer (ICP-AES). Theoretically, if colloids are present, we would expect to see a significant drop in Mg concentrations after filtration and a consistently lower concentration of Mg in successive filtrations as Mg-bearing colloids are retained by filtration, as the hydration products, Mg(OH)₂ (brucite), and Mg₃Cl(OH)₅•4H₂O (phase 5), and the carbonation product, Mg₅(CO₃)₈(OH)₂•4H₂O (hydromagnesite), contain magnesium.

In the second set of experiments, we introduced the tracer, a CsCl solution, into solution samples taken from the same long-term experiments (Deng, Nemer, Xiong, 2006; Deng, Xiong, Nemer, Johnsen, 2009), to detect the presence of colloids. It has been repeatedly demonstrated that Cs⁺ is easily absorbed onto various colloids (e.g., Bascetin et al., 2003; Chen et al., 2005). Again, we withdraw five aliquots of solution samples with CsCl added. Then, each aliquot is separately subject to phase separation with filtration and ultrafiltration corresponding to 0.2 µm and MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. After that, solution samples were analyzed for Cs using inductively coupled plasma mass spectrometer (ICP-MS). Theoretically, if mineral fragment colloids are present, we would expect to see a significant drop in Cs concentrations as a function of decreasing equivalent pore sizes, because mineral fragment colloids with Cs⁺ absorbed onto them are retained by filtration and ultrafiltration.

If we observe a decrease in Mg and Cs concentrations as a function of decreasing equivalent pore sizes in these experiments, it indicates the presence of mineral fragment colloids. Conversely, if there is no dependence in Mg and Cs concentrations on decreasing equivalent pore sizes, i.e., Mg and Cs concentrations remain constant regardless of equivalent pore sizes, it indicates the absence of any mineral fragment colloids.

Ultrafiltration devices, Amicon® Ultra centrifugal filters, for this work are from MilliporeSigma Company. The ultrafiltration devices used in experiments include MW cut-off ultrafilters at 100 kD, 50 kD, 30 kD and 10 kD, corresponding to equivalent pore sizes of 7, 5, 4, and 3 nanometers (nm), respectively. The centrifuge used in experiments for ultrafiltration was an Avanti® J-E centrifuge from Beckman Coulter Company.

Elemental concentrations of magnesium were determined by using the Perkin Elmer Optima DV 3300 inductively coupled plasma atomic emission spectrometer (ICP-AES). The Perkin Elmer NexIon 300D inductively coupled plasma mass spectrometer (ICP-MS) is being used for determination of elemental concentrations of cesium.
The industrial grade MgO used in long-term hydration and carbonation experiments were from Martin Marietta Magnesia Specialties LLC (Deng et al., 2008, 2009). The distributions of particle sizes for the industrial grade MgO were as follows: >2 mm, 7.02±0.91 wt%; 1 mm—2 mm, 32.52±1.78 wt%; 600 µm—1 mm, 20.25±1.28 wt%; 300 µm—600 µm, 12.74±2.19 wt%; 150 µm—300 µm, 5.35±0.70 wt%; 75 µm—150 µm, 3.36±0.35 wt%; and <75 µm, 17.91±1.88 wt% (Deng et al., 2008). The chemical compositions of the industrial grade MgO were 98.46±2.54 wt% of MgO; 0.87±0.03 wt% of CaO; 0.13±0.018 wt% of Al₂O₃; 0.12±0.01 wt% of total iron oxide; and 0.31±0.01 wt% of SiO₂ (Deng et al., 2008). The MgO with three particle sizes were used in experiments: (1) as-received MgO (mixed size MgO); (2) large particle size MgO (1 mm—2 mm); and small particle size MgO (<75 µm).

The GWB and ERDA-6 used in long-term hydration and carbonation experiments were synthesized according to the recipes (Xiong, 2008). The chemicals used for making the synthetic GWB and ERDA-6 were reagent grade chemicals from Fisher Scientific. In addition, 1.0 M MgCl₂ solution was used in long-term hydration experiments, and simplified GWB (1.0 M MgCl₂ + 3.6 M NaCl) was used for both long-term hydration and carbonation experiments.
3 RESULTS

Magnesium Concentrations as a Function of Equivalent Pore Sizes

In this section, magnesium concentrations as a function of equivalent pore size for samples taken from the SNL MgO long-term hydration and carbonation experiments in GWB and ERDA-6 are presented. The experimental results are tabulated in Kirkes, Xiong, Kim (2017). It should be mentioned that the hydration products for MgO hydration experiments in GWB are phase 5 and brucite, whereas the hydration product in ERDA-6 is brucite (Xiong and Lord, 2008). The carbonation product for MgO carbonation experiments in both GWB and EDRA-6 is hydromagnesite(5424) (Xiong and Lord, 2008). In MgO carbonation experiments, hydration products characteristic of GWB and ERDA-6, as mentioned before, are also present.

In addition, the hydration products for MgO long-term hydration experiments with a 1.0 M MgCl₂ solution are brucite and phase 5. The hydration and carbonation products for the experiments with the simplified GWB are identical to those with GWB. In Figures 1 and 2, magnesium concentrations as a function of ultrafiltration in terms of equivalent pore size in nano meter for long-term MgO hydration experiments in GWB for large particle size MgO are shown. The equivalent pore sizes used in experiments for phase separation range from 3 nm to 200 nm. Figures 1 and 2 indicate that magnesium concentrations remain constant over this range of equivalent pore sizes, suggesting the absence of mineral fragment colloids from MgO hydration products in experiments with large particle size MgO.

Magnesium concentrations as a function of ultrafiltration for long-term MgO hydration experiments in 1.0 M MgCl₂ are presented in Figures 3 and 4. These experiments covered three particle sizes of MgO—mixed (i.e., as-received) particle size MgO, large particle size MgO and small particle size MgO. Figures 3 and 4 demonstrate that magnesium concentrations remain constant regardless of ultrafiltration, suggesting the absence of mineral fragment colloids from MgO hydration products in 1.0 M MgCl₂.

In Figures 5 and 6, magnesium concentrations as a function of ultrafiltration for long-term MgO carbonation experiments in GWB are displayed. These experiments were conducted at $P_{CO_2} = 3.5 \times 10^{-4}$ atm with mixed (i.e., as-received) particle size MgO. Figures 5 and 6 indicate that magnesium concentrations remain constant regardless of ultrafiltration, suggesting the absence of mineral fragment colloids from both MgO hydration and carbonation products in GWB.

In Figures 7 through 9, magnesium concentrations as a function of ultrafiltration for long-term MgO carbonation experiments in GWB are depicted. These experiments were conducted at $P_{CO_2} = 3.5 \times 10^{-3}$ atm with mixed particle size MgO. These figures indicate that magnesium
concentrations remain constant regardless of ultrafiltration, suggesting the absence of mineral fragment colloids from both MgO hydration and carbonation products in GWB.

In Figures 10 through 12, the results from the carbonation experiments conducted at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm with large particle size MgO in GWB are shown. These figures indicate that magnesium concentrations remain constant regardless of ultrafiltration.

Figures 13 and 14 are similar to Figures 10 through 12, except that the results refer to the carbonation experiments conducted at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm with mixed particle size MgO in simplified GWB.

In Figure 15, the results from the carbonation experiments conducted at $P_{\text{CO}_2} = 3.5 \times 10^{-4}$ atm with prehydrated mixed particle size MgO in GWB are presented. In these experiments, MgO was prehydrated as brucite and phase 5. Therefore, these experiments actually investigated the direct carbonation of MgO from its hydration products. These experimental results indicate that magnesium concentrations remain constant regardless of ultrafiltration, suggesting the absence of mineral fragment colloids from both MgO hydration and carbonation products in GWB.

The experimental results presented in Figure 16 are similar to those in Figure 15, except that the results in Figure 16 are from the carbonation experiments conducted at $P_{\text{CO}_2} = 3.5 \times 10^{-4}$ atm with prehydrated mixed particle size MgO in simplified GWB.

In Figures 17 and 18, magnesium concentrations as a function of ultrafiltration for long-term MgO carbonation experiments in ERDA-6 are displayed. These experiments were conducted at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm with small particle size MgO. Figures 17 and 18 indicate that magnesium concentrations remain constant regardless of ultrafiltration, suggesting the absence of mineral fragment colloids from both MgO hydration and carbonation products in EDRA-6.

Cesium Concentrations as a Function of Equivalent Pore Sizes

In the following, cesium concentrations as a function of equivalent pore size for samples taken from the SNL long-term MgO hydration and carbonation experiments in various solutions are presented.

In Figures 19 and 20, cesium concentrations as a function of ultrafiltration for long-term MgO hydration experiments in GWB are displayed. These experiments were conducted with large particle size MgO. Cesium concentrations are constant regardless of equivalent pore sizes, indicating the absence of mineral fragment colloids.

The results presented in Figures 21 and 22 are similar to those in Figures 19 and 20. The experiments presented in Figures 21 and 22 were conducted in GWB with mixed particle size MgO.
In Figure 23, the results from the long-term MgO hydration experiments in 1.0 MgCl₂ are presented. These experiments were conducted with large particle size MgO. The results are similar to those in Figures 19 and 20 in GWB.

In Figures 24 and 25, the results from the carbonation experiments conducted at $P_{CO_2} = 3.5 \times 10^{-4}$ atm with mixed particle size MgO in GWB are depicted. There is no dependence on equivalent pore size for cesium concentrations.

The results in Figures 26 through 28 are similar to those in Figures 24 and 25, except that the results in Figures 26 through 28 are from the carbonation experiments conducted at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, which is one order of magnitude higher than that in Figures 24 and 25.

The results presented in Figure 29 are similar to those in Figures 26 through 28. The experiments in Figure 29 were with large particle size MgO, whereas those in Figures 26 through 28 were with mixed particle size MgO.

The results presented in Figure 30 are similar to those in Figure 29. The experiments in Figure 29 were with large particle size MgO in GWB, whereas those in Figure 30 were with mixed particle size MgO in simplified GWB.

In Figure 31, the results from the carbonation experiments conducted at $P_{CO_2} = 3.5 \times 10^{-3}$ atm with prehydrated large particle size MgO in GWB are depicted. As mentioned previously, MgO was prehydrated as brucite and phase 5. Therefore, these experiments investigated the direct carbonation of hydration products. These experimental results indicate that cesium concentrations remain constant regardless of ultrafiltration, suggesting the absence of mineral fragment colloids from both MgO hydration and carbonation products in GWB.

The results in Figure 32 are similar to those in Figure 31, except for that the carbonation experiments with prehydrated MgO in Figure 32 were conducted in simplified GWB.

In summary, the overwhelming experimental results demonstrate that magnesium and cesium concentrations are independent of ultrafiltration, indicating the absence of mineral colloids associated with MgO hydration and carbonation processes. These experiments covered a wide range of conditions. In terms of MgO particle sizes, they included mixed (i.e., as-received) particle size MgO, large particle size MgO (i.e., 1 mm—2 mm), and small particle size MgO (i.e., < 75 µm). Regarding the solution medium, they included 1.0 MgCl₂, simplified GWB (1.0 M MgCl₂ + 3.6 M NaCl), GWB, and ERDA-6. With regard to the partial pressure of CO₂(g), they included $P_{CO_2} = 3.5 \times 10^{-4}$ atm and $P_{CO_2} = 3.5 \times 10^{-3}$ atm.
4 CONCLUSIONS

This work clearly demonstrates the absence of mineral fragment colloids in the SNL long-term MgO hydration and carbonation. This conclusion is reached based on two independent experimental approaches. The absence of mineral fragment colloids in the WIPP brines is due to the chemistry of the WIPP brines. The WIPP brines are characterized by high ionic strengths with GWB and ERDA-6 having ionic strengths of 8.26 mol·kg\(^{-1}\) and 5.82 mol·kg\(^{-1}\), respectively (Xiong and Lord, 2008). Furthermore, these brines have high concentrations of both monovalent and divalent ions. The ERDA-6 brine has 5.35 mol·kg\(^{-1}\), 0.106 mol·kg\(^{-1}\), 0.0209 mol·kg\(^{-1}\), 0.0132 mol·kg\(^{-1}\) for Na\(^+\), K\(^+\), Mg\(^{2+}\), and Ca\(^{2+}\) (Xiong and Lord, 2008), respectively. GWB has 4.04 mol·kg\(^{-1}\), 0.532 mol·kg\(^{-1}\), 1.16 mol·kg\(^{-1}\), 0.0163 mol·kg\(^{-1}\) for Na\(^+\), K\(^+\), Mg\(^{2+}\), and Ca\(^{2+}\) (Xiong and Lord, 2008), respectively. These concentrations are much higher than the critical coagulation concentrations. The direct consequence of the chemistry of the WIPP brines is that mineral fragment colloids that might be derived from MgO are unstable in these brines. The absence of mineral fragment colloids, as demonstrated experimentally by this study, obviously illustrates the role of the WIPP brine chemistry in destabilization of mineral fragment colloids.

The absence of MgO hydration and carbonation product mineral fragment colloids in the brines associated with salt formations, as indicated by this work, has important implications to disposal of nuclear waste in salt formations. The high ionic strength brines associated with salt formations provide favorable near-field geochemical conditions that will de-stabilize mineral fragment colloids. The absence of colloids of any kind is a favorable result for the performance of a nuclear waste repository in salt formations.

Xiong, Y.-L., 2008. SP 20-4, Preparing Synthetic Brines for Geochemical Experiments, Revision 2. Sandia National Laboratories, Carlsbad, NM.

Xiong, Y.-L., Brush, L.H., Garner, J., and Long, J.J., 2010a. Responses to three EPA comments pertaining to comparisons of measured and predicted dissolved and colloidal Th(IV) and Am(III) concentrations, Revision 1, Supersedes ERMS# 553409. Sandia National Laboratories, Carlsbad, NM, ERMS# 553595

Xiong, Y.-L., Deng, H., Nemer, M., Johnsen, S., 2010b. Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg₃Cl(OH)₅•4H₂O, phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations. *Geochimica et Cosmochimica Acta* 74, 4605-4611.

Information Only
Figure Captions

Figure 1. Magnesium concentrations in solution samples from MgO hydration experiments in GWB with large particle size MgO as a function of equivalent pore size. The experiments include GW20L28, GW20L33 through GW20L36. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 2. Magnesium concentrations in solution samples from MgO hydration experiments in GWB with large particle size MgO as a function of equivalent pore size. The experiments include GW20L19 through GW20L23, and GW20L27. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 3. Magnesium concentrations in solution samples from MgO hydration experiments in a 1.0 M MgCl₂ solution with large particle size MgO and mixed size MgO as a function of equivalent pore size. The experiments with large particle size MgO include (MgCl₂)20L27 through (MgCl₂)20L28. In each above experiment, there was 3.1 g of MgO with 77 mL of 1.0 M MgCl₂. The experiments with mixed size MgO include (MgCl₂)3M25 through (MgCl₂)3M27. In each experiment with mixed size MgO, there was 3 g of MgO with 11 mL of 1.0 M MgCl₂.

Figure 4. Magnesium concentrations in solution samples from MgO hydration experiments in a 1.0 M MgCl₂ solution with small particle size MgO and mixed size MgO as a function of equivalent pore size. The experiments with small particle size MgO include (MgCl₂)3S27 through (MgCl₂)3S28. In each above experiment, there was 3 g of MgO with 11 mL of 1.0 M MgCl₂. The experiments with mixed size MgO include (MgCl₂)20M27 through (MgCl₂)20M28. In each experiment with mixed size MgO, there was 3.1 g of MgO with 77 mL of 1.0 M MgCl₂.

Figure 5. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at P_{CO₂} = 3.5 x 10⁻⁴ atm, as a function of equivalent pore size. The experiments include 1:20GWBA5 through 1:20GWBA9. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 6. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at P_{CO₂} = 3.5 x 10⁻⁷ atm, as a function of equivalent pore size. The experiments include 1:20GWBA10 through 1:20GWBA14. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 7. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at P_{CO₂} = 3.5 x 10⁻³ atm, as a function of equivalent pore size. The experiments include 1:20GWBB7 through 1:20GWBB13. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 8. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at P_{CO₂} = 3.5 x 10⁻³ atm, as a function of equivalent pore size.
pore size. The experiments include 1:20GWBB14 through 1:20GWBB20. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 9. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBB21 through 1:20GWBB28. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 10. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with large particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBD5 through 1:20GWBD12. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 11. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with large particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBD13 through 1:20GWBD20. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 12. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with large particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBD21 through 1:20GWBD28. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 13. Magnesium concentrations in solution samples from MgO carbonation experiments in simplified GWB with mixed particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20SGWB22 through 1:20SGWB24. In each experiment, there was 3.1 g of MgO with 77 mL of simplified GWB.

Figure 14. Magnesium concentrations in solution samples from MgO carbonation experiments in simplified GWB with mixed particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20SGWB15 through 1:20SGWB16, 1:20SGWB18 through 1:20SGWB21. In each experiment, there was 3.1 g of MgO with 77 mL of simplified GWB.

Figure 15. Magnesium concentrations in solution samples from MgO carbonation experiments in GWB with prehydrated mixed particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBMgOHA7 through 1:20GWBMgOHA14. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 16. Magnesium concentrations in solution samples from MgO carbonation experiments in simplified GWB with prehydrated mixed particle size MgO at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20SGWBmgOHB7 through 1:20SGWBmgOHB14. In each experiment, there was 3.1 g of MgO with 77 mL of simplified GWB.
Figure 17. Magnesium concentrations in solution samples from MgO carbonation experiments in ERDA-6 with small particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20ERC-9 through 1:20ERC-14. In each experiment, there was 3.1 g of MgO with 77 mL of ERDA-6.

Figure 18. Magnesium concentrations in solution samples from MgO carbonation experiments in ERDA-6 with small particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20ERC-15 through 1:20ERC-28. In each experiment, there was 3.1 g of MgO with 77 mL of ERDA-6.

Figure 19. Cesium concentrations in solution samples from MgO hydration experiments in GWB with large particle size MgO as a function of equivalent pore size. The experiments include GW20L19 through GW20L25. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 20. Cesium concentrations in solution samples from MgO hydration experiments in GWB with large particle size MgO as a function of equivalent pore size. The experiments include GW20L26 through GW20L28, GW20L33 through GW20L35. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 21. Cesium concentrations in solution samples from MgO hydration experiments in GWB with mixed particle size MgO as a function of equivalent pore size. The experiments include GW20M19 through GW20M26. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 22. Cesium concentrations in solution samples from MgO hydration experiments in GWB with mixed particle size MgO as a function of equivalent pore size. The experiments include GW20M27 through GW20M28, GW20M31 through GW20M36. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 23. Cesium concentrations in solution samples from MgO hydration experiments in 1.0 M MgCl$_2$ with mixed and large particle size MgO as a function of equivalent pore size. The experiments with mixed particle size MgO include MgCl2-20M27 and MgCl2-20M28. The experiments with large particle size MgO include MgCl2-20L27 and MgCl2-20L28. In each experiment, there was 3.1 g of MgO with 77 mL of 1.0 M MgCl$_2$.

Figure 24. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at $P_{CO_2} = 3.5 \times 10^{-4}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBA5 through 1:20GWBA9. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 25. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at $P_{CO_2} = 3.5 \times 10^{-4}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBA10 through 1:20GWBA14. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.
Figure 26. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBB7 through 1:20GWBB13. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 27. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBB14 through 1:20GWBB20. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 28. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with mixed particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBB21 through 1:20GWBB28. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 29. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with large particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBD13 through 1:20GWBD20. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 30. Cesium concentrations in solution samples from MgO carbonation experiments in simplified GWB with mixed particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20SGWBB15 through 1:20SGWBB21. In each experiment, there was 3.1 g of MgO with 77 mL of simplified GWB.

Figure 31. Cesium concentrations in solution samples from MgO carbonation experiments in GWB with prehydrated large particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20GWBMgOHA7 through 1:20GWBMgOHA13. In each experiment, there was 3.1 g of MgO with 77 mL of GWB.

Figure 32. Cesium concentrations in solution samples from MgO carbonation experiments in simplified GWB with prehydrated large particle size MgO at $P_{CO_2} = 3.5 \times 10^{-3}$ atm, as a function of equivalent pore size. The experiments include 1:20SGWBMgOHB7 through 1:20SGWBMgOHB14. In each experiment, there was 3.1 g of MgO with 77 mL of simplified GWB.
Long-term MgO hydration experiments with large particle size

MgO in GWB

- Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%
- Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%
- Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 1.
Long-term MgO hydration experiments with large particle size MgO in GWB

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 2.
Long-term MgO hydration experiments in 1.0 M MgCl₂

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 3.
Long-term MgO hydration experiments in 1.0 M MgCl₂

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 4.
Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{\text{CO2}} = 3.5 \times 10^{-4}$ atm

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 5.
Figure 6.

Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-4}$ atm

- Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%
- Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%
- Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Equivalent Pore Size in nano meter (nm)
Figure 7.

Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for \sim 20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for \sim 50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for \sim 80%

Equivalent Pore Size in nanometer (nm)

Information Only
Figure 8.

Long-term MgO carbonation experiments with mixed size MgO in GWB at $p_{CO_2} = 3.5 \times 10^{-4} \text{ atm}$.

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Equivalent Pore Size in nano meter (nm)
Figure 9.
Figure 10.

Long-term MgO carbonation experiments with large size MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-3}$ atm

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Equivalent Pore Size in nano meter (nm)

Information Only
Figure 11. Long-term MgO carbonation experiments with large size MgO in GWB at $P_{CO2} = 3.5 \times 10^{-3}$ atm.

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for $\approx 20\%$.

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for $\approx 50\%$.

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for $\approx 80\%$.

Equivalent Pore Size in nano meter (nm)
Figure 12.

Long-term MgO carbonation experiments with large size MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-6}$ atm

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Equivalent Pore Size in nano meter (nm)
Long-term MgO carbonation experiments with mixed size MgO in simplified GWB at $P_{CO_2} = 3.5 \times 10^{-3}$ atm

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 13.
Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 14.
Figure 15. Long-term MgO carbonation experiments with mixed size prehydrated MgO in GWB at $P_{\text{CO}_2} = 3.5 \times 10^{-4}$ atm.

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Concentrations of Mg on molar scale

Equivalents Pore Size in nano meter (nm)

Information Only
Long-term MgO carbonation experiments with mixed size prehydrated MgO in simplified GWB at $P_{CO_2} = 3.5 \times 10^{-3}$ atm.

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~20%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~50%

Expected Mg concentrations after ultrafiltration, if pseudocolloids account for ~80%

Figure 16.
Figure 17.
Long-term MgO carbonation experiments in ERDA-6

Figure 18.
Long-term MgO hydration experiments with large particle size MgO in GWB spiked with CsCl

Spiked CsCl concentration

Figure 19.
Figure 20. Long-term MgO hydration experiments with large particle size MgO in GWB spiked with CsCl.
Figure 21.
Figure 22.

Long-term MgO hydration experiments with mixed size MgO in GWB spiked with CsCl.

Spiked CsCl concentration.
Long-term MgO hydration experiments with mixed and large particle size MgO in 1 M MgCl₂ spiked with CsCl

Figure 23.
Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{\text{CO}_2} = 3.5 \times 10^{-4}$ atm spiked with CsCl

Figure 24.
Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-4}$ atm spiked with CsCl

Spiked CsCl concentration

Figure 25.
Figure 26.

Long-term MgO carbonation experiments with mixed size MgO in GWB at $p_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl

Spiked CsCl concentration

Information Only
Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl

Figure 27.
Figure 28. Long-term MgO carbonation experiments with mixed size MgO in GWB at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl.

Spiked CsCl concentration

Concentrations of Cs on molar scale

Equivalent Pore Size in nano meter (nm)
Figure 29.

Long-term MgO carbonation experiments with large size MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl

Spiked CsCl concentration

Concentrations of Cs on molar scale

Equivalent Pore Size in nano meter (nm)
Long-term MgO carbonation experiments with mixed MgO in simplified GWB at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl

Figure 30.
Long-term MgO carbonation experiments with large size prehydrated MgO in GWB at $P_{CO_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl

Figure 31.
Long-term MgO carbonation experiments with large size prehydrated MgO in simplified GWB at $P_{\text{CO}_2} = 3.5 \times 10^{-3}$ atm spiked with CsCl

Figure 32.