Analysis Plan For Derivation of Pitzer Parameters in Support of Experimental Work at LANL-CO

Task 1.4.2.2

Effective Date: 06/07/07

Authored by: Yongliang Xiong
Print Name: Yongliang Xiong
Signature: [Signature]
Date: June 6, 2007

Reviewed by: Shelly Johnsen
Print Name: Shelly Johnsen
Technical Reviewer
Signature: [Signature]
Date: 6/6/07

Reviewed by: Mario Chavez
Print Name: Mario Chavez
Quality Assurance Reviewer
Signature: [Signature]
Date: 6/6/07

Approved by: Christi Leigh
Print Name: Christi Leigh
Department Manager
Signature: [Signature]
Date: June 6, 2007
Table of Contents

1. **Introduction and Objectives** ... 3
 1.1 Introduction .. 3
 1.2 Objectives .. 3

2. **Approach** .. 3
 2.1 Project Resources .. 3
 2.2 Project Tasks and Milestones ... 3

3. **Software List** .. 3

4. **Tasks** .. 3

5. **Special Considerations** ... 4

6. **Applicable Procedures** ... 4

7. **References** ... 4
1 Introduction and Objectives

1.1 Introduction

Los Alamos National Laboratory-Carlsbad Operation (LANL-CO) has been conducting experimental work concerning the chemistry of actinides and their analogs. In their experiments at high ionic strengths, the Pitzer interaction parameters could be derived. When those Pitzer interaction parameters are derived, they could be employed to refine or enlarge the current database used for predicting the actinide solubility for the WIPP performance assessment. This analysis is a Programmatic Decision analysis per NP 9-1.

1.2 Objectives

The objective of this Analysis Plan (AP) is to derive the Pitzer interaction parameters in support of the experimental work at LANL-CO. The Pitzer interaction parameters between Co$^{2+}$, Ni$^{2+}$ and Gd$^{3+}$-EDTA complexes, and the bulk background electrolyte (i.e., NaCl), will be derived in the Revision 0 of this AP.

2 Approach

2.1 Project Resources

Sandia National Laboratories has a computer program called NONLIN (Babb, 1996). NONLIN fits parameters for the Pitzer's aqueous electrolyte model based on experimental data on stability constants of aqueous complexes, mineral solubility, osmotic coefficients, electromotive force (emf) and solvent extraction. Therefore, this computer program is suitable to achieving the objectives of this AP.

2.2 Project Tasks and Milestones

The project tasks are detailed in Section 4. The tasks identified in the Revision 0 of this AP are planned to be completed by the end of FY07.

3 Software List

The software to be used is NONLIN Version 2.0 (system configuration: DEC Alpha/Open VMS AXP 8.2).

4 Tasks

The tasks for the Revision 0 of this AP include:
(1) Derivation of Pitzer parameters for the interaction between CoHEDTA\(^-\) and the bulk
 electrolyte, NaCl.
(2) Derivation of Pitzer parameters for the interaction between CoEDTA\(^2^-\) and the bulk
 electrolyte, NaCl.
(3) Derivation of Pitzer parameters for the interaction between NiEDTA\(^2^-\) and the bulk
 electrolyte, NaCl.
(4) Derivation of Pitzer parameters for the interaction between GdEDTA\(^-\) and the bulk
 electrolyte, NaCl.

Yongliang Xiong will conduct those tasks, and the completion date is estimated to be by
the end of FY07.

5 Special Considerations

Pitzer interaction parameters will be derived from the conditional equilibrium constants
in Table 1 that Marion Borkowski (2007) at LANL-CO sent to Yongliang Xiong for the Revision
0 of this AP.

6 Applicable Procedures

All applicable WIPP QA procedures will be followed when conducting this AP.
• Training of personnel will be conducted in accordance with the requirements of
 NP 2-1, Qualification and Training.
• Analyses will be conducted and documented in accordance with the requirements
 of NP 9-1, Analyses.
• All software used will meet the requirements laid out in NP 19-1, Software
 Requirements and NP 9-1, as applicable.
• The analyses will be reviewed following NP 6-1, Document Review Process.
• All required records will be submitted to the WIPP Records Center in accordance
 with NP 17-1, Records.

7 References

Albuquerque, NM: Sandia National Laboratories. WPO 30740.
Borkowski, M., 2007. “Table 1. The conditional stability constants and protonation constants for
CoEDTA complex and log \(\beta_{i01}\) values for Co\(^{2+}\), Ni\(^{2+}\) and Gd\(^{3+}\) as a function of NaCl
ionic strength.” Sent to Yongliang Xiong on February 7, 2007 via e-mail. ERMS
#546107.
NOTICE: This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

This document was authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the United States Department of Energy's National Nuclear Security Administration. Parties are allowed to download copies at no cost for internal use within your organization only provided that any copies made are true and accurate. Copies must include a statement acknowledging Sandia Corporation's authorship of the subject matter.