Waste Isolation Pilot Plant
Environmental Monitoring Plan

United States Department of Energy
Waste Isolation Pilot Plant

Revision 11

August 1, 2019

This document supersedes DOE/WIPP-99-2194, Rev. 10
This document has been submitted as required to:

U.S. Department of Energy
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
(865) 576-8401

Additional information about this document may be obtained by calling 1-800-336-9477.

Unlimited, publicly available full-text scientific and technical reports produced since 1991 are available online at Information Bridge (www.osti.gov/bridge).

U.S. Department of Energy and its contractors may obtain full-text reports produced prior to 1991 in paper form, for a processing fee, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Available for sale to the public from:

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
Phone: (800) 553-6847 or (703) 605-6000
Fax: (703) 605-6900
Email: info@ntis.gov
TABLE OF CONTENTS

CHANGE HISTORY SUMMARY .. 5

ACRONYMS AND ABBREVIATIONS .. 6

1.0 INTRODUCTION .. 7

2.0 PROJECT DESCRIPTION ... 10

3.0 SITE CHARACTERISTICS ... 11
 3.1 Geography .. 11
 3.2 Geology .. 13
 3.3 Climate ... 14
 3.4 Hydrology ... 14
 3.5 Ecology .. 15

4.0 DOSE CALCULATIONS .. 16

5.0 ENVIRONMENTAL MONITORING PROGRAM ... 18
 5.1 Guidelines ... 18
 5.2 Radiological Environmental Monitoring .. 20
 5.2.1 Airborne Effluent Monitoring ... 21
 5.2.2 Airborne Environmental Surveillance ... 21
 5.2.3 Sewage Treatment Facility and H-19 Evaporation Pond Sampling .. 23
 5.2.4 Effluent Monitoring - Liquid Releases .. 27
 5.2.5 Biotic Sampling ... 28
 5.2.6 Soil Sampling ... 30
 5.2.7 Surface Water Sampling ... 30
 5.2.8 Sediment Sampling ... 32
 5.2.9 Groundwater Sampling ... 33
 5.3 Nonradiological Environmental Monitoring .. 36
 5.3.1 Meteorological Monitoring .. 36
 5.3.2 VOC Monitoring .. 37
 5.3.3 Groundwater Surveillance .. 38
 5.3.4 WIPP Shallow Subsurface Water Monitoring ... 38
 5.3.5 Surface Water Monitoring ... 40
 5.4 Land Management .. 40
 5.5 Oil and Gas Surveillance ... 41

6.0 DATA ANALYSIS .. 41
 6.1 Accuracy .. 42
 6.2 Temporal and Spatial Analysis ... 43
 6.3 Distributions and Descriptive Statistics ... 44
 6.4 Data Anomalies .. 44
 6.5 Data Comparisons ... 44
 6.6 Laboratory Procedures ... 45
 6.7 Sample Handling ... 45
7.0 QUALITY ASSURANCE .. 46
 7.1 Goal ... 47
 7.2 Program Elements ... 47
 7.2.1 Program ... 48
 7.2.2 Personnel Training and Qualification 48
 7.2.3 Quality Improvement ... 49
 7.2.4 Documents and Records ... 49
 7.2.5 Work Processes .. 50
 7.2.6 Design .. 52
 7.2.7 Procurement ... 52
 7.2.8 Inspection and Acceptance Testing 52
 7.2.9 Management Assessment .. 52
 7.2.10 Independent Assessment ... 53

REFERENCES .. 54

TABLE OF FIGURES

Figure 3-1 - Location of the WIPP Site ... 11
Figure 3-2 - Plat of the WIPP Site ... 12
Figure 3-3 - Generalized Stratigraphy of the WIPP Site 13
Figure 5-1 - Air Sampling Sites ... 22
Figure 5-2 - Surface Water Sampling Sites 24
Figure 5-3 - Vegetation/Soil Sampling Sites 29
Figure 5-4 - Sediment Sampling Sites ... 32
Figure 5-5 - Groundwater Level Surveillance Wells 34
Figure 5-6 - Groundwater Sampling Locations 35
Figure 5-7 – Location of Shallow Subsurface (SSW) Water Wells 39

LIST OF TABLES

Table 5-1 - Environmental Monitoring Sampling 25
Table 5-2 - EMP Analytical Array ... 26
CHANGE HISTORY SUMMARY

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>DATE ISSUED</th>
<th>DESCRIPTION OF CHANGES</th>
</tr>
</thead>
</table>
| 10 | 06/22/17 | • Updated references to source documents.
• Provided more detailed links to implementing documents to correlate to the DOE/HDBK-1216-2015, Environmental Radiological Effluent Monitoring and Environmental Surveillance, handbook.
• Updated groundwater and volatile organic compound sampling program descriptions. |
| 11 | 08/01/19 | • Various editorial changes and corrections.
• Numerous changes in References.
• Format changes to update Writer's Guide.
• Updated Exclusive Use Area boundary information. |
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASER</td>
<td>Annual Site Environmental Report</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CH</td>
<td>contact-handled</td>
</tr>
<tr>
<td>CY</td>
<td>calendar year</td>
</tr>
<tr>
<td>DMP</td>
<td>Detection Monitoring Program</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>EE</td>
<td>event evaluation</td>
</tr>
<tr>
<td>EMP</td>
<td>Environmental Monitoring Plan</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FAS</td>
<td>fixed air sampler</td>
</tr>
<tr>
<td>FEIS</td>
<td>Final Environmental Impact Statement</td>
</tr>
<tr>
<td>GMP</td>
<td>Groundwater Monitoring Program</td>
</tr>
<tr>
<td>HEPA</td>
<td>high-efficiency particulate air</td>
</tr>
<tr>
<td>HWDDU</td>
<td>hazardous waste disposal unit</td>
</tr>
<tr>
<td>IVS</td>
<td>Interim Ventilation System</td>
</tr>
<tr>
<td>LO-VOL</td>
<td>low-volume</td>
</tr>
<tr>
<td>LUR</td>
<td>land use request</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>NFB</td>
<td>New Filter Building</td>
</tr>
<tr>
<td>NQA</td>
<td>Nuclear Quality Assurance</td>
</tr>
<tr>
<td>NWP</td>
<td>Nuclear Waste Partnership LLC</td>
</tr>
<tr>
<td>Permit</td>
<td>Hazardous Waste Facility Permit</td>
</tr>
<tr>
<td>PPA</td>
<td>Property Protection Area</td>
</tr>
<tr>
<td>PZ</td>
<td>piezometer</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QAPD</td>
<td>Quality Assurance Program Description</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RH</td>
<td>remote-handled</td>
</tr>
<tr>
<td>RIDS</td>
<td>records inventory and disposition schedule</td>
</tr>
<tr>
<td>scfm</td>
<td>Standard Cubic Feet Per Minute</td>
</tr>
<tr>
<td>SSW</td>
<td>shallow subsurface water</td>
</tr>
<tr>
<td>SWIC</td>
<td>Storm Water Infiltration Control</td>
</tr>
<tr>
<td>TDS</td>
<td>total dissolved solids</td>
</tr>
<tr>
<td>TKN</td>
<td>total Kjeldahl nitrogen</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WHB</td>
<td>Waste Handling Building</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WLMP</td>
<td>Water Level Monitoring Program</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The environmental monitoring program at the Waste Isolation Project Plant (WIPP) is conducted to measure radionuclide releases for DOE activities; characterize the radiological condition of the environs on and around DOE properties; and support assessment of potential public exposure through available pathways (e.g., air, water, soil, and biota). This Plan documents the elements needed to establish and maintain effective environmental monitoring activities, including:

- Verifying and supporting compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders, including elements of DOE Order 458.1, Radiation Protection of the Public and the Environment.

- Establishing background data and characterizing trends in the physical, chemical, and biological condition of effluent and environmental media using data assessments and statistical analysis.

- Identifying potential environmental problems and evaluating the need for remedial actions or measures to mitigate the problem using a graded approach. A graded approach is a process by which the level of analysis, documentation and the actions demonstrate regulatory compliance with applicable regulatory limits in environmental media.

- Detecting, characterizing, and reporting unplanned releases per DOE Order 232.2A, Occurrence Reporting and Processing of Operations Information.

- Evaluating the effectiveness of effluent treatment and control and pollution abatement programs and assessing the radiological dose to the public and biota.

- Determining compliance with commitments made in environmental impact statements, environmental assessments, documented safety analyses, or other official U.S. Department of Energy (DOE) documents.
This Environmental Monitoring Plan (EMP) explains and documents: the rationale and design criteria for the Environmental Monitoring Program, the extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports (e.g., the WIPP Annual Site Environmental Report, required by DOE Order 231.1B, Environment, Safety and Health Reporting).

This EMP describes radiological environmental monitoring, nonradiological environmental monitoring, and land management and surveillance programs during the facility’s operational life. It also discusses the WIPP QA/quality control (QC) program as it relates to environmental monitoring. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP is reviewed annually, revised biennially, to document any changes made to the environmental monitoring program. Annual review of the EMP is based on precedent established in the now cancelled DOE Order 5400.1, General Environmental Protection Program. This is not a requirement in DOE Order 436.1, Departmental Sustainability.

This EMP is part of an overall program designed to ensure that appropriate capabilities are maintained for monitoring and assessing routine and unplanned releases of radioactive materials, and assessing dose to the public, in accordance with the requirements of DOE Order 458.1. The specific requirement of DOE Order 458.1 to implement a documented environmental radiological protection program is satisfied by implementation of both this EMP, including sub-tier manuals and procedures, and the Waste Isolation Pilot Plant Radiation Safety Manual (WP 12-5), including implementing sub-tier radiological control program documents relating to radiation protection of the public and the environment, reporting of radiological release occurrences, and environmental radiological surveillance. Environmental surveillance and effluent monitoring data and assessments are reported to the public annually in the WIPP Annual Site Environmental Report.

This document is prepared for WIPP using concepts contained in guidance documents DOE-HDBK-1216-2015, DOE Handbook: Environmental Radiological Effluent Monitoring and Environmental Surveillance, which replaced DOE/EH-0173T in 2015, and reference DOE Order 5400.1, DOE Order 458.1, and is a key document in meeting the requirements of DOE Order 436.1, to implement conformation to ISO 14001, Environmental Management System.

This EMP provides a description of other environmental conditions at WIPP, including:

- A description of WIPP and its mission
- A description of the local environment
- An overview of the methodology used to assess radiological consequences to the public
Environmental monitoring activities at WIPP generally fall into four categories: (1) collection of samples from various media – air, water, soil, flora, fauna, etc., and analyzing them for specific variables; (2) evaluating whether WIPP activities cause adverse environmental impacts; (3) preparing and publishing documents showing compliance or noncompliance with federal, state, and local regulations; and (4) taking corrective action when an adverse impact on the environment is identified due to any radiological or nonradiological source.

A number of provisions designed to mitigate potential environmental impacts appear, as applicable, in statements of work issued to contractors involved in the operation of the WIPP facility. These provisions are listed below:

- **Protection of environmental resources**, including avoidance of unnecessary damage to vegetation, wildlife, and soil by controlling traffic, preventing erosion, minimizing disturbance zones, and cleaning up spills

- **Protection of air resources**, including mitigation of airborne radioactive contaminants by filtration and materials containment, the control of hydrocarbon emissions by using proper fuels, the suppression of dust by spraying with water, and the monitoring and control of noise

- **Protection of water resources**, including the use of lined retention ponds such as the sewage treatment system for controlling suspended materials, solutes, and other pollutants; lined storm water retention ponds; lined salt water retention ponds; lined salt storage cells; and shipment of radiation containing brines from the underground to approved low-level waste facilities.

- **Preservation and recovery of historical, archaeological, and cultural resources**, including the delay of construction activities as necessary to investigate and mitigate impacts to historical or archaeological resources managed by the WIPP Land Use Coordinator through the Land Use Request process.

- **Post-construction reclamation**, including the removal of temporary construction facilities, access roads, stockpiles, and work areas, as well as the restoration of all damaged landscape features outside the limits of approved work areas

The WIPP must also comply with specified permitting and approval requirements of several federal and state regulatory agencies.
2.0 PROJECT DESCRIPTION

The primary purpose of the WIPP is to dispose of defense-generated transuranic (TRU) waste, some of which is TRU mixed waste. TRU waste is waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for (A) high-level radioactive waste; (B) waste that the DOE Secretary has determined, with the concurrence of the U.S. Environmental Protection Agency (EPA) Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the Nuclear Regulatory Commission has approved for disposal on a case-by-case basis in accordance with Title 10 Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste. TRU Mixed Waste is TRU waste that is also a hazardous waste as defined by the New Mexico Hazardous Waste Act and 20.4.1.200 New Mexico Administrative Code (incorporating 40 CFR §261.3). The Waste Isolation Pilot Plant Land Withdrawal Act established the location, agency responsibilities, and parameters within which such disposal could proceed (P.L. 102-579, 1992).

Contact-handled (CH) and remote-handled (RH) TRU waste is received and disposed of at the WIPP facility. CH waste consists of TRU waste that has a surface dose rate not greater than 200 millirem per hour and therefore can be handled without additional shielding to protect personnel. RH waste is TRU waste that, due to higher levels of penetrating radiation, must be shielded and/or handled remotely. Waste is classified as RH when the surface dose rate is greater than 200 millirem per hour, but not exceeding 1,000 rems per hour.

CH and RH wastes are emplaced in rooms and adjacent access drifts that have been excavated from the Salado Formation, a thick sequence of salt beds. The disposal horizon is located at a depth of 655 meters (2,150 feet). When a disposal room will no longer receive waste for emplacement, ventilation barriers are erected. After completion of waste emplacement in a panel, the panel is removed from active ventilation.

When the WIPP is decommissioned, specially designed shaft seals and closure systems will be placed in the excavated shafts and in the drifts. Geologic pressures and the plasticity of the salt will result in the excavation's gradual closure due to creep. This closure will encapsulate and isolate waste within the Salado Formation.
3.0 SITE CHARACTERISTICS

3.1 Geography

The WIPP is located in Eddy County in southeastern New Mexico (Figure 3-1) within the Pecos Valley section of the southern Great Plains physiographic province (Powers et al., 1978). The site is 42 km (26 miles) east of Carlsbad in an area known as Los Medaños (the dunes). Los Medaños is a relatively flat, sparsely inhabited plateau with little surface water. The WIPP site (Figure 3-2) consists of 16 sections of federal land in Township 22 South, Range 31 East, New Mexico Principal Meridian.
Figure 3-2 - Plat of the WIPP Site
3.2 Geology

The soils of Los Medaños are sandy and well drained, with a well-developed caliche layer occurring below one meter. There are no integrated natural surface drainage features at the site. Scattered throughout the local area are numerous livestock watering ponds (tanks) and shallow playas that retain water sporadically. The nearest of these playas is located approximately seven miles southwest of the site. Geologically, the site is part of the northern portion of the Delaware Basin, one of the western-most sedimentary basins known collectively as the Permian Basin. Figure 3-3 illustrates the local stratigraphy.

![Figure 3-3 - Generalized Stratigraphy of the WIPP Site](image-url)
3.3 Climate

The climate of the region is semiarid, with generally mild temperatures, low precipitation and humidity, and a high evaporation rate. Winds are mostly from the southeast and moderate. In late winter and spring, there are strong west winds and dust storms.

Precipitation at the WIPP is relatively low, averaging 13 in (33 cm) annually, and is unevenly distributed throughout the year. Winter is the season of least precipitation, averaging less than 0.6 in (1.5 cm) of rainfall per month. Snow averages about 5 in (13 cm) per year at the site and seldom remains on the ground for more than a day at a time because of the typically above-freezing temperatures in the afternoon. Approximately half the annual precipitation comes from frequent thunderstorms in June through September.

Temperatures are moderate throughout the year, although seasonal changes are distinct. The mean annual temperature in southeastern New Mexico is 63 °F (17.2 °C). In the winter (December through February), nighttime lows average near 23 °F (-5 °C), and daytime highs average about 55 °F (12.7 °C). The lowest recorded temperature at the nearest Class A weather station in Roswell was -29 °F (-33.8 °C) in February 1905. In the summer, the daytime temperature exceeds 90 °F (32.2 °C) approximately 75 percent of the time (DOE/EIS-0026). On June 27, 1994, the National Weather Service documented a temperature of 122 °F (50 °C) at the WIPP site as the record high temperature for New Mexico. Based on DOE/WIPP 16-3572, the mean monthly temperatures measured at WIPP in 2015 ranged from 82.45 °F (28.0 °C) during July, to 38.88 °F (3.82 °C) in January. The lowest recorded temperature was 13.69 °F (-10.17 °C) in December and the highest temperature was 103.46 °F (39.70 °C) in August (DOE/WIPP 16-3572).

3.4 Hydrology

The nearest large surface water body (Salt Lake) is located approximately 13 kilometers (7 miles) west-southwest of the WIPP site in Nash Draw. The Pecos River is located 22.4 kilometers (14 miles) southwest of the WIPP site.

Several water-bearing zones have been studied near the WIPP. The most significant are the Culebra Dolomite and Magenta Dolomite Members of the Rustler Formation, which consist primarily of fractured dolomite. These dolomite units produce brackish to saline water. Another saline water-bearing zone identified is the Rustler-Salado contact residuum, which contains very little water at the WIPP site. It was exposed during shaft construction and produced only a small amount of brine seepage. Other water-bearing zones that have been evaluated as part of site characterization include the Dewey Lake Formation and the overlying Triassic Dockum Group above the repository, and the Bell Canyon and Castile Formations below the repository.
The Dewey Lake Redbeds Formation [Dewey Lake] (Figure 3-3), which contains limited amounts of fresh water, is composed of alternating thin, even beds of siltstone and mudstone with lenticular interbeds of fine-grained sandstone. Exploratory drilling during site hydrogeologic evaluation did not identify a continuous zone of saturation within the Dewey Lake. The few Dewey Lake wells yielding water for domestic and livestock purposes are believed to be completed in the thin, discontinuous lenticular sands where favorable groundwater recharge occurs (Mercer, 1983).

Shallow subsurface water (SSW) occurs beneath the WIPP site at a depth of less than 100 feet below ground surface at the contact between the lower Santa Rosa Formation [Santa Rosa] and upper Dewey Lake. This SSW yields generally less than one gallon per minute in monitoring wells and piezometers (PZs) and contains high concentrations of total dissolved solids (TDS) and chlorides. The origin of this water is believed to be primarily from anthropogenic sources (Daniel B. Stephens, 2003). The SSW occurs not only under the WIPP site surface facilities but also about a half mile south of the Waste Handling Shaft.

The SSW saturated zone occurs in the uppermost Permo-Triassic Dewey Lake and basal Triassic Santa Rosa. Some wells in the PZ series produced dry cuttings in the uppermost Dewey Lake Formation, indicating that saturation was limited to the Santa Rosa/Dewey Lake formational contact.

3.5 Ecology

The biota of Los Medaños represent a transition between the northern Chihuahuan Desert and the southern Great Plains. These sandy soils form stabilized shrub coppice dunes interspersed with swales.

Shrubs and grasses are the most prominent components of the local flora. The area vegetation is composed of combined Havard shin oak (shinnery oak) dune and grassland aspects that include perennial grasses (e.g., grama, dropseed, 3-awn) and shrubs (e.g., fourwing saltbush). Honey mesquite is an invasive tree that is also noticeable in the area. These are typical grassland and shrub land species that dominate the flora of the area.

The area supports an abundant and diverse population of mammals. Black-tailed jackrabbits and desert cottontails are the most observed. Other primary mammals include mule deer, desert dwelling rodents, and carnivores such as the coyote, gray fox, badger, and striped skunk.

A large variety of bird species are also found in the region. Densities vary according to food and habitat availability. Scaled quail, mourning dove, loggerhead shrike, pyrrhuloxia, and black-throated sparrows are examples of bird inhabitants. The Harris’s hawk, Chihuahuan raven, Swainson's hawk, Northern harrier, and American kestrel are also found at the site.
Numerous varieties of amphibians and reptiles also occupy the WIPP site and its vicinity. Characteristic reptiles in the region include the western (ornate) box turtle, side-blotched lizard, western whiptail, bullsnake, and prairie rattlesnake. Representative amphibians are the tiger salamander, red-spotted toad, and plains spadefoot toad.

A more detailed formal listing of biota species occurring near or on the WIPP Land Withdrawal Area is provided in the WIPP Land Management Plan, (DOE/WIPP-93-004). A brief summary of the ecological baseline surveys appears in Appendix H of the Final Environmental Impact Statement, (DOE/EIS-0026).

4.0 DOSE CALCULATIONS

This section discusses dose calculations involving off-site dose assessment. Section 7.6 (Radiation Exposure Control) of the Waste Isolation Pilot Plant Documented Safety Analysis (DOE/WIPP-07-3372), states:

Normal operations at the WIPP facility do not involve any expected releases of airborne radioactive materials, although there is minor contamination in some areas due to the February 2014 release event. Filtered vents on the waste containers may emit small amounts of radioactivity, which is monitored and controlled through the use of CAMs and routine radiological monitoring. Because waste containers are not opened at WIPP and they must meet 10 CFR §835 external contamination limits (which are more conservative than U.S. Department of Transportation (DOT) limits applicable during transit) before shipment, significant contamination on the containers is not expected at WIPP. Although significant external contamination is not expected at WIPP, engineered controls and ACs, such as ALARA practices, use of radiological work permits, and ventilation design are the main methods for controlling contamination.

The WIPP environmental program is designed to meet the expectation that during normal operations there is no detectable radiological contamination release to the environment. Even for routine periodic emissions calculations, the dose estimates have proved far below any regulatory limit for dose to a member of the public.

The DOE, with regards to the WIPP facility, is required to comply with environmental radiation protection standards in (40 CFR Part 191), Subpart A, Environmental Standards for Management and Storage. The WIPP-relevant portion of 40 CFR §191.03(b) that describes limits of facility dose to a member of the public in the general environment applies at the Exclusive Use Area fence line, per EPA WIPP-specific guidance document EPA 402-R-97-001, Guidance for the Implementation of EPA’s Standards for Management and Storage of Transuranic Waste (40 CFR Part 191, Subpart A) at the Waste Isolation Pilot Plant, section 2.5. Documentation of compliance is acceptable, per section 2.7 of the guidance, using the CAP88-PC (Clean Air Act Assessment Package-1988) computer code.
WIPP is in compliance with the reporting requirements established by 40 CFR Part 61, Subpart H, National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, and a memorandum of understanding (MOU) dated May 16, 1995, (DOE, 1995) between the EPA and the DOE regarding the provisions of the National Emission Standards for Hazardous Air Pollutants (NESHAP) for radionuclides.

Emission monitoring and compliance procedures for DOE facilities (40 CFR §61.93[a]) require the use of CAP88-PC or CAP88 mainframe computer models, or other approved procedures, to calculate effective dose equivalents to members of the public. Calculations using the CAP88-PC model are made to verify that the annual effective dose equivalent to the maximally exposed individual, resulting from normal operations conducted at the WIPP facility, is well below the 10-millirem-per-year limit given in 40 CFR Part 61, Subpart H, and is within the public dose limits of DOE Order 458.1. On February 14, 2014, an incident in the underground repository occurred which resulted in the release of americium and plutonium from one TRU waste container into the underground mine and the ambient atmosphere within the facility boundary. Calculations using the CAP88-PC model verified that the annual effective dose equivalent to the maximally exposed individual resulting from this event at the WIPP facility remained well below the 10-millirem-per-year limit given in 40 CFR Part 61, Subpart H, and within the public dose limits of DOE Order 458.1.

Annual screening results are reported in the Annual Site Environmental Report demonstrating compliance with the DOE Order 458.1 dose constraint requirements for protection of biota.
5.0 ENVIRONMENTAL MONITORING PROGRAM

Each facility under the control of the DOE is required to ensure the early identification of, and appropriate response to, potential adverse environmental impacts associated with operations. This must include appropriate preoperational characterization and assessment, and effluent monitoring. The DOE has complied with this requirement by compiling preoperational radiological and nonradiological data to use as a baseline for evaluating operational monitoring results.

An analysis of the historical preoperational data is contained in the following documents:

- Waste Isolation Pilot Plant RCRA Background Groundwater Quality Baseline Report (DOE/WIPP-98-2285)
- Addendum 1, Waste Isolation Pilot Plant RCRA Background Groundwater Quality Baseline Update Report (IT Corporation, 2000)
- Statistical Summary of the Radiological Baseline for the WIPP (DOE/WIPP-92-037)
- Summary of the Salt Impact Studies at the WIPP, 1984 to 1990 (DOE/WIPP-92-038)
- A Study of Disturbed Land Reclamation Techniques for the WIPP (DOE/WIPP-92-039)
- Background Water Quality Characterization Report for the WIPP (DOE/WIPP-92-013)

The environmental sampling programs used to establish the preoperational baseline were originally defined in chapter 5 of the Operational Environmental Monitoring Plan for the Waste Isolation Pilot Plant (DOE, 1989). The plan evolved into this WIPP EMP, which is reviewed annually, revised biennially, and updated as the program changes to meet evolving facility operations and, if indicated, local population shifts. This EMP describes the current environmental monitoring efforts at WIPP during the operational (disposal) phase. Environmental monitoring data are summarized and published in the Annual Site Environmental Report (ASER) (DOE, 2016b).

5.1 Guidelines

Presidential Executive Order 13693, Planning for Federal Sustainability in the Next Decade, further requires the heads of executive agencies to ensure that federal facilities and activities comply with applicable pollution control standards and to take actions necessary for the prevention, control, and abatement of environmental pollution.
It is the policy of the DOE to conduct effluent monitoring and environmental surveillance programs that are appropriate for determining adequate protection of the public and the environment during DOE operations and to ensure that operations comply with DOE and other applicable federal, state, and local radiation standards and requirements. It is the DOE’s objective that its operations properly and accurately measure radionuclides in effluent streams and in the ambient environmental media.

A Guide for: Environmental Radiological Surveillance at US Department of Energy Installations (Corley et al., 1981) states that the factors that should be considered in determining the relative level of environmental surveillance required at a facility include the following:

- Potential hazard of the materials released, considering both expected quantities and relative radiotoxicities
- Extent to which facility operations are routine and unchanging
- Need for supplementing and complementing effluent monitoring
- Size and distribution of the exposed population
- Cost-effectiveness of increments to the environmental surveillance program
- Availability of measurement techniques that will provide sufficiently sensitive comparisons with applicable standard and background measurements

Use of the above guidance, and results of the risk analysis in the safety analyses for WIPP, indicate that operational dose estimates for the WIPP are significantly below dose criteria, and are consistent with DOE’s ALARA (10 CFR 835 § 835.2, Definitions) concept. The WIPP EMP encompasses a comprehensive set of variables that detect environmental impacts. Also, the EMP scope and intensity may be adjusted using a graded approach appropriate to the situation, in response to changing facility processes, environmental conditions, and program results.

The values of the variables measured are derived from environmental radiological analysis of particulates in air; surface water, sediments, soils, and biota; the status of the local biological community; and groundwater quality measurements. Nonradiological portions of the program focus on the immediate area surrounding the site, whereas radiological surveillance generally covers a broader geographical area including nearby ranches, and villages and cities within a radius of 50 miles (80 kilometers) from the central point of the WIPP site. Environmental monitoring will continue at the site during project operations and through decommissioning and beyond.

The goal of the environmental monitoring program is to determine if the local ecosystem has been impacted during the pre-disposal and disposal phases of the WIPP and, if so, to evaluate the severity, geographic extent, and environmental significance. Tables 5-1 and 5-2 summarize the environmental media sampled, frequency, analytical array, and number of sampling stations. Environmental and ecological sampling during operations will be adjusted, as appropriate, to fit the needs of the project.
The geographic scope of radiological sampling is based on projections of potential release pathways for the types of radionuclides in WIPP wastes, which is primarily through airborne transport. The radioisotopes measured, all of which are particulate in form, are selected from those contained in the repository that have the potential for contributing 10 percent or more of the overall calculated annual dose to a member of the public. Also, the surrounding population centers are monitored, even though release scenarios involving radiation doses to residents of those population centers are improbable.

Sampling and related activities are conducted in accordance with WIPP procedures. Standard sampling practices and techniques are used (see section 6.0, Data Analysis).

Quality assurance has been established within the framework of WP 13-1, Nuclear Waste Partnership LLC Quality Assurance Program Description (QAPD), and is referenced in section 7.0 of this EMP. When WIPP data are received, they are verified, validated, evaluated, and presented in the ASER.

Data are stored in various electronic databases on the network where they are backed up daily. Databases are maintained by the EM&H group as data are added. Data are maintained through the Records Inventory and Disposition Schedule (RIDS) Program. Each sampling program has a RIDS, which defines the specific retention times and storage location of the records. When the data retention time for site storage has been achieved, records are sent to the WIPP records center for permanent storage. Records are scanned and placed in the Documentum Database maintained by the WIPP record center. Retrieval of records can be from Documentum or files onsite depending on the status.

5.2 Radiological Environmental Monitoring

The operational environmental surveillance program will continue, with some modifications of the preoperational program and variables monitored during the radiological baseline program and ecological monitoring program, during the disposal phase. Each sampling subprogram of the EMP is described below.
5.2.1 Airborne Effluent Monitoring

The WIPP facility has two effluent air monitoring stations, designated as Stations B and C. Station B samples represent HEPA-filtered exhaust air from the underground repository to the surface atmosphere, which is the present ventilation configuration since the February 2014 radiological event. An auxiliary parallel set of filters, the Interim Ventilation System (IVS), was installed and tested in CY 2016 to increase the filtered exhaust capacity required for restart of waste emplacement. A high-capacity ventilation filtration system, the New Filter Building (NFB), is being designed to replace the IVS and allow return to normal mining and disposal operations. The Station A sampler, no longer a designated effluent point, is currently being used to assess radionuclide concentrations in unfiltered exhaust from the repository. Station C samples represent HEPA-filtered exhaust from the Waste Handling Building (WHB) to the atmosphere. The WIPP facility uses skid-mounted fixed air samplers (FAS) at each effluent monitoring station to collect representative samples of airborne particulates. Sample filters are collected at the Station B FAS on a daily basis. Station C FAS filters are collected weekly, and as needed. Filters from both monitoring stations are typically analyzed for gross alpha and beta activity, and re-counted after short-lived naturally-occurring radioactivity has decayed. The radioactivity-screened sample filters are then composited and submitted to the WIPP Laboratories for isotopic analysis. The list of analytes for the WIPP Effluent Monitoring Program includes 90Sr, 137Cs, $^{233/234}$U, 238U, 238Pu, $^{239/240}$Pu, and 241Am. Generally, Station B samples are composited monthly, and Station C samples are composited quarterly. The results are reported annually in the ASER, summarized in the Annual Periodic Confirmatory Measurement NESHAP Compliance Report, and reported every other year (on an annual basis) in the Biennial Environmental Compliance Report (BECR).

5.2.2 Airborne Environmental Surveillance

The atmosphere has been established as the most credible exposure pathway to the public from the WIPP. Therefore, ambient airborne particulate sampling for alpha-emitting radionuclides is emphasized in the EMP as a primary component of environmental surveillance. Air sampling results are used to trend environmental radiological levels and determine if there has been a deviation from established baseline and current background radiological levels.

To determine the number of ambient air sampling stations and their placement, demographic and meteorological data for the site were examined to determine the distance to local population centers, the population distribution, and the wind speed frequency distribution and weighing factors, which are scaled to equal the desired number of sampling locations. Locations were selected to avoid areas where large (non-respirable) fugitive dust particles can dominate the sample.
Low-volume air samplers (LO-VOLs) operate at an average flow rate of 2 scfm (0.056 cubic meters/minute) with a maximum of ± 0.2 scfm (± .0056 cubic meters/minute) deviation. The sample inlet probes were positioned in accordance with siting criteria contained in regulations and standards in effect at the time. Location and positioning were updated in calendar year (CY) 2014 to meet the basic criteria of both the DOE guidance and the EPA 40 CFR 58 Appendix E, Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring, specifications for PM10 particulate air sampling (Corley, et al, 1981; DOE/EH-0173T; DOE-HDBK-1216-2015).

The current LO-VOL sampling array (Figure 5-1) consists of seven primary sampling stations, the locations of which provide as much continuity as possible between baseline and operational data. Primary LO-VOL samplers are at Carlsbad, Smith Ranch, Mills Ranch, WIPP South, WIPP East, WIPP Far Field, and the Southeast Control sites. The Southeast Control background site is located approximately 12 miles southeast of WIPP in the predominant upwind direction from WIPP. One duplicate sampler is installed at a primary sampling location and moved every calendar quarter to a different primary sampling location as a quality control measure. Exclusive of the Carlsbad location, vegetation and soil sampling are also performed near these locations as described in sections 5.2.5 and 5.2.6, respectively.
Installed in CY 2014 at each of the seven primary locations are event evaluation (EE) samplers, running with an identical set of operational parameters (e.g., sample head height, sample head configuration, flow rates, sample filter type/size, analytical suite when analyzed) as the co-located primary samplers. The EE sample filters are to be preferentially exchanged for screening analysis in the case of an accidental release of radionuclides, leaving the primary sampler to continue to integrate the sample at the location on the normal schedule. These are designated EE-WFF, EE-WEE, EE-WSS, EE-MLR, EE-CBD, EE-SMR, and EE-SEC.

Two more sets of LO-VOL EE samplers were added in CY 2014 (Figure 5-1). The first set was an inner ring of four on-site samplers that collect ambient air both inside the Property Protection Area (PPA), and just outside the PPA within several hundred meters of the PPA fence at selected locations to fill in gaps not covered by the primary samplers. These are designated EE-MET, EE-GSB, EE-SLT, and EE-STB.

The second set of EE samplers are LO-VOL installations at or near the six previously-used preoperational monitoring locations. These sampler locations range from 10 to 50 miles in radius from the central point of the WIPP site and, if required, sample data from these locations could be compared to the pre-operational baseline data. The EE sampling also incorporates duplicate samples as a QC measure. These are designated EE-ART, EE-ANG, EE-PMR, EE-EUN, EE-LVG, and EE-HBS. Ambient airborne particulate sampling at these 24 samplers at 17 locations is performed in accordance with WP 02-EM1012, Airborne Particulate Sampling, which include steps for exchanging LO-VOL filters, desiccation, weighing and transmittal to a laboratory for determining gross alpha and beta activity using a gas flow proportional counter. Quarterly composites of filters from each primary location undergo specific radionuclide analysis as indicated in table 5-2. Event evaluation sample filters are held as backup for radioisotope analysis as needed. Although these ambient air particulate collectors are not used as quantitative effluent monitoring samplers, the calculated concentrations from the ambient air samples may be used to support dispersion estimates derived from the effluent air particulate samples.

In the case of a detected unplanned release, emergency response and radiological control measures include immediate screening of applicable EE samplers for radioactivity by radiological protection teams (WP 02-EM1031).

5.2.3 Sewage Treatment Facility and H-19 Evaporation Pond Sampling

The WIPP Sewage Treatment Facility consists of two parallel trains each consisting of one settling lagoon and one polishing lagoon. Both polishing lagoons discharge into one common evaporation impoundment (Evaporation Lagoon A). Evaporation Lagoon A discharges to either Evaporation Lagoon B and/or Evaporation Lagoon C. The sewage treatment facility is operated in accordance with a discharge permit (DP-831) issued by the New Mexico Environment Department. DP-831, which was last updated in July of 2014, outlines operating, monitoring, reporting and contingency measures for unplanned discharges, as well as closure requirements.
As specified in DP-831 and described in WP 02-EM1001, Sewage Lagoon and Infiltration Controls Sampling, water samples from the side of the settling lagoon and each of the two final evaporation lagoons (B and C, provided there is water in either) are collected periodically as indicated in table 5-1. Samples from these locations are analyzed as indicated in table 5-2. Figure 5-2 inset and Figure 5-7 indicate the location of the Facultative Lagoon impoundments.

Figure 5-2 - Surface Water Sampling Sites
Table 5-1 - Environmental Monitoring Sampling

<table>
<thead>
<tr>
<th>Program</th>
<th>Type of Sample</th>
<th>Number of Sampling Locations</th>
<th>Sampling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiological</td>
<td>Airborne effluent</td>
<td>2</td>
<td>Periodic/confirmatory</td>
</tr>
<tr>
<td></td>
<td>Airborne particulate</td>
<td>17</td>
<td>Weekly</td>
</tr>
<tr>
<td></td>
<td>Liquid effluent</td>
<td>1 (WHB sump)</td>
<td>As needed</td>
</tr>
<tr>
<td>Biotic</td>
<td>Quail species</td>
<td></td>
<td>As available</td>
</tr>
<tr>
<td></td>
<td>Rabbits (Desert Cottontail)</td>
<td></td>
<td>As available</td>
</tr>
<tr>
<td></td>
<td>Beef/Mule Deer</td>
<td></td>
<td>As available</td>
</tr>
<tr>
<td></td>
<td>Javelina (Collared Peccary)</td>
<td></td>
<td>As available</td>
</tr>
<tr>
<td></td>
<td>Catfish species</td>
<td></td>
<td>As available</td>
</tr>
<tr>
<td></td>
<td>Vegetation</td>
<td>2</td>
<td>As available</td>
</tr>
<tr>
<td></td>
<td>Soil</td>
<td>6</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Surface water, H-19/sewage treatment</td>
<td>Maximum of 16 (17 including on-site facilities)</td>
<td>Annual (surface water, when available)</td>
</tr>
<tr>
<td></td>
<td>Sediment</td>
<td>Maximum of 12</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Groundwater</td>
<td>6</td>
<td>Annual</td>
</tr>
<tr>
<td>Nonradiological</td>
<td>Meteorology</td>
<td>1</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td>Volatile organic compounds (VOCs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOCs - Surface</td>
<td>2</td>
<td>Semi-weekly</td>
</tr>
<tr>
<td></td>
<td>VOCs - Disposal Room</td>
<td># of active panel disposal rooms</td>
<td>Bi-weekly</td>
</tr>
<tr>
<td></td>
<td>Groundwater</td>
<td>6</td>
<td>Annual</td>
</tr>
<tr>
<td></td>
<td>Shallow subsurface water</td>
<td>Maximum of 12</td>
<td>Semi-annual</td>
</tr>
<tr>
<td></td>
<td>Storm Water Infiltration Control retention ponds (DP-831)</td>
<td>6</td>
<td>After a major storm event or annually, whichever is more frequent</td>
</tr>
<tr>
<td></td>
<td>Sewage Lagoons and H-19 (DP-831)</td>
<td>4</td>
<td>Semi-annual</td>
</tr>
</tbody>
</table>

1 The number of certain types of samples taken can be driven by site conditions. For example, during dry periods there may be no surface water to sample at certain locations. Likewise, the number of samples for biota will also vary. For example, the number of rabbits available as samples of opportunity will vary as will fishing conditions that are affected by weather and algae levels in the water.

2 Includes a nonradiological program component.
Table 5-2 - EMP Analytical Array

<table>
<thead>
<tr>
<th>Type of Sample</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent - Liquid Release (as needed)</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td>DP-831</td>
<td>• SO₄, Cl, TDS</td>
</tr>
<tr>
<td>• Effluent Lagoons B and C</td>
<td>• TKN, NO₃, SO₄, Cl, TDS</td>
</tr>
<tr>
<td>• Settling Lagoons 1 and 2</td>
<td>• SO₄, Cl, TDS</td>
</tr>
<tr>
<td>• Infiltration Controls Ponds</td>
<td>• SO₄, Cl, TDS</td>
</tr>
<tr>
<td>• H-19 Evaporation Pond</td>
<td></td>
</tr>
<tr>
<td>Airborne effluent</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td>Airborne particulate</td>
<td>Specific radionuclides, gross alpha, gross beta, and total suspended</td>
</tr>
<tr>
<td></td>
<td>particulate. Gross alpha and beta weekly; specific radionuclides of</td>
</tr>
<tr>
<td></td>
<td>quarterly composites.¹</td>
</tr>
<tr>
<td>Biotic (vegetation, rabbits, beef/deer,</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td>javelina, fish and quail)</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td>Surface water</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td>Sediment</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td>Meteorology</td>
<td>Temperature, wind speed, wind direction, precipitation, relative</td>
</tr>
<tr>
<td></td>
<td>humidity, barometric pressure, and solar radiation</td>
</tr>
<tr>
<td>VOC Monitoring Program</td>
<td>Permit-required target VOCs, tentatively identified VOCs, and other</td>
</tr>
<tr>
<td></td>
<td>VOCs as requested or directed by the New Mexico Environment Department</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Specific radionuclides¹</td>
</tr>
<tr>
<td></td>
<td>Indicator parameters and hazardous constituents²</td>
</tr>
<tr>
<td></td>
<td>40 CFR Part 264, specific target compounds of Appendix IX for</td>
</tr>
<tr>
<td></td>
<td>analysis in groundwater samples³</td>
</tr>
<tr>
<td>Shallow subsurface water</td>
<td>Cl, SO₄, TDS (TKN and NO₃ at WQSP-6A only)</td>
</tr>
<tr>
<td>Surface water (DP-831)</td>
<td>Cl, SO₄, NO₃, TDS</td>
</tr>
</tbody>
</table>

¹Specific radionuclides: ²⁴¹Am, ⁶⁰Co, ¹³⁷Cs, ⁴⁰K, ²³⁹/²⁴⁰Pu, ⁹⁰Sr, ²³³/²³⁴U, ²³⁵U, ²³⁸U, gross alpha, and gross beta.

²Permit Part 5, section 5.4

³Title 40 CFR Part 264, Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities - specific target compounds of Appendix IX for analysis in groundwater samples

NOTE 1: Gross alpha and gross beta are analyzed in the air samples only. Effluent air samples are not analyzed for ⁴⁰K, ⁶⁰Co, or ²³⁵U.

The H-19 Evaporation Pond is a single, synthetically lined evaporation pond used for the disposal of nonhazardous waste water collected from sources such as purged groundwater during Detection Monitoring Program (DMP) well sampling and other sources not potentially radiologically contaminated, at the WIPP site. Brine water collected from the underground interception wells is also discharged into H-19, provided it is not radiologically contaminated or exceeds RCRA thresholds. If it is radiologically contaminated, the water is shipped to an off-site low-level waste disposal facility. If RCRA thresholds are exceeded the water is shipped to a facility permitted to dispose of hazardous waste. The operation, maintenance, monitoring, and closure of the evaporation pond are described in the discharge permit. The H-19 Evaporation Pond (location shown in Figure 5-2) is sampled periodically as indicated in table 5-1. Samples from this location are analyzed as indicated in table 5-2.
5.2.4 Effluent Monitoring - Liquid Releases

DOE Order 458.1 sets dose limits and requires monitoring of liquid effluent streams. The most recent DOE handbook update, Environmental Radiological Effluent Monitoring and Environmental Surveillance, DOE-HDBK-1216-2015 (DOE, 2015a), sets the standard for meeting the requirements of DOE Order 458.1 (formerly DOE Order 5400.5, 1993). Liquid effluent monitoring is necessary to quantify radionuclides released to the environment and to alert operators of process inconsistencies and malfunctions of system controls.

Above-ground condensation from underground ventilation ducts, and seepage from the repository passages and shafts contribute a stream of potentially radiologically contaminated aqueous fluids that is managed within site radiological controls. Fluids determined to be detectably contaminated are shipped off-site to a facility authorized to accept such materials for disposition. None of these fluids are released to the environment at the WIPP site.

There is a sump in the WHB that collects liquids from throughout the WHB. Should there ever be liquid accumulation in the sump, the water in the sump may be sampled and analyzed for specific radionuclides as shown in table 5-2. The liquid effluent would then be characterized and disposed of in accordance with applicable regulations.

Brine water collected from the ventilation ducts and the underground repository are sampled and analyzed for radioactive and hazardous waste constituents. Since the only hazardous waste constituents that can reasonably contaminate the brine water associated with the repository are the metals, total RCRA metals are performed on the brine water to determine the hazardous waste characterization of the brine.

Plutonium (Pu) and americium (Am) are analyzed to determine the radioactive waste characterization of the brine water as determined by the radiation engineers. When the brine water contains any RCRA metal above threshold values as well as Pu and Am with activity above threshold values, the brine is disposed at a properly permitted facility for mixed low level waste disposal.

When brine water does not contain RCRA metals above threshold values, but contains Pu and Am with activity above threshold values, the brine is disposed at a properly permitted facility for low level waste disposal. When brine water contains RCRA metals above threshold values, but does not contain Pu and Am with activity above threshold values, the brine is disposed at a properly permitted facility for hazardous waste disposal.

When brine water does not contain RCRA metals above threshold values, and does not contain Pu and Am with activity above threshold values, the brine is disposed in Evaporation Pond H-19 according to DP-831 requirements.
5.2.5 Biotic Sampling

Biotic sampling (exclusive of vegetation) is authorized under a collector's permit issued by the New Mexico Department of Game and Fish and is performed in accordance with WP 02-EM1011, Biotic Sampling. Collection and analysis of biotic samples (e.g., quail, rabbits, beef/deer, javelina, and fish) accomplishes the following:

- Evaluates the potential radiation doses received by way of human consumption
- Predicts the possible contaminant concentrations in available biota
- Monitors trends in environmental contamination and possible long-term accumulation of radionuclides

Vegetation sampling is performed in accordance with WP 02-EM1019, Vegetation Sampling. Vegetation samples are collected from the locations indicated in Figure 5-3, in the vicinity with ambient air particulate sampling locations.
DOE-HDBK-1216-2015 (DOE, 2015a) indicates that game birds and mammals hunted locally should be sampled to verify the radionuclide levels available for public uptake. The original basis for sampling game at WIPP recommended collection during the hunting season within 25 km of the site, but samples can also be collected during the year when the opportunity arises. Quail are collected annually, as available, near the WIPP site using baited traps. Range cattle (beef), deer, rabbits, and javelina (collared peccary) sampling is opportunistic, primarily through animal/vehicle collisions on the roads in the WIPP vicinity. For quail and rabbit, collection and analysis of whole samples (as found) is performed. This reduces handling of the samples and thus the potential for contamination and is conservative when considering typical human consumption. For quail, several specimens are composited to meet analytical mass requirements. For deer, javelina, and cattle, muscle tissue (with organ tissue, as feasible) is removed for sample analysis. Samples are analyzed as shown in table 5-2.
Catfish are collected annually, as available, from the Pecos River near Carlsbad and from Brantley Lake (a manmade reservoir located on the Pecos River reach between Artesia and Carlsbad). Several whole specimens may be composited to meet analytical mass requirements. Samples are analyzed as shown in Table 5-2.

Sufficient biotic material is collected for each sample or composite to meet analytical laboratory measurement requirements for sensitivity to the specified radioanalytical methods.

5.2.6 Soil Sampling

Soil samples are collected annually from the six locations shown in Figure 5-3. Sampling sites are co-located in the vicinity of six of the air particulate sampling locations, and the vegetation sampling sites, as recommended in HASL-300, Environmental Measurement Laboratory Procedures Manual and DOE-HDBK-1216-2015. The annual frequency of sampling also follows the guidance contained in DOE-HDBK-1216-2015 for obtaining long-term accumulation trends. Samples are currently being collected per WP 02-EM1009, Soil Sampling, in three incremental profiles: surface (shallow) soil (0 to 2 cm [0 to 0.8 in]), intermediate soil (2 to 5 cm [0.8 to 2 in]), and deep soil (5 to 10 cm [2 to 4 in]). The soil samples are analyzed as indicated in Table 5-2, and the analytical results serve to provide data for long-term trend assessments.

5.2.7 Surface Water Sampling

Surface water collection is performed in accordance with WP 02-EM1017, Surface Water and Sediment Sampling. Surface water samples are collected annually when water is available (see Table 5-1), from up to 14 locations, in the WIPP vicinity as shown in Figure 5-2. Naturally-occurring surface water is absent within the WIPP Land Withdrawal Area. The sampling locations selected represent both the major bodies of surface water and potential livestock uptake locations in the WIPP vicinity and provide time-series data concerning the surface water pathway. On the Pecos River there are four sampling locations: the Upper Pecos River near Artesia, Brantley Lake, Carlsbad, and Pierce Canyon. Eight dirt tanks (earthen catchment basins) are used by area ranches to collect precipitation runoff water for livestock. These tanks are Tut, Noya, Red, Indian, Lost, Bottom of the Hill, Poker Trap, and Hill. Analyses are performed as specified in Table 5-2. Some of the locations are on private property and are sampled when access is granted.

Drinking water is sampled as surface water at the pump house (FWT) from the WIPP water supply system, piped in from a remote public water well source. The pump house and associated tankage is the facility which receives/stores the fresh water that is supplied to the site. This water is sampled annually and analyzed for the constituents listed in Table 5-2.
In addition, two stormwater retention ponds (SWP1 and SWP2) are sampled for radioactive constituents as needed per the DP-831 permit Part C #18 (NMED, 2014). These ponds receive runoff from a large portion of the WIPP facility surface operations areas.

All the sampling in the environmental surface-water monitoring program is conducted using a grab sample technique. There are no permanent sample stations, equipment, or conduit tubing involved using this technique.
5.2.8 Sediment Sampling

Sediment sampling is performed in accordance with WP 02-EM1017. Sediment samples are collected annually from near the WIPP site (Figure 5-4) and analyzed for specific radionuclides noted in table 5-2. The sediment sample locations are co-located with the off-site surface-water sample locations. The analytical results for the sediment sample analysis are reported annually in the ASER, and serve to provide data for long-term trend assessments.

Figure 5-4 - Sediment Sampling Sites
5.2.9 Groundwater Sampling

Groundwater, which may potentially be affected by DOE operations, must be monitored to detect and document the effects of such operations on groundwater quality and quantity, and to show compliance with applicable federal and state laws and regulations. The groundwater monitoring programs (GMPs) are conducted on-site and near DOE facilities to:

- Obtain data to determine baseline conditions of groundwater quality and quantity
- Demonstrate compliance with and implementation of applicable regulations and DOE orders
- Provide data for the early detection of groundwater contamination
- Identify existing and potential groundwater contamination sources and maintain surveillance of these sources
- Provide data upon which decisions can be made concerning land disposal practices and the management of groundwater resources

Though listed under the radiological program, meeting the requirements of DOE Order 458.1 and the guidelines of the DOE Handbook of Environmental Radiological Effluent Monitoring and Environmental Surveillance, DOE-HDBK-1216-2015, the GMP also supports the DMP as mandated by 20.4.1 New Mexico Administrative Code and the EPA Compliance Certification Application as mandated by 40 CFR Part 194, Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's Compliance with the 40 CFR Part 191 Disposal Regulations. These DMP requirements dictate a broader set of nonradiological indicator parameters and hazardous constituents for measurement. The GMP includes two subprograms, the Water Level Monitoring Program (WLMP) and the DMP.

The WLMP involves collecting monthly water level measurements from available wells (Figure 5-5) near WIPP. Groundwater surface elevations are monitored on a monthly basis to supplement the area water-level database and to help define regional changes in groundwater gradients and flow directions. These data are reported in semi-annual and annual groundwater reports and in the ASER. Groundwater level measurement is performed in accordance with WP 02-EM1014, Groundwater Level Measurement. Collection of groundwater-level data assists the DOE in meeting performance assessment requirements, regulatory compliance requirements, and permitting requirements.
The DMP groundwater samples are collected from the wells noted on Figure 5-6. Both field parameters and final samples are collected. Field parameter measurements are taken at regular intervals and analyzed in the mobile field laboratory for various physical and chemical characteristics, called field indicator parameters. The field parameter data are used to determine whether the sample is representative of undisturbed groundwater as a direct function of the volume of water being purged from the well. As required by the WIPP Hazardous Waste Facility Permit (Permit), the wells will be purged no more than three well-bore volumes or until field parameters have stabilized, whichever occurs first, before final samples are collected. The final samples are sent to analytical laboratories for analysis of chemical and physical parameters. Samples are sent to WIPP Laboratories, or alternate laboratory, for analysis of specific radionuclides. The protocols for the collection and analysis of final samples and field parameter...
measurements are contained in WP 02-EM1010, Field Parameter Measurements and Final Sample Collection.

Figure 5-6 - Groundwater Sampling Locations

DMP sampling is performed annually in six wells at WIPP. WQSP-1 through WQSP-6 are completed in the Culebra Dolomite Member of the Rustler Formation. The wells are constructed to EPA standards to meet the DMP standards under the Permit. The analytical results for samples collected from the DMP wells are reported in the Annual Culebra Groundwater Report and in the ASER.
5.3 Nonradiological Environmental Monitoring

Nonradiological environmental monitoring activities at WIPP are governed by a comprehensive set of sampling programs designed to detect and quantify impacts of construction and operational activities. The requirements and objectives of both preoperational and operational nonradiological environmental monitoring are described in the Final Environmental Impact Statement, Waste Isolation Pilot Plant (DOE/EIS-0026). The ecological monitoring program focuses on nonradiological effects, which are ongoing.

Section 2.5 of Appendix J of the WIPP Final Environmental Impact Statement (FEIS) states:

The operational ecological monitoring program, building on the foundation established through preoperational ecological monitoring, will document the ecological effects of construction and operation . . . and will focus primarily on indicator organisms and selected abiotic parameters.

Primary guidance for ecological monitoring was derived from the WIPP FEIS and the American Institute of Biological Scientists evaluation of the original WIPP biology program. Table 5-2 lists analytical parameters that will be monitored for evidence of possible site impacts. Results of supporting studies are published in the ASER.

5.3.1 Meteorological Monitoring

DOE-HDBK-1216-2015 provides guidance on how each DOE site is to establish a meteorological monitoring program appropriate for the activities at the site and for the local topography and demography. Meteorological variables are monitored and recorded to supplement characterization of the local environment and facilitate the interpretation of data from other environmental monitoring activities at WIPP. The WIPP meteorological program is performed in accordance with the WIPP Meteorological Program (WP 02-EM.01), which was written in accordance with the guidance contained in Meteorological Monitoring Guidance for Regulatory Modeling Applications (EPA-454/R-99-005).

The meteorological monitoring station is a 52-meter (170-ft) tower located northeast of the WIPP PPA. Temperature, wind speed, and wind direction are monitored at 2, 10, and 50 meters (7, 33, and 164 feet, respectively); barometric pressure, humidity, solar radiation, and precipitation are also monitored at this location. Measurements are recorded in the Central Monitoring System, which tracks numerous real-time variables on a centralized computer system.
5.3.2 VOC Monitoring

A repository volatile organic compound (VOC) monitoring program was implemented as specified in the Permit after approval by the New Mexico Environment Department on October 27, 1999. The Repository VOC Monitoring Program is designed to monitor the VOC concentrations that the non-waste surface-workers are exposed to that are attributable to transuranic (TRU) mixed waste emplaced in the underground. The monitoring program’s objective is to confirm that the running annual average risk to the non-waste surface worker due to VOCs in the air emissions from the Underground Hazardous Waste Disposal Units (HWDUs) do not exceed the specified Permit regulatory limits. An Underground HWDU is a single excavated panel consisting of seven rooms and two access drifts designated for disposal of TRU waste. The target compounds selected for monitoring together represent approximately 99 percent of the carcinogenic risk due to air emissions of VOCs.

The Permit-required repository VOC sampling locations are Station VOC-C, located at the west side of Building 489, and a background location, Station VOC-D, at groundwater monitoring well WQSP-4. Repository VOC sampling is performed using a commercially available portable passive air sampling kit (PASK) and is scheduled twice a week at each location. Each sample is set to collect as a 24-hour time-integrated sample consistent with U.S. Environmental Protection Agency (EPA) Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) (EPA 625/R-96/010b). Other sampling details are described in WP 12-VC1685, Subatmospheric Air Sampling in Passivated Canisters.

In the October 2006 permit modification, a disposal room VOC monitoring program was added to the Permit that required monitoring of VOCs in an Underground HWDU in which waste has been emplaced. The disposal room VOC monitoring program was implemented to confirm that the concentration of VOCs in the air of closed and active rooms of an open/active panel do not exceed the specified Permit regulatory limits. Excluding Room 1, sample heads are installed in the intake and exhaust drift of the disposal rooms of an Underground HWDU. Only one sample head is installed in Room 1, in the exhaust drift. Monitoring of a closed room of an active panel occurs at both the inlet (intake) and exhaust location. Monitoring of a disposal room receiving waste for emplacement occurs only at the exhaust location. Excluding Room 1 intake, disposal room VOC monitoring of closed and active rooms of an active panel is performed until commencement of panel closure activities.

VOC sampling is performed using sampling concepts found in EPA Compendium Method TO-15. Analysis of the samples is performed at a contract laboratory using standard operating procedures that may be based on the concepts found in TO-15, the draft EPA Contract Laboratory Program Volatile Organics Analysis of Ambient air in Canisters (EPA, 1994), EPA Method SW-846 8260B (EPA, 1996), or ASTM International D-1946 (ASTM, 2006). Additional program details can be found in WP 12-VC.01, Volatile Organic Compound Monitoring Plan. The results for the program are reported semi-annually in data summary reports and annually in the ASER.
5.3.3 Groundwater Surveillance

The WIPP groundwater DMP was described in section 5.2.9. Table 5-2 indicates the non-radiological groundwater parameters monitored using standard wet chemistry analytical methods. These methods are used to analyze for standard indicator parameters such as pH, specific conductance, specific gravity, and temperature. In addition to the indicator parameters, data are also gathered for hazardous constituents listed in Part 5 of the Permit. Hazardous constituents listed in Part 5 include metals, VOCs, and semi-volatile organic compounds.

5.3.4 WIPP Shallow Subsurface Water Monitoring

The objective of the WIPP shallow-subsurface water (SSW) program is to establish, by means of water-level monitoring and water-sample analysis, accurate and representative data in support of DP-831. This program documents the SSW quality through time to determine the effectiveness of source-control measures. Water levels are taken from the wells shown in Figure 5-7, and samples are taken from 11 of these wells. Water levels from the SSW program wells are taken quarterly and water samples are obtained semi-annually.
Figure 5-7 - Location of Shallow Subsurface (SSW) Water Wells (Piezometers PZ-01 through 15, C-2811, C-2505, C-2506, C-2507, C-2737)
General chemistry of the SSW is monitored for parameters specified in the DP-831 permit, using standard wet chemistry analytical methods. Analysis is performed for the parameters in table 5-2. Additionally, field indicator parameters measured are temperature, specific conductance, and pH. Serial and final samples are collected from SSW wells in accordance with WP 02-EC1003, Low-Flow Groundwater Purging and Sampling.

5.3.5 Surface Water Monitoring

Infiltration controls have been constructed in accordance with DP-831 to minimize the infiltration of storm water runoff. These include Storm Water Pond 1, Storm Water Pond 2, Storm Water Pond 3, Salt Storage Ponds 1, 2, and 3 and berms and ditches associated with these retention ponds. As specified in DP-831 and WP 02-EM1001, water samples are collected once per year and after major storm events from the Salt Storage Ponds 1, 2, and 3, Storm Water Ponds 1, 2, and 3. Samples are analyzed as shown in table 5-2, which also reflects the latest DP-831 permit.

5.4 Land Management

Parties who desire to conduct activities that affect lands under the jurisdiction of the DOE outside the PPA are required to prepare a land use request (LUR). A LUR consists of a narrative description of the project, a completed Environmental Concerns Review form, and a map depicting the location of the proposed activity. The LUR is used to determine if applicable regulatory requirements have been met before the approval of a proposed project. An LUR is submitted to the Land Use Coordinator by any organization desiring to complete any construction, rights-of-way, pipeline easements, or similar actions within the WIPP site boundary and on lands used in the operation of WIPP, under the management of the DOE (DOE/WIPP-93-004). The LUR is then reviewed by the CBFO NEPA Compliance Officer for approval. Additional details on LUR requirements can be found in the Waste Isolation Pilot Plant Land Management Plan, DOE/WIPP-93-004.
5.5 Oil and Gas Surveillance

Surveillance of oil and gas activities within one mile of the WIPP boundary is conducted in accordance with the U.S. Department of the Interior Bureau of Land Management/DOE MOU (DOE, 2012b). Oil and gas activities within the defined land sectors are monitored periodically to identify new activities associated with oil and gas exploration/production, including:

- Survey staking
- Geophysical exploration
- Pipeline construction
- Drilling
- Wellhead work-overs
- Changes in well status
- Anomalous occurrences (e.g., leaks, spills, accidents, etc.)

Data from this activity are used to estimate the probability of human intrusion by drilling for the WIPP performance assessment in support of compliance recertification applications every five years. In addition, observations of drilling activities adjacent to the WIPP site boundary are used to determine that no driller intrudes into the Land Withdrawal Area as described in Waste Isolation Pilot Plant Land Management Plan, DOE/WIPP-93-004.

Activities that implement the Land Management MOU elements are described in WP 02-EM1024, EM&H Field Work and Implementation of the Land Use Request.

6.0 DATA ANALYSIS

As needed, statistical methods may be used to analyze data collected in some of the environmental monitoring subprograms. This section describes general statistical methods that can be used for analyzing the data. The goal of statistical data analysis is to provide an objective and reliable means for comparing measurements to the objectives of the data collection program, typically to determine whether the data indicate compliance with limits. Only those statistical tests that properly represent the data within the tested set, and are necessary to demonstrate the desired information are used.

The data from sample media may be graphed by analyte to evaluate analytical consistency presented in a time trend plot. Should a discrepancy be noted during this review, an in-depth evaluation can be performed to identify the source of the deviation (e.g., statistical outlier or analytical technique). This is particularly useful with the DMP results.
Data analysis is required for each parameter before a statistically valid interpretation can be achieved. Five general levels of data analysis are described here. Data analysis at each of these levels is considered for each parameter. The levels are:

1. **Determination of accuracy** for each point measurement by quantification and control of precision and bias
2. **Evaluation of the effects of correlation** on the expected value of the point measurement due to location and time of sampling
3. **Identification of the appropriate model of variability** (i.e., a probability density distribution) for each point measurement and the calculation of descriptive statistics based on the chosen model
4. **Treatment of data anomalies**
5. **Interpretation of data through statistically valid comparisons (tests) and trend analysis**

Each of these levels of data analysis is described below. Program requirements for data analysis are covered in more detail in subprogram plans and procedures.

6.1 Accuracy

Accuracy is the closeness of a measurement to its actual, or true, value. Since the true value cannot be determined independently, accuracy cannot be absolutely determined. However, accuracy is controlled by two basic elements: bias (consistent over or underestimation of the true value) and precision (concentration of repeated measurements around a central [expected] value). Accuracy is maximized when bias is minimized and precision is maximized.

To some extent, precision and bias are controlled by strict adherence to sample collection, handling, and measurement protocols. Environmental monitoring plans and procedures specify the protocols for those functions performed at WIPP.

The remaining element of precision and bias is quantitatively estimated through periodic performance of the following measurements:

- Measurement of field duplicate samples
- Repeated measurement of the same sample (laboratory duplicate)
- Measurement of blank samples
- Measurement of standard spiked samples (samples of an equivalent medium containing a known amount of the target analyte)
The measurement of duplicate samples is used for assessing precision incurred through the entire process of sample collection, handling, and measurement. Repeated measurements are used to determine the amount of imprecision attributable to measurement. Blanks are analyzed to monitor purity of reagents and any other cross-contamination attributing bias to the sample results during collection of samples and laboratory analysis. Contract laboratories performing WIPP sample analyses may be required to participate in performance evaluation programs and pass the specific criteria set forth for measuring precision and accuracy.

The methods for satisfying these requirements will depend upon the sampling and measurement characteristics of each parameter. Generally, these specifications will be followed:

- One field duplicate sample is collected for each ten samples collected
- One repeated measurement is made for each discrete set of samples analyzed, or for each tenth sample analyzed, whichever is more frequent
- One blank sample is analyzed for each discrete set of samples analyzed (for radioactivity counts, the background count is not considered a blank)
- Spiked samples are measured

Variations from these specifications may be required due to peculiarities of the individual parameters and are stated in the analysis for that parameter.

6.2 Temporal and Spatial Analysis

Environmental variables are classified as random variables, or more precisely stochastic processes, and are functions of space and time. The effect of one or both of these two factors on the expected value of a point measurement is statistically evaluated through spatial analysis and time series analysis. However, these methods often require extensive sampling efforts that are in excess of the practical requirements of the WIPP program. The application of these methods to a particular variable must, therefore, be limited by consideration of its significance in the final interpretation of the data. For specific statistical analyses, the DOE Handbook (DOE-HDBK-1216-2015) provides detailed guidance.

In particular, spatial analysis has limited use in this program, although the effect of spatial correlation on the interpretation of the data is considered for each parameter. Spatial variability is accounted for by the use of predetermined key sampling locations. Data analysis is performed on a location-specific basis, or data from different locations are combined only when the data are considered to be statistically homogeneous.

Time series analysis plays a more important role in data analysis for the EMP. Variables may be reported as time series, either in tabular form or plots. For key time series variables, these plots are in the form of control charts on which control limits will be identified based on the preoperational database, fixed standards, control location databases, or other standards for comparison.
6.3 Distributions and Descriptive Statistics

Descriptive statistics may be calculated for homogeneous data sets. These would include a central value and a standard deviation. The central value is the mean of the data. The standard deviation is calculated and used as a basis for the reported range in variation. Typically, ± 2 standard deviations (approximately a 95 percent confidence level) from the mean are plotted on the graphs.

6.4 Data Anomalies

Historical data and/or trend charts are maintained on parameters and constituents for which analysis is performed in the DMP. The historical databases with established control limits at the 95 percent confidence level (or ± 2 standard deviations from the mean) are used in identifying an outlier. The 95 percent confidence level means that 5 percent, or 1 out of 20, normal results are expected to fall outside the limits. For analytical measurements reported as non-detect or below the method detection limit, the practical quantitation limit (which is between 3 and 10 times the method detection limit) is set as the upper threshold. An investigation is prompted by reviewing the sampling process and verifying that the data quality objectives were met. The data are qualified accordingly and documented when the analytical results indicate matrix contamination, method problems encountered during analysis, or an inconsistent sampling is identified. All analytical results are included in the charts, but excluded in establishing control limits if a known error has been identified. Including outliers in calculating control limits generates a range of values too broad or too small.

6.5 Data Comparisons

Comparisons between data sets may be performed using standard statistical tests. The selection of the specific test is dependent upon the relative power of the test and the degree to which the underlying requirements of the test are met. In addition to tests comparing data from distinct locations and times, trend analyses may be performed on time series where sufficient data exist. A 95 percent confidence level will be used for the final interpretation of DMP results. A 99 percent confidence level may be used for the radiological monitoring program.
6.6 Laboratory Procedures

Environmental sampling plans and procedures used to obtain quality results for WIPP are contained and/or described in the following documents:

- WP 02-1, WIPP Groundwater Monitoring Program Plan
- The environmental monitoring or compliance procedures of the WP 02-EM/WP 02-EC series
- The VOC monitoring plans and procedures of the WP 12-VC series
- WP 12-RL.01, Radiochemistry Quality Assurance Plan
- WP 13-1, Nuclear Waste Partnership LLC Quality Assurance Program

WIPP has analytical capabilities, both on-site at the WIPP facility (radiological screening) and in a nearby population center (full capability), as well as subcontracted analytical support. Each laboratory is responsible for maintaining an approved QA program for each of the programs discussed in section 5.0.

6.7 Sample Handling

Sample Identification and Tracking

There is a sample number used to uniquely identify environmental samples collected. Many of the environmental monitoring subprograms use a sample number containing sample-specific information used to accurately identify sample type, sample location, date, and sequence of sampling event, as described in Administrative Processes for Environmental Monitoring and Hydrology Programs (WP 02-EM3001). The VOC monitoring programs (WP 12-VC.01, Volatile Organic Compound Monitoring Plan), and the GMP (WP 02-1) use different systems of sample identification. A detailed description of the sample identification for radiological and nonradiological samples, including sample identification, calculations, computer inputs, and other applicable reviews, are described in environmental sampling procedures. Field data sheets are also maintained in accordance with procedures. The sample tracking is performed from collection to delivery at the laboratory.

Sampling Schedule

The sample type, location, and frequency of collection are noted in table 5-1. The sampling schedule at WIPP is based on waste composition, climate, and demography.
Environmental Activity Levels

During operations, TRU wastes will remain in sealed containers. After the February 2014 unplanned radiological release event, extensive environmental direct measurement and media sampling of air, soil, and vegetation were performed. With the exception of a single initial air sample, no results for TRU radionuclides were found to be statistically above expected background levels outside the Exclusive Use Area. Therefore, radionuclide levels in environmental samples are expected to remain at background during recovery and future operations. Environmental samples are collected in accordance with accepted practices and widely recognized methodologies and criteria for environmental monitoring (e.g., principles of DOE-HDBK-1216-2015 as reflected in the environmental monitoring procedures of the WP 02-EM series).

Packaging and Shipping of Samples Off-Site

Environmental samples sent off-site for analysis are packaged and shipped in accordance with transportation regulations and specific sampling procedures. These procedures outline the chain-of-custody requirements that ensure the integrity of samples. WIPP does not handle high-activity samples in the environmental monitoring programs. Contract laboratories are required to follow QA/QC procedures to ensure that cross-contamination between high and low activity samples will not occur.

The laboratory must be approved through an evaluation to be put on the NWP qualified supplier list. Before proceeding with exercising a contract to analyze samples, the contract laboratory must pass strict QA laboratory evaluations. The quality of the data from contract analytical laboratories is verified by (1) participation in inter-laboratory cross-checks, when feasible, (2) duplicate and blank sample analysis, and, (3) occasional comparison of results from sample duplicates or splits.

7.0 QUALITY ASSURANCE

This section defines the policies and procedures that have been implemented at WIPP to provide confidence in the quality of environmental data. QA practices that cover monitoring activities at WIPP are consistent with applicable elements of the 18-element format in ANSI/ASME [American National Standards Institute/American Society of Mechanical Engineers] NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ANSI, 1989).

WP 13-1 defines QA requirements and responsibilities that apply to NWP. The format of the QAPD is based on the QA criteria of 10 CFR §830.122, Quality Assurance Criteria. The NWP QAPD also addresses certain EPA QA requirements extracted from the EPA's QA/G-5, Guidance for Quality Assurance Project Plans (EPA/240/R-02/009). The NWP QAPD contains requirements that apply to environmental data operations (i.e., compliance activities associated with collection and analysis of environmental samples, including data reduction, handling, reporting, and records management).
A comprehensive QA program has been implemented to ensure that the data collected are representative of actual concentrations in the environment. Each contract laboratory is responsible for maintaining an approved QA program detailing the following:

- Routine calibration of instruments
- Frequent source and background checks (as applicable)
- Routine yield determinations of radiochemical procedures (as applicable)
- Replicate/duplicate analyses to check precision
- Standard and spike analyses to check accuracy
- Expiration of reagents to ensure that chemical purity, which could affect the results of the analytical process, is not compromised

The accuracy of chemical or radiochemistry analysis is ensured through the use of standards traceable to the National Institute of Standards and Technology and participation in a performance evaluation program, as feasible.

7.1 Goal

The NWP QA policy sets a goal to perform all work in such a manner that the required quality is attained or exceeded. To attain this goal, NWP has developed and implemented a formal QA program that is tailored for activities associated with receipt of TRU waste, including operational safety, environmental compliance, and performance assessment.

7.2 Program Elements

The specific WIPP QA program elements that are applicable to the EMP are provided in the 10 CFR §830.122 criteria. These elements establish the applicable QA requirements that are required for compliance activities associated with the collection and analysis of environmental samples, including data analysis, handling, reporting, and records management.
7.2.1 Program

The WIPP environmental monitoring and laboratory program documents and statements of work address specific environmental data operations as required by the QAPD. Environmental data operations project descriptions incorporate the following elements, as appropriate:

- Data accuracy (i.e., the degree to which data agree with an accepted reference or true value)
- Data precision (i.e., a measure of agreement between comparable data gathered or developed under similar conditions expressed in terms of a standard deviation)
- Data representativeness (i.e., the degree to which data accurately and precisely represent a characteristic of a population, a parameter, variations at a sample point, or environmental conditions)
- Data completeness (i.e., a measure of the amount of valid data obtained compared to the amount that was expected)
- Data comparability (i.e., a measure of the confidence with which one data set can be compared to another)
- Data reproducibility (i.e., a measure of the variability among measurements of the same sample by different laboratories)
- Data validation (i.e., a systematic process for reviewing a body of data against a set of criteria to provide assurance that the data are adequate for their intended use)
- Data verification (i.e., a systematic process for reviewing a body of data to verify completeness)

7.2.2 Personnel Training and Qualification

The WIPP training program has been designed to ensure that personnel performing work are capable of performing their assigned task proficiently. Personnel who perform work that requires special skills or abilities are required to meet the qualification requirements for that specific task unless directly supervised by a qualified person.
7.2.3 Quality Improvement

The quality improvement process has been established and implemented to improve quality and provide corrective action procedures. Corrective action and nonconformance procedures for activities associated with environmental data collection are identified in environmental monitoring and laboratory program documents and statements of work. The following elements are addressed:

- Predetermined limits for data acceptability beyond which corrective action is required
- Process for tracking, verification, and closeout
- Identification of individuals responsible for initiating corrective action and individuals responsible for verifying and approving implementation of the corrective action

Corrective action may be initiated through routine operations, performance audits, system audits, inter-/intra-laboratory comparison studies, or performance demonstrations conducted by the DOE’s Carlsbad Field Office.

7.2.4 Documents and Records

Procedures are established that control the preparation, review, approval, issuance, use, and revision of documents that establish policies, prescribe work, specify requirements, establish design, or that are being used for the performance of quality-related activities. Procedures are also in place to ensure that records are specified, prepared, reviewed, approved, and maintained to accurately reflect completed work. This process is described in WP 15-RM, WIPP Records Management Program. The WIPP records management program provides a project-wide records management system that coordinates the collection, maintenance, identification, and preservation of WIPP records.

Records generated through environmental monitoring activities, including the ASER and key supporting documents, are controlled and maintained in accordance with WP 15-RM. This document also provides the interpretations and the guidance necessary to meet the records management requirements for the creation, maintenance, use, and disposition of records that document and support the WIPP mission.

Complete, accurate, and auditable environmental monitoring program records will be maintained. The NWP RIDS will govern environmental monitoring records management.
7.2.5 Work Processes

Work is performed to established technical standards and administrative controls. The design of sampling methodology, use of equipment, and required processes are documented and approved. The following requirements for sample design are addressed in environmental monitoring program documents:

- Description of techniques or guidelines used to select sampling sites
- Specific sampling procedures to be used
- Charts, flow diagrams, or tables delineating sampling program operations
- A description of containers, procedures, reagents, etc., used for sample collection, preservation, transportation, and storage
- Special conditions for the preparation of sampling equipment and containers to avoid sample contamination
- Sample preservation methods and holding times
- Time considerations for shipment of samples to the laboratory
- Sample custody or chain-of-custody procedures
- Forms, notebooks, databases, and procedures to be used to document sample history, sampling conditions, and required analyses

The sample size for environmental samples must be large enough to meet minimum detectable activity requirements and minimize counting uncertainties without excessively long count times. If possible, sufficient sample should be available for re-analyses or confirmation of results as well as to analyze one duplicate sample per batch. The analytical laboratory may request additional sample volume or provide specific collection directions in addition to the routine field procedure protocols for specific media.

Samples collected for environmental compliance activities or for site validation are controlled by approved chain-of-custody procedures. The actual practices used are documented. The following sample custody procedures are specified in the environmental monitoring program documents.
For field sampling operations:

- Requirements for preparation of reagents or supplies which become an integral part of the sample
- Forms for recording the location and specific considerations associated with sample acquisition
- Specific sample preservation methods
- Sample labels containing all information necessary for effective sample tracking

For laboratory operations:

- Identification of responsible party to act as sample custodian at the laboratory facility authorized to sign for incoming field samples, to obtain documents of shipment, and to verify the data entered onto the same custody records
- A laboratory sample custody log consisting of serially numbered standard lab-tracking report sheets
- Specification of laboratory sample custody procedures for sample handling, storage, and disbursement for analysis

Custody records are treated as permanent QA records by the recipient upon final transmission of the analytical data.

Requirements for laboratory calibration are documented and include:

- A written description of the calibration process used for major measurement parameters
- Frequency of calibration
- Calibration standards to be used, as well as their sources and traceability

Environmental monitoring and laboratory program documents contain required preventive maintenance of equipment used for collection and measurement of environmental data and identify processes for controlling the analyses of samples collected for environmental data operations activities. Calibration of required equipment is coordinated through the WIPP Metrology Department for a third party calibration company to perform.
7.2.6 Design

The design of sampling methodologies is documented and approved. Requirements for sample design are addressed in environmental program documents and DOE guidance documents and Orders, including the design considerations listed in section 7.2.5. In addition, requirements for verification and validation of calculations and sample results by independent personnel are included in the quality assurance plan that controls the environmental program operations.

7.2.7 Procurement

The control of procurement documents ensures that procured items and services meet established requirements and specifications. Basic procurement requirements include:

- Applicable design specifications and other order requirements are referenced in documents for procurement of items and services
- Supplier has a QA program consistent with applicable requirements
- Procurement actions be performed in accordance with written procedures that describe the actions involved in the preparation, review, approval, control, and changes of procurement documents

7.2.8 Inspection and Acceptance Testing

Inspection and acceptance testing of specified items and processes are conducted using established acceptance and performance criteria.

Equipment used for inspections and tests are calibrated and maintained in accordance with procedures and statements of work. These documents describe the calibration process, calibration frequency, and calibration standards to be used, as well as their sources and traceability.

7.2.9 Management Assessment

Senior management assembles input from the following sources to form the basis of management assessment:

- Line management’s self-assessment reports
- Independent assessment reports
- Corrective action reports, including conditions adverse to quality, nonconformance reports, program deficiency reports, audit reports, and requests for corrective action
Following the assessment, the effectiveness of the QA program is documented. Further, areas for quality improvement (for significant nonconformances or high-risk items/activities), preventive or corrective actions, milestones for completion, responsibility assignments, trend analysis, and lessons learned are documented.

7.2.10 Independent Assessment

Independent assessments are performed to verify procedure compliance and are also used to prove independent oversight of the self-assessment process performed by line management. Independent assessments focus on improving items and processes by emphasizing line organization's achievement of quality. Results from independent assessments are transmitted to senior management as input for determining the effectiveness of the integrated QA program. In this regard, personnel performing independent assessments act in a management advisory function.
REFERENCES

<table>
<thead>
<tr>
<th>DOCUMENT NUMBER AND TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.1 New Mexico Administrative Code. Title 20, Hazardous Waste Management. New Mexico Administrative Code, Santa Fe, New Mexico.</td>
</tr>
<tr>
<td>DOE Order 5400.0. General Environmental Protection Program.</td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>DOCUMENT NUMBER AND TITLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE/WIPP-92-037. Statistical Summary of the Radiological Baseline for the WIPP.</td>
<td></td>
</tr>
<tr>
<td>DOE/WIPP-92-039. A Study of Disturbed Land Reclamation Techniques for the WIPP.</td>
<td></td>
</tr>
<tr>
<td>DOE/WIPP-92-013. Background Water Quality Characterization Report for the WIPP.</td>
<td></td>
</tr>
<tr>
<td>DOE Order 436.1. Departmental Sustainability.</td>
<td></td>
</tr>
<tr>
<td>DOE Order 231.1B. Environment, Safety and Health Reporting.</td>
<td></td>
</tr>
<tr>
<td>DOE O 232.2A. Occurrence Reporting and Processing of Operations Information.</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>DOCUMENT NUMBER AND TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 625/R-96/010b. TO-15, Determination of Volatile Organic Compounds (VOCs) in Ambient Air Collected in Specially Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS).</td>
</tr>
<tr>
<td>New Mexico Environment Department. Hazardous Waste Facility Permit, No. NM4890139088-TSDF. Santa Fe, New Mexico.</td>
</tr>
<tr>
<td>WP 02-EC1003, Low-Flow Groundwater Purging and Sampling</td>
</tr>
<tr>
<td>WP 02-EM1009, Soil Sampling</td>
</tr>
<tr>
<td>WP 02-EM1010, Field Parameter Measurements and Final Sample Collection</td>
</tr>
<tr>
<td>WP 02-EM1024, EM&H Field Work and Implementation of the Land Use Request Programs</td>
</tr>
<tr>
<td>WP 02-EM3001, Administrative Processes for Environmental Monitoring and Hydrology Programs</td>
</tr>
<tr>
<td>REFERENCES</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>